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D4.4: Description and evaluation of advanced
algorithms for joint bi-modal authentication

Abstract:
In this deliverable, we proposed two advanced fusion schemes for audio-visual person

authentication: 1) a video-based score-level fusion scheme that uses a set of score distri-
bution descriptors extracted from video, and 2) a feature-level fusion scheme that uses a
novel concept called audio-visual slice. The first framework exploits the abundant score
information present in video streams, while the second exploits person-specific informa-
tion in the joint audio-visual space. Both of them were evaluated on standard audio-visual
databases and were shown to perform reasonably well, with each of them showing particular
advantages over other reference systems.
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1 Introduction

In this deliverable, we investigate advanced fusion techniques for joint audio-visual person
authentication. This work is divided into two distinct parts. In the first part, we propose a
novel video-based framework for score-level fusion. In the second part, we propose a novel
framework for feature-level fusion using a boosted ensemble of classifiers.

Video-based biometric systems are becoming feasible thanks to advancement in both
algorithms [VJ04] and computation platforms. Such systems have many advantages: im-
proved robustness to spoof attack, performance gain thanks to variance reduction [PB03],
and increased resolution [WLT07]. In the first part of this work, we propose a framework
for video-based score-level fusion which exploits statistics of scores extracted from multiple
frames of video. Our framework enables an existing biometric system to further harness
the availability of abundant scores derived from frames of video, using a set of distribu-
tion descriptors. Experimental results based on face and speech unimodal systems, as well
as multimodal fusion, show that our proposal can improve over the standard fixed rule
strategies by as much as 50%.

Feature-level fusion has a unique advantage over score-level fusion: it would be able to
extract person-specific information which might be embedded jointly in both the modali-
ties. In the second part of this work, we investigate feature-level fusion of audio and visual
modalities. We first perform a preliminary study aimed at finding out if feature-level fusion
would really benefit a biometric system. Next, we propose a method for feature-level fu-
sion using a feature combination technique called “slice”, a 2-dimensional projection of the
joint audio-visual space. We use this concept in a boosting framework [FHT98] to create
a computationally efficient bimodal fusion system. Experimental results suggest that the
proposed feature-level fusion system compares well with a standard reference system based
on score fusion and is particularly robust to high levels of noise in the audio modality.

In the following sections, we describe each of these two contributions in detail.

2 Video-based Score-level Fusion

Thanks to the advancement of sensing technology as well as advancement in highly effi-
cient computational algorithms and hardware computation platforms, it is now possible to
acquire and process video biometric data in real time. For instance, Viola and Jones’ face
detector [VJ04] is a vivid manifestation of such advancement. There are at least three po-
tential advantages in exploiting the temporal information for biometric person recognition:
(i) as an evidence of biometric liveness, for instance, using continuously acquired finger-
print images [AS09] or in audio-visual biometrics [BMWC06]; (ii) improved accuracy via
variance reduction [PB03, PB05] and (iii) as a means to derive super-resolution biometric
samples [WLT07].

Information fusion can, in principle, be carried out at the data-level for each frame of a
video or at the score-level where a classifier is invoked. The former requires not only vast
amount of computational resources, but also modification to the matching function in order
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Figure 1: The architecture of our proposal

to compare the biometric samples as image sets [KKC07]. In comparison, by working at
the score-level, the latter effectively conceals the complex information associated with the
extracted features or raw biometric data. Furthermore, an existing classifier can be used
without modification. As a matter of fact, most well established face recognition software
uses proprietary algorithms. As a result, the internal functionalities of the system (feature
representation and the matching function) are not accessible. For the above reasons, video-
derived score-level fusion is a first resort before applying such image-set based approach
as [KKC07].

In the literature, score-level fusion often involves scores derived from multiple sensors
(e.g., 3D vs. 2D sensors), multiple modalities (body parts), multiple comparison (matching)
algorithms (e.g., text-based vs minutiae-based fingerprint matching algorithms), multiple
instances (e.g., left vs. right iris images) and multiple samples (e.g., face images observed
from cameras positioned at different angles) [RP09]. Our fusion problem can thus be
considered a special case of multi-sample fusion wherein the biometric samples come from
a video stream. The distinguishing feature of video-based multi-sample fusion with the
one referred to in the literature is that the former can potentially contain hundreds of
observations.

We therefore extend the concept of multi-sample score-level fusion to include the notion
of time, which we refer to as short-term temporal fusion or simply temporal fusion. The
aim here is to investigate if the overall system accuracy can be better than the conventional
approach using such simple rules as mean, maximum or minimum of the scores. Rather
than using these simple statistics, for each stream of data, we propose to coarsely charac-
terize the distribution of the score sets by a vector of distribution descriptors consisting
of mean, standard deviation, skewness, median, the 25-th and 75-th percentiles, as well as
minimum and maximum of the scores. The importance of these parameters with respect
to the classification task is directly learned from the data via logistic regression. If there
are two modalities, the temporal information fusion first takes place for each modality and
the resultant scores are then combined at the multimodal level using the product rule (see
Figure 1).

Our contributions are as follow: First, we contribute to the state of the art in in-
formation fusion by proposing a video-based multi-sample score-level fusion framework
(Section 2.1). Second, we explore a novel fusion strategy utilizing a vector of descriptors
of the score distributions derived from the video (also in Section 2.1). Third, we demon-
strate the merit of our proposal on both the (talking) face and speech biometric modalities
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(Section 2.2).
Experimental evidence obtained from the BANCA (talking) face and speech video

database suggests that our proposal can improve the face expert by as much as 30% and
the speech expert by 10%. Furthermore, the fusion of the two modality-dependent experts,
after applying the temporal fusion, results in a relative improvement of 50% compared to
the conventional fusion (using only simple statistics to combine video-based scores), i.e.,
from about 2% of equal error rate to 1%.

2.1 A video-based multi-sample score-level fusion framework

Let Y ∈ {y1, . . . , yN} denote the set of matching scores yi ∈ R derived from a video
query consisting of N frames of processed and valid biometric samples. For instance, for
the speech modality that we will use, N means the total number of Mel-scale Frequency
Cepstral Coefficient (MFCC) features containing voiced speech (with the silence segments
removed). For the face modality, N denotes the total number of images for which our face
detector can confidently find a face and the face matching algorithm can produce a score.

The most conventional strategy to obtaining a single score ycom from the score set Y
is to use a simple fixed fusion rule. For the speech expert whose output is a log-likelihood
ratio of two hypotheses – one hypothesis supporting that the claimant utterance comes
from the “target” speaker or enrolled client versus the alternative. The speech expert
that we use is a modified state-of-the-art classifier based on Gaussian Mixture Model with
Maximum a posteriori adaptation (MAP-GMM) [RQD00]. It combines the N scores by
using the mean rule:

ycom =
1

N

N∑
i=1

yi

We employed two parts-based face experts (systems) which are very different in architec-
ture. By parts-based we understand that a face image is represented by a set of fixed-size
windows of much smaller size then the original image. The first expert uses a subset of
coefficients of a Discrete Cosine Transform [CSB06], known as DCTmod2, to represent the
texture information of each subwindow. The sequence of DCTmod2 features so-derived is
then classified using the MAP-GMM approach similar to the speech expert. Subsequently,
the N scores (from a video) are combined using the mean rule.

The second face expert represents each subwindow using non-uniform Local Binary
Pattern (LBP) followed by a Fisher Linear Discriminant (FLD) projection [Cha08]. During
query, a template feature in the LBP-FLD space is compared with that of a query feature
using normalized correlation. The matching scores for the respective subwindows are then
averaged to produce yi for each frame i in the video. It was empirically found that the
maximum rule works best to combine the scores from each video:

ycom = max
y∈Y

y

In the sequel, we studied two possible types of architecture: one generative and another
discriminative. The basic idea of both types of architecture departs significantly from the
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Figure 2: Each thick (resp. thin) curve denotes the match (resp. non-match) score dis-
tribution estimated from a video sequence. These scores are obtained from the UNIS face
expert based on LBP.

simple fixed rules in two ways. First, the video-based scores are now treated as a set which
follows a certain distribution. Second, the distributions of client and impostor video-
based scores are distinctive and repeatable for different legitimate users (also known as
“target” users or clients in the speaker recognition literature or “gallery subjects” in the
face recognition literature). Some training data has to be necessarily made available in
order to characterize the score distributions.

In both types of architecture, we shall estimate the density of y ∈ Y . Let this estimated
score density of a query video be p̂(y). We shall assume the availability of some training
data in terms of video-based score sets of known labels. At this point, it is useful to
distinguish the query video score set, Y , from the training video score sets, Y ′pq. In the
latter case, p is the identity index assigned to a legitimate user (i.e., the claimed identity)
and q is the identity of the actual subject from which a biometric is acquired (i.e., the
true identity). A video score set is considered a match when p = q and is considered is
non-match when p 6= q. In the discussion that follows, the match event is denoted as ω1

and the non-match event is denoted as ω0.

Figure 2 plots the estimated density (̂y) under the match and the non-match events.
Each curve in this figure represent a score distribution estimated from one video sequence.
Two important observations can be made by looking at this figure. First, the expected
value of a match video score set is larger than the non-match score set counterpart. The
reason for this is that the scores are similarity or likelihood scores, hence, higher values
imply that a query video is a match. Second, the variance of a video-based match score set
is larger when the query video is a match than when it is a non-match. In the experiments
(Section 2.2), we verified that the two observations above are consistent for both the face
and the speech modalities.
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Figure 3: Scatter plot of mean versus standard deviation of the distribution parameters
conditioned on match and non-match video queries.

The training score sets, arising from the non-match event, is denoted by Y0 ≡ ∪pY ′p,q
for all p 6= q. The corresponding score sets, for the match event, is denoted by Y1 ≡ ∪pY ′p,p
for all legitimate users p. Y0 therefore contains non-match (impostor) scores pooled from
many non-match video score sets. Similarly, Y1 contains match (genuine) scores pooled
from many match video score sets.

Let p̂(y|Yk) denotes the distribution estimated from Yk for k ∈ {0, 1}. The generative
approach we considered consists of computing the following distance:

ycom = dist(p̂(y|Y), p̂(y|Y1)− dist(p̂(y|Y), p̂(y|Y0) (1)

where dist is a distance metric between two distributions. The most common choice of this
metric, without making any assumption about the form of the distribution is the relative
entropy (or Kullback Leibler divergence), Bhattacharyya distance, Chi-square or histogram
intersection [CS02].

There are several difficulties when using the above generative approach. First, one has
to estimate the shape of distributions from the query data as well as the training data. This
requires choosing the right form of distribution or else resorting to using a non-parametric
approach such as the kernel density approach (Parzen window) [Bis99, Chap 2]. Second,
one needs to choose a distance metric between two distributions. Finally, (1) is but only
one possible way of comparing the merits of two distance metrics, each supporting its
own hypothesis that the query video is a match or a non-match attempt. Due to the
generative nature of this technique, many intermediate approximation steps are required,
preventing us to directly minimizing the classification error. For this reason, we explored
a discriminative solution which aims precisely at minimizing this error criterion. The idea
consists of approximating the distribution of a video score p̂(y) for y ∈ Y ′′ (which could be
a query (test) video score set Y or the training score set Y ′pq for different claimed identity
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p and true identities q) using simple non-parametric statistics such as mean, standard
deviation, skewness, the 25-th, 50-th (medean) and 75-th percentiles, as well as minimum
and maximum of the scores, and the number of samples:

θ(Y ′′) = [µ, σ, γ,Q1, Q2, Q3,min(y),max(y), N ]′. (2)

In essence, the above parameters summarize the entire video score set in a very coarse
way. While in principal one can use many more points at different percentiles, the number
of dimensions can be high, making the problem unnecessarily difficult, i.e., the curse of
dimensionality [Bis99].

Having derived the parameters θ(Y ′′), the next step consists of training a classifier
using the parameters as input, estimating the posterior probability of being a genuine
user, P (ω1|θ(Y). We used logistic regression for this purpose:

P (ω1|θ(Y)) =
1

1 + exp(−g(θ)
(3)

where
g(θ) =

∑
r

θrwr + w0

is a linear combination of the elements, θr, of the vector θ, defined by weights wr|∀r.
In order to train the logistic regression, we generated a set of positive samples, {θ(Ypp)},

where p are the identities of the legitimate users. The negative samples are obtained from
{θ(Ypq)|p 6= q}.

Because the classifier is linear in the θ space, the complexity of the classifier is directly
related to the number of dimensions in this space. This implies that one way to increase
complexity of the logistic regression is to increase the dimension of θ. This can be done,
for instance, by increasing the number of percentiles describing a video score distribution.
A pre-test shows that the set of parameters used in (2) is adequate, and adding more
parameters with additional percentile samples did not show any significant improvement
nor degradation in performance. For this reason, in the experiments to be reported in
Section 2.2, only those parameters are used.

The discussion so far has been limited to a single expert system. In order to combine
the scores of two (or more) experts, we shall introduce Ym to denote the video score set of
modality m. Assuming independence among the modalities m, one can employ the product
rule taking each of the m-th posterior probability of (3). So, following the Naive Bayes
principal, the final output is computed as:

yfinal =
∑
m

log

{
P (ω1|θ(Ym))

1− P (ω1|θ(Ym))

}
In order to make the accept/reject decision at the multimodal level, one simply com-

pares yfinal with a decision threshold. However, since our methodology also works for uni-
modal biometric systems, the accept/reject decision can be made by comparing P (ω1|θ(Ym))
with a decision threshold, for each m modality independently.
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2.2 Experiments

2.2.1 Expert Systems

In principle, any classifier that process a video frame-by-frame can be used in our frame-
work. For this reason, we shall present only the systems we used here briefly.

The face and speaker verification baseline systems (experts) are Bayesian classifiers
whose class-conditional densities are approximated using Gaussian Mixture Models (GMMs)
with the Maximum a posteriori adaptation [RQD00]. This is a well established state-of-
the-art classifier for the speaker verification, but since then, has also been successfully
used for the face verification problem. The GMM-based face expert system that we use is
reported in [CSB06], with the source codes available at http://torch3vision.idiap.ch.

Another face expert that we used is thoroughly discussed in [Cha08]. This expert
processes each frame in a video where a face can be detected. It is worth noting that
in the last Multiple Biometric Grand Challenge (MBGC) evaluation organized by NIST,
an slightly more advanced version of this classifier was ranked second in the controlled
evaluation setting and third in the uncontrolled setting.

The speech expert we used here differs slightly from the standard one [RQD00] in
that the speech variability across sessions is removed by factor analysis [MSFB07]. This
technique is applied to all training and test data prior to building a (client-specific) GMM-
MAP adapted model.

2.2.2 Database

The BANCA database contains recording of face and speech biometric modalities using
a camcorder, registering 52 people reading text-prompted sentences as well as answering
short questions. The BANCA English subset is used in our experiments.

A consequence of this BANCA database setting is that the face verification problem
becomes extremely challenging, compared to the speaker verification problem. This is
because in both the adverse and degraded conditions, the noise due to the environmental
conditions affecting the speech modality, which are all indoor recordings, is still relatively
unimportant in comparison with the face modality.

A novel aspect concerning the usage of this database, unlike precedent efforts, is that
video sequences are actually used here, rather than still images extracted from the video
sequence.

2.2.3 Results

We conducted our experiments in two stages: (i) unimodal experiments and (ii) multimodal
experiments.

In the first set of experiments, we assessed the performance of video-based frame level
fusion and compared it with the standard frame-level fusion techniques. For the speech
modality the so-called standard fusion is the sum rule [RQD00]. We also confirm that this
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(a) EER (b) Rel. change of EER

Figure 4: (a) EER and (b) relative change of EER of unimodal and multimodal systems
before and after applying our video-based score-level fusion obtained by logistic regression.

is the best strategy among all the known fixed rules. For the face modality, the max rule
turns out to be the best strategy [Cha08].

The objective of the second set of experiments is to assess the extent of improvement
possible when the video-based score-level fusion is applied to the underlying expert outputs.
As a control, the baseline fusion system is one whose underlying expert outputs are scores
obtained on the standard fusion strategy. Therefore, the multimodal fusion module is the
same (i.e., summing the expert outputs) for both systems.

The results of these two sets of experiments are summarized in Figure 4. Figure (a)
reports absolute performance for each unimodal and multimodal systems in terms of Equal
Error Rate (EER). This is the point at which the probability of a false accept is equal to
the probability of a false reject.

Figure (b) reports the relative change of EER, which is defined as

rel. change of EER =
EERa − EERb

EERb

where EERb is the EER before applying the proposed video-based score-level fusion (i.e,
the standard fixed rule strategy) where EERa is the EER after applying the proposed
technique. Therefore, negative change of EER implies improvement. As can be observed,
although the proposed method improves only marginally the unimodal systems, the benefit
is greater at the fusion level.

Since EER is not the only point of interest, we also examined the entire DET curve of
each system. The DET curves of two unimodal systems are shown in Figure 5. In these
figures, we also used a reduced set of features for logistic regression, namely the mean and
standard deviation. As can be observed, maximum performance gain is obtained when all
the distribution descriptors are used.
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(a) LBP-based face expert (b) GMM-based speech expert

Figure 5:

We further examined the weights of logistic regression after training for each of the
unimodal systems. They are plotted in Figure 6. Note that the weights shown here are
based on the distribution descriptors whose values have been normalized to zero mean
and unit variance. Therefore, all the weights are comparable. We observe that the most
important distribution descriptor is the standard deviation, followed by the mean statistics.
Furthermore, this observation is consistent across all the systems we tested.

2.3 Video-based Score-level Fusion - Concluding Remarks

Video-based biometric systems have several advantages over its static image-based coun-
terpart: improved robustness to spoof attack, improved accuracy via variance reduction,
and possibility of construction of data of higher resolution/quality. This paper explores a
score-level fusion framework in which an existing biometric system can produce a matching
score for each valid frame. We proposed score-level fusion strategy that relies on a set of
distribution descriptors. The experimental results confirm our conjecture that the abun-
dant scores made available by video-based biometric data can outperform the standard
score-level fusion strategy. When applied to a multimodal system, as much as 50% relative
gain in performance was observed (i.e., halving the EER). This result is an evidence of the
merit of our proposal.

A possible extension of this work is to examine the correlation of scores between the two
modalities. However, at present, this is not yet possible since the face and speech scores are
not necessarily aligned. Hence, before correlation can be exploited, the alignment problem
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Figure 6: The weights of logistic regression after training.

must be solved. This constitutes a possible future research direction.

3 Feature-level fusion using Audio-Visual Slice Clas-

sifiers

Multimodal fusion techniques involve either fusion at the feature-level or at the score-level
[RNJ06][San02]. Biometric systems involving feature-level fusion include the AHMM sys-
tem proposed by Bengio et al. [Ben03] and feature fusion scheme using face and hand
biometrics proposed by Ross et al. [RG05]. In general, feature-level fusion is reported
less in the literature compared to score-level fusion, especially for audio-visual biometrics.
This is mainly due to the curse of dimensionality [Bis99] and its associated computational
complexity. However, feature-level fusion has an advantage: it does not assume statisti-
cal independence between the modalities as score fusion often does. It has been shown
that such an assumption is not always true [RM10] and it could lead to a degradation
in performance of score-level fusion systems [NRJ09]. Thus it is important to investigate
feature-level fusion systems too, at the same time trying to overcome their inherent problem
of dimensionality.

In this part of the work, we first investigate a basic question : would feature-level
fusion be indeed helpful in a person identification task? A preliminary study suggests
that the answer is yes. Motivated by this, we propose such a system based on a novel
concept called “slice”, coupled with a boosting framework for classifier selection [FHT98].
Experimental results on a standard audio-visual database validate the robustness of our
framework in noisy acoustic environments and show that it compares well with score-level
fusion. Furthermore, our framework is computationally efficient, which makes it suitable for
embedding in mobile devices which have comparatively limited computational capabilities.
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3.1 Can Feature-level Fusion improve the performance of a bio-
metric system? - A Preliminary Study

In this section, we investigate if feature-level fusion can indeed improve the performance
of a biometric system. Instead of approaching the problem directly, we propose a related
task: person identification in a cross-modal scenario, i.e., matching the speaker in an
audio recording to the same speaker in a video (visual-only) recording, where the two
recordings have been made during different sessions, using speaker specific information
which is common to both the audio and visual modalities [RM10]. We hypothesize that
such a related though much more difficult task can be solved by a pattern recognition
system with a performance statistically significantly higher than chance if and only if
crossmodal identity information is indeed available and shared between the audio and
visual modalities. Hence, it provides a sufficient though not necessary condition for the
hypothesis that feature-level fusion might indeed be beneficial for a biometric system. This
is because such a fusion system can exploit such crossmodal identity information, if it exists,
while a system based on score fusion cannot. In the following paragraphs, we describe in
more detail about the crossmodal task.

We often create a mental image of a person whose voice is familiar (from telephone con-
versations, for example) but whom we have never seen. We often also create a mental “voice
model” from visual information (either static or dynamic) of persons we have never heard.
Recent studies have investigated these phenomena scientifically [KHLVB03] [LP04] [KFM02],
asking human observers to match an audio recording of an unknown voice X to two video
recordings of two unknown speakers, A and B, one of which is X, and vice versa. It was
found that humans performed in this task with an accuracy significantly above chance. Let
us define this crossmodal matching task, termed as the XAB task [KHLVB03], as follows.

The XAB task has two stages : (1) the learning stage and (2) the matching stage. In the
learning stage, joint audio and visual information is available in the form of synchronized
audio and video (dynamic facial appearance) recordings of persons speaking. The purpose
of this stage is to extract or store knowledge required to map speaker identities between
audio and visual modalities. In the matching stage, there are two cases, the Audio-to-
Visual (a-v) matching task and the Visual-to-Audio (v-a) matching task. In the a-v task,
an audio recording of a person X speaking, and two video recordings showing two different
persons speaking, A and B, are provided. Given that exactly one out of A and B is X, the
task is to decide which one it is. For all the speakers in the matching stage, it is critical
that no joint (synchronized) audio and visual information be available. We term this the
Audio-Visual Mismatch criterion. This causes the XAB task to be distinct from a simple
audio-to-visual synchronization task where both modalities capture the same event in time
[Kea09]. To ensure this, the audio and video recordings in the matching stage should
be temporally non-overlapping, i.e., they should be made during different sessions, and
speakers in the matching stage should be all distinct from speakers in the learning stage.
The converse v-a task is exactly the same as the a-v task with the roles of the modalities
reversed.
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There are several studies with human observers performing the XAB task.1 Lachs et
al. [LP04] and Kamachi et al. [KHLVB03] reported human observers correctly matching X
to A or B around 65% of the times. Krauss et al. have shown similar matching performance
using static instead of dynamic visual information [KFM02]. Campanella et al. [CB07]
provide additional insights on cross-modal information transfer in humans.

3.1.1 Two frameworks for crossmodal speaker matching

We explored a possible solution to the XAB task by creating modality independent speaker
models which can be used equally on both audio and visual data. We studied two ap-
proaches for this, the K-means clustering (KMC) approach and the K-nearest neighbour
(KNN) approach.

Before we explain these two approaches, we briefly describe the audio and visual features
we used. For the audio modality, the audio data sampled at 8kHz was blocked into frames
equal in duration to the video frames (corresponding to 320 samples per frame) and 16
Mel-Frequency Cepstral Coefficients (MFCC) [PNLM04] were extracted from each block,
out of which 1st to 8th were retained to form the audio feature vectors. For each audio
sequence, Cepstral Mean Subtraction [PNLM04] was performed. For the visual modality,
we concentrated on lip appearance features since they have been shown to be robust and
efficient [PNLM04]. The video frame rate was 25fps. From each video frame, a 16 ×
16 Region-Of-Interest (ROI) around the lips was extracted using available annotation,
followed by geometric normalization and inter-frame alignment. Next, 2D-DCT features
[PNLM04] were extracted and 3rd to 10th highest energy coefficients were retained to form
the visual feature vectors.2 Mean normalization was performed for each visual feature
sequence [PNLM04]. It is to be noted that only voiced frames were used, both for audio
and visual modalities.

Let Ra and Rv denote the audio and visual feature spaces. For the learning stage,
synchronized audio and visual data is available. Let Sa and Sv denote the sets of audio
and visual feature vectors extracted from this data, i.e. Sa ⊂ Ra, Sv ⊂ Rv. These sets,
termed the audio and visual learning sets, are ordered such that the i-th element xai ∈ Sa

is synchronous to the i-th element, xvi ∈ Sv. For the matching stage, let X, A and B also
denote the respective recordings as well as the persons X, A and B. Let SmX ,S

m
A ,S

m
B denote

the feature vectors extracted from X, A and B, where m can indicate either the audio (a)
or the visual (v) modality depending on whether it is an (a-v) or (v-a) task. Let | · | denote
the size of a countable set, and 1S(x), the indicator function of any set S, i.e. 1S(x) = 1
if x ∈ S and is zero otherwise.

1) K-means Clustering (KMC) Approach
In the learning stage, the learning sets Sa and Sv are independently clustered into K

clusters, {Sak}Kk=1 and {Svk}Kk=1, using K-means algorithm [DHS00] with squared-Euclidean

1For humans, the learning stage comprises of all speech-related joint audio-visual stimuli received as
part of normal day-to-day activities prior to the experiments.

2For both the audio and visual cases, the coefficients retained have been selected by trial-and-error to
give best performance.

MOBIO D4.4: page 18 of 35



MOBIO [214324] D4.4: Advanced Bimodal Fusion

distance. Let {Ra
k}Kk=1 and {Rv

k}Kk=1 denote the corresponding Voronoi cells formed by
segmenting the spaces Ra and Rv according to these clusters, i.e, Sak ⊂ Ra

k, Svk ⊂ Rv
k

for 1 ≤ k ≤ K. Let Hva denote the K × K Hebbian projection matrix [Coe06], each of
whose elements Hva(ka, kv) estimates the probability that an audio vector xa belongs to a
particular cell Ra

ka
in the audio feature space, given that its synchronous visual vector xv

belongs to the cell Rv
kv

in the visual feature space, i.e. Hva(ka, kv) = Pr(xa ∈ Ra
ka
|xv ∈

Rv
kv

). It is estimated as

Hva(ka, kv) =
1

|Svkv
|
∑

xv∈Sv
kv

1Sa
ka

(xa) (4)

where 1 ≤ ka, kv ≤ K, xa is the audio vector synchronous with visual vector xv and | · |
denotes the size of a countable set. The inverse Hebbian projection, Hav can be calculated
as in Eqn. 4 by interchanging the audio and visual modalities. The matrices Hav and Hva

are the outputs of the learning stage.
For the matching stage, let us consider the (a-v) task. Let paX,pvA and pvB be the

probability mass functions (PMF) of the feature vectors extracted from X, A and B, i.e.
SaX,S

v
A and SvB respectively, based on the K clusters formed in the learning stage. Thus,

paX(k) = Pr(xa ∈ Ra
k|xa ∈ SaX), pvA(k) = Pr(xv ∈ Rv

k|xv ∈ SvA) and pvB(k) = Pr(xv ∈
Rv
k|xv ∈ SvB). These PMFs are estimated as,

paX(k) =
1

|SaX|
∑

xa∈Sa
X

1Ra
k
(xa) (5)

pvA(k) =
1

|SvA|
∑

xv∈Sv
A

1Rv
k
(xv) (6)

pvB(k) =
1

|SvB|
∑

xv∈Sv
B

1Rv
k
(xv) (7)

where 1 ≤ k ≤ K. Next, we use the Hebbian projection matrix, Hva to project the two
PMFs in the visual space, pvA,p

v
B to the audio space, as follows,

p̃aA = HvapvA (8)

p̃aB = HvapvB (9)

These two PMFs (which we term as pseudo-PMFs) are used to approximate the true PMFs
of the unavailable audio feature vectors corresponding to the visual-only recordings A and
B [Coe06]. For the matching task, we consider these PMFs as speaker specific models and
decide,

X ≡

{
A if ρB(paX, p̃

a
A) ≥ ρB(paX, p̃

a
B),

B if ρB(paX, p̃
a
A) < ρB(paX, p̃

a
B)

(10)
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where ρB denotes the Bhattacharyya coefficient [DHS00] between two PMFs p1,p2 and is

calculated as, ρB(p1,p2) =
∑
∀k p1(k)

1
2 p2(k)

1
2 . For the (v-a) task, a similar procedure was

followed, interchanging the roles of the audio and visual modalities.
2) K-Nearest Neighbours (KNN) Approach
There is no separate learning stage in this approach. Information in the audio and

visual learning sets Sa,Sv (ref. Sec.3.1.1) is directly used in the matching stage. For the
matching stage, let us again consider the (a-v) task. For each audio vector xaX,i ∈ SaX
extracted from X, we form the set ΨX,i of the indices of Ka-nearest neighbours [DHS00]
of xaX,i in Sa, the audio learning set. Similarly, we form sets of indices of Kv-nearest
neighbours {ΨA,i}, {ΨB,i} for each vector in SvA,S

v
B, the visual vectors extracted from A

and B respectively, from Sv, the visual learning set. These nearest neighbour sets are
independent of modalities since each element in Sv has a corresponding element in Sa (ref.
Sec.3.1.1). This forms the basis of the cross-modal mapping in this approach. To match
X to A or B, we use the sum of the sizes of intersections sI between the nearest neighbour
sets of X and those of A,B, as follows,

X ≡

{
A if sI(X,A) ≥ sI(X,B),

B sI(X,A) < sI(X,B)
(11)

where sI(X,A), sI(X,B) are defined as follows,

sI(X,A) =
1

|SaX||SvA|
∑

xa
X,i∈S

a
X

∑
xv

A,j∈S
v
A

|ΨX,i ∩ΨA,j| (12)

sI(X,B) =
1

|SaX||SvB|
∑

xa
X,i∈S

a
X

∑
xv

B,j∈S
v
B

|ΨX,i ∩ΨB,j| (13)

For the (v-a) task, a similar procedure was followed, interchanging the role of the audio
and visual modalities. It can be shown that the sums sI(X,A), sI(X,B) can be equivalently
expressed as approximations to the L2-inner product of the PMFs corresponding to the
audio and visual data. However, compared to Sec.3.1.1, the feature space is now subdivided
much more minutely, each vector in the learning sets Sa,Sv forming its own cell. This
amounts to exploiting maximally the information available for cross-modal matching. Our
proposed matching criterion based on comparing the sI values is motivated by the use of
the L2 inner product kernel in state-of-the-art speaker verification systems [CSR06].

3.1.2 Experiments

All experiments were performed on the M2VTS audio-visual database [M2V] with 24 male
and 10 female speakers. Synchronized audio and visual data was recorded in a controlled
environment across multiple sessions separated by one week intervals. Lip annotations
were obtained from http://www.ee.surrey.ac.uk/Projects/M2VTS/experiments/lip_

tracking/. We tested our approach on two conditions : (1) lexically matched and (2)
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lexically mismatched. For condition (1), speech content in X, A and B were lexically
matched. Recordings from the database were used as it is : in each recording, the speaker
counted from ‘0’ to ‘9’ in their native language. For the second (more difficult) condition,
the recordings were rearranged so that segments used for X were lexically mismatched
with A and B : if X contained ‘0’ to ‘4’, A and B contained ‘5’ to ‘9’ and vice-versa.
Of course, the Audio-Visual Mismatch criterion (ref. Sec.3.1) was always maintained in
both conditions. X, A and B consisted of around 4.5 seconds of data each. Separate
experiments were performed on only male (M), only female (F) and both male and female
(F+M) speakers. For each XAB task, two speakers were separated from the complete set,
these two were used in the matching stage, while all the remaining speakers were used
in the learning stage. For one complete experiment, the XAB task was repeated for all
possible pairs of speakers in the matching stage. Considering all possible combinations,
the total number of times the XAB task (a-v and v-a each) was independently evaluated
is 2208 for the M case, 360 for the F case and 4488 for the F+M case. The match score
for each experiment is calculated as,

Match score =
No. of succesful matches

Total no. of XAB tasks
× 100% (14)

Since each task has two alternatives only one out of which is correct, the expected score for
a random classifier would be 50%. Each experiment was repeated for different values of K,
the number of clusters, and Ka, Kv, the number of nearest neighbours, for the KMC and
KNN approaches respectively. Optimal value of K was 64, while for Ka, Kv it varied from
2 to 256 according to the conditions tested. Table 1 gives the results of our experiments
in terms of the match scores obtained, using the optimal parameter values.

3.1.3 Discussions and conclusions of the preliminary study

For the lexically matched case, both the KMC and KNN approaches give match scores
around 65%. This is statistically significant, given the total number of times the XAB
task was evaluated (ref. Sec.3.1.2). For the lexically mismatched case, the performance
of KNN drops by 10% but is still significant; KMC is unable to perform at more than
chance level. This shows the relative robustness of the KNN approach. Our method
compares well with results reported by studies using human observers on the XAB task
[KHLVB03] [LP04] as shown in Table 2, although it is to be noted that these studies used
different databases. It is to be noted that human performance fell drastically for time-
reversed stimuli [KHLVB03] [LP04]; our method is unaffected by this, being based on
static feature vectors only. Furthermore, human observers had information from the entire
face available to them, while our method uses information exclusively from the lip region.

Since both the two approaches have shown performance signicantly better than chance,
this satisfies the sufficient condition for our hypothesis about feature-level fusion to be
true. Now we have reasonable justification to implement feature-level fusion in multimodal
biometric systems with an aim to improve verification performance. This will be explored
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Proposed XAB task Lex. Lex. mis-
Approach type matched matched

M 66.6 *
a-v F 79.4 *

KMC F+M 66.4 *
M 65.1 *

v-a F 60.0 *
F+M 64.9 *

M 68.9 56.0
a-v F 64.2 57.8

KNN F+M 66.4 56.6
M 66.0 55.6

v-a F 61.9 60.6
F+M 63.4 56.1

Table 1: Match scores (%) for the XAB task using the proposed approaches. An asterisk
(*) denotes that a match score better than random chance (50%) could not be obtained.

XAB task Lex. Lex. mis-
type matched matched

Kamachi et al. a-v 69.0 59.0
[KHLVB03] v-a 66.0 60.0

Lachs et al. a-v 60.7 n.a.
[LP04] v-a 65.1 n.a.

Table 2: Match scores (%) for the XAB task performed by human observers.

in the subsequent sections.3

3.2 Boosted Slice Classifiers (BSC) - the Proposed Framework

Motivated by the positive results from our preliminary study reported above, we propose
in this section a novel framework for feature-level fusion of audio and visual modalities.

We first assume that the raw audio and visual streams have been synchronized and

3As a side note, this method for crossmodal matching could be developed further using this preliminary
study as a basis, and the match scores could be improved so that it can be used in practical applications,
such as (1) a cross-modal surveillance scenario where prior speech data (but no visual data, for example
via telephone conversations) about a person X has been collected and presently it is required to identify
this person out of a group which is under video surveillance (but no audio data is currently available,
for example due to distance from group or noisy environment), and (2) a multimodal biometric system
which uses cross-modalities (a-v, v-a) to augment the normal audio and visual modalities and make it
more reliable. However, this is beyond the scope of the current work.
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processed to give a sequence of audio and visual feature vectors. It is to be noted that the
audio stream must be framed at a rate equal to the visual stream, so as to give audio and
visual feature vectors with a one-to-one synchrony. A detailed description of the different
audio and visual feature spaces investigated is given in Sec.3.3.2. For now, let us denote
the audio and visual feature spaces by Ra and Rv respectively. Let Na and Nv be the sizes
of Ra and Rv respectively.

3.2.1 The concept of Slice

The audio and visual feature spaces Ra, Rv can be combined to form the joint audio-visual
feature space, Rav = Ra ×Rv of size Nav = Na + Nv. Assuming synchronous extraction
of audio and visual features, an audio-visual event can be represented as a set of points in
Rav. Due to the problem of dimensionality, modelling these points in the high-dimensional
Rav space is difficult [Bis99, Sec.8.6]. To solve this issue, let us define a slice L as a two-
dimensional subspace of Rav. It is necessary for feature-level bimodal fusion that L has
at least one audio component La extracted from Ra and at least one visual component Lv

extracted from Rv. Since there are Na different audio components in Ra and Nv different
visual components in Rv, the total number of all possible slices are NL = Na × Nv. Let
Λ = {Li}NL

i=1 denote the complete set of all possible slices.

3.2.2 Slice Classifiers

Each slice Li ∈ Λ is associated with a slice classifier hi. Given a classification task (for
example, audio-visual speaker authentication) in the high-dimensional audio-visual space
Rav, the classifier hi is trained and tested on projections of data exclusively on Li. Let
H = {hi}NL

i=1 denote the complete set of all slice classifiers. In this work, we have selected the
classifier to be a quadratic discriminant function [DHS00], assuming a normal distribution
of data. Although other classifiers are possible, experiments have shown that it serves its
purpose sufficiently well, without being too complex at the same time. In practice, the
normal assumption is rarely valid; however, this does not affect the performance of the
system.

For a speaker authentication task, with client and impostor classes denoted by ‘1’ and
‘0’ respectively, a slice classifier can be expressed as a function hi : Li → {0, 1}. Given a
point x ∈ Li,

hi(x) =

{
1 if− (x− µ1,i)

TΣ−1
1,i (x− µ1,i) + (x− µ0,i)

TΣ−1
0,i (x− µ0,i) ≥ θi

0 otherwise.
(15)

where µ1,i, µ0,i are the estimated means of classes ‘1’ and ‘0’ projected on Li, and Σ1,i, Σ0,i

are their estimated covariance matrices. The threshold θi is chosen to minimize misclassi-
fication error on the training set.

It is to be noted that a single slice classifier by itself is unlikely to perform sufficiently
well in its task. However, it is hypothesized that there will be at least some optimal slice
classifiers which will perform comparatively better than others. Such optimal classifiers
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will be associated with slices which contain maximally discriminative joint audio-visual
information. Such optimal classifiers could be combined in a suitable way to obtain a final
classifier which is strong enough to perform the task sufficiently well.

3.2.3 Slice Classifier Selection and Combination by Boosting

Out of the complete set of slice classifiers H, a certain number of classifiers are itera-
tively selected for each client according to their discriminative ability with respect to that
client. This selection is based on the Discrete Adaboost algorithm [FHT98] with weighted
sampling, which is widely used for selection tasks [Rod06] and is known for its robust
performance [FHT98]. The algorithm, which is to be run once for each client, is as follows:

Algorithm: Slice Classifier Selection by Discrete Adaboost

Inputs: Ntr training vectors {xj}Ntr
j=1, corresponding class labels, yj ∈ {0, 1} (0:impostor,

1:client), Nh, the number of classifiers to be selected, N∗tr, the number of training vectors
to be randomly sampled at each iteration (N∗tr < Ntr).

• Initialize the weights {w1,j} ← 1

2N
(0)
tr

, 1

2N
(1)
tr

for yj = 0, 1 respectively, where N
(0)
tr and

N
(1)
tr are the number of impostor and client training vectors respectively.

• Repeat for n = 1, 2, · · ·Nh:

– Normalize weights, wn,j ← wn,jPNtr
j′=1

wn,j′

– Randomly sample N∗tr training vectors, according to the distribution {wn,j}
– For each hi inH, choose θi to minimize misclassification error, εi = 1

N∗tr

∑N∗tr
j=1 1{hi(x

(i)
j )6=yj}

over the sampled set.

– Select the next best classifier, h∗n = hi∗ where i∗ = arg mini εi

– Set βn ← εi∗
1−εi∗

– Update the weights, wn+1,j ← wn,jβ
1
{h∗n(x

(n)
j

)=yj}
n

Output: The sequence of selected best slice classifiers, {h∗n}
Nh
n=1.

For the database and framing parameters used, Ntr was around 8,000, and N
(1)
tr , which

varies for each client, was around 150. N∗tr was set to 1000 and Nh to 30. For each client,
the selected slice classifiers are combined linearly to give a strong classifier F [FHT98]:

h(x) =

Nh∑
n=1

αnhn(x). (16)

The weights {αn} are calculated to minimize the exponential loss [FHT98] and normalized

to sum to unity for each client, αn = log(βn)PNh
n′=1

log(βn′ )
. Since a decision is only required at

MOBIO D4.4: page 24 of 35



MOBIO [214324] D4.4: Advanced Bimodal Fusion

the utterance level and not at the frame level, the responses h(x) of each frame x in an
utterance are added and normalized by the number of frames, to obtain the final score S
for the utterance. This is compared with a preset threshold to decide if the utterance was
made by a client or an impostor. This preset threshold Θ is calculated by minimizing the
Equal Error Rate [Bim04] on a separate development set.

In brief, this section has outlined a solution to the problem of dimensionality in mul-
timodal fusion by proposing the concept of “slice”. Furthermore, it describes how the
boosting framework can be used to select only those pairs of audio and visual features
which are maximally discriminative for a particular client. In the next section, we describe
several experiments evaluating the proposed framework as well as several reference systems.

3.3 Experiments

3.3.1 Database and Protocol

As in Sec.3.1.2, all experiments in this section were performed on the M2VTS database
[M2V] using lip annotations from http://www.ee.surrey.ac.uk/Projects/M2VTS/experiments/

lip_tracking/. We followed the speaker verification protocol for this database as outlined
in [Ben03].4 This protocol involves a 4-fold cross-validation procedure described as follows.

The clients were firstly divided into 4 disjoint sets, with 8 clients in each set. For each
fold, one particular set out of the four was set as the evaluation set, while the remaining
3 sets formed the development set for that fold. The experiment was conducted in three
phases: training, development and evaluation, repeated individually for each fold.

In the training phase, only the first 2 recordings of each client were used to create
client-specific models. For all systems using the Universal Background Model-Gaussian
Mixture model (UBM-GMM) framework (ref. Sec.3.3.2), all clients in the development set
of a particular fold were used to train the world model for that fold. Next, this world model
was adapted for all clients in the database to give client-specific models for that fold.

For systems using the proposed Boosted Slice Classifier framework, there were two cases.
For each client in the evaluation set of a particular fold, all clients in the corresponding
development set contributed to the negative samples for the boosting process of that client,
while for each client in the development set of that fold, all clients in the development
set other than this one contributed to the negative samples. Thus, for all clients in the
evaluation set, no data from another client also in the same evaluation set was used as
negative samples while training its model.

In the development phase, speaker verification is performed on the development set
of each fold using the third and fourth recordings of each client. For each fold, system
parameters (for e.g., the number of classifiers Nh to be boosted for the Slice Classifier
framework and the decision threshold Θ) are optimized based on their performance on this
task. No data from the evaluation set is used.

4A few recordings had to be discarded due to absence of lip annotation for those recordings. This
caused a minor modification in the protocol.
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In the evaluation phase, speaker verification is performed on the evaluation set of each
fold using the third and fourth recordings of each client and using the optimal parameter
values obtained from the development phase for that fold. The verification performance (in
terms of the mean HTER %) is averaged over all 4 folds and reported. Since no parameters
were calculated using the evaluation data, this can be considered an unbiased estimate of
the system performance in a real scenario [Ben03].

Furthermore, for the evaluation phase, two different conditions were evaluated, a)
Matched-clean: The original clean data (third and fourth recordings of the evaluation
phase) was used as it is. This represents a controlled scenario, where the evaluation data
and the training and development data are matched. b) Mismatched-noisy : In this condi-
tion, two types of noise, namely, white noise and babble noise, from the standard Noisex-92
database [VSTJ92] were added at 3 different SNR levels (10dB, 5dB and 0dB) to the orig-
inal clean speech of the third and fourth recording before testing. This represents a more
difficult realistic scenario where the evaluation data is noisy and hence mismatched with
the training and development data [Ben03]. We report results for both these conditions.

3.3.2 Systems implemented

Two groups of speaker verification systems were implemented. The first group involves
the Boosted Slice Classifier framework described in this work. The second group includes
certain reference systems which are conventionally used for audio-visual speaker verification
with score fusion. The performance of the two groups are compared. 1) Boosted Slice
Classifier (BSC) Systems These systems used the Boosted Slice Classifier framework
as described in Sec.3.2 for the task of audio-visual speaker verification. Boosted Slice
classifiers are associated with slices derived from an audio visual feature space pair. To
form this pair, different audio and visual feature spaces were investigated as described
below. For each feature space, its code name (by which it is indicated in subsequent
sections) is provided in parentheses. The number in the code is the dimensionality of the
space.

Audio feature spaces Apart from the conventional cepstral representation of speech
using 16 Mel Frequency Cepstral Coefficients (MFCC) [Bim04] (MC16), we also investi-
gated spectral representations which have shown promising performance in a similar boost-
ing framework for speaker verification [RMDM10]. In particular, Mel spectra calculated
using 24, 32 and 40 Mel filters (MS24, MS32 and MS40) and Fourier spectra calculated us-
ing 256-point and 128-point Discrete Fourier Transform (FS128, FS64) were investigated.
It is to be noted that the magnitude spectra were used, hence only one half of the spectrum
was retained, since they are symmetric.

Visual feature spaces Firstly, a Region-of-Interest (ROI) around the lips was ex-
tracted using available annotation. Next, either a 2D-DCT was performed on it and the
15 highest energy coefficients were retained to form the features (DCT15) [PNLM04] or
the gray-scale values in the extracted region were directly used as features. For the latter
case, two ROI sizes were considered, a 16 × 16 ROI and an 8 × 8 ROI (GS256 and GS64
respectively). 2) Reference Systems The following reference systems were implemented:
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Audio modality A standard speaker verification system [Bim04] using 16 MFCC, 16
∆-MFCC and ∆-energy modelled by the UBM-GMM framework was implemented. Cep-
stral Mean Subtraction was performed and silence removal was by a bi-Gaussian [Bim04].
We refer this system as MC-GMM in subsequent sections.

Visual modality A standard face verification system using block-based features mod-
elled by the UBM-GMM framework [CSM03, LC04] was implemented. From each block,
18 DCTmod2 features [SP02] were extracted. For a detailed description of the system,
please refer to Appendix A of Deliverable 4.2. We refer to this system as F-GMM in
subsequent sections.

Audio-visual score fusion Score fusion using the Normalization-based approach (ref.
Sec. 2.3.2, Deliverable 4.2) was implemented. In this approach, audio and visual modalities
are assumed to be independent and hence the Naive-Bayes principle can be used. The fusion
score Sfusion is calculated as a simple sum of the scores from each modality as follows,

Sfusion =
M∑
i=1

si

where {si}Mi=1 denote the individual log-likelihood scores calculated from each modality.
Here, the number of modalities, M = 2. It is to be noted that the two modalities are
modelled by UBM-GMM systems which directly give log-likelihood scores as their output.

3.3.3 Results

In Tables 3-9, we show the verification performance of the Boosted Slice Classifier frame-
work, using different combinations of audio-visual space pairs. In Table 3, we show the
Matched-clean condition (ref. Sec. 3.3.1). In Tables 4-9, we show the 6 different cases for
the Mismatched-noisy conditions (2 noise types × 3 SNR levels). Finally, in Table 10, we
compare the performance of the reference systems with the some of the consistently better
performing Boosted Slice Classifier systems.

Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 6.5848 9.1518 8.2589 6.5848 8.2589 10.0446
feature GS64 9.2634 6.5848 12.9464 8.7054 5.9152 13.7277
sets DCT15 6.4732 10.2679 11.8304 8.1473 8.9286 14.0625

Table 3: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Matched-clean condition.
Lowest HTERs are marked in bold.
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Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 8.8170 8.7054 8.2589 8.5938 10.1562 9.3750
feature GS64 10.0446 9.8214 12.3884 9.7098 8.3705 13.3929
sets DCT15 14.8438 14.0625 14.3973 16.6295 19.5312 12.0536

Table 4: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Mismatched-noisy condi-
tion. Noise type: white noise, SNR: 10dB. Lowest HTERs are marked in bold.

Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 8.9286 11.1607 8.1473 10.3795 10.7143 9.2634
feature GS64 10.7143 10.4911 13.5045 12.0536 9.7098 13.3929
sets DCT15 25.5580 21.0938 26.5625 23.5491 25.4464 12.6116

Table 5: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Mismatched-noisy condi-
tion. Noise type: white noise, SNR: 5dB. Lowest HTERs are marked in bold.

3.4 Discussions

3.4.1 Speaker Verification Performance

Firstly, we discuss the performance of only the Boosted Slice Classifier systems, the feature-
level fusion framework proposed in this work. From Tables 3-9, it is evident that several
pairs out of the 18 audio-visual feature space pairs investigated have performed well on
the speaker verification task. Apart from reasonable performance in the Matched-clean
condition, the systems have shown significant robustness to the two types of noise at
medium to high noise levels in the Mismatched-noisy condition. This is a significant
advantage of the proposed framework. As in some recently proposed speaker (audio-only)
verification systems using a similar framework to boost classifiers each involving only a
small part of the entire feature space [RMDM10], this noise robustness may be due to the
fact that the noise might be affecting some of the slices but not all the slices at the same
time. Since the effect on one slice is restricted only to that slice, the final output (linear
sum of the slice classifier outputs) is affected less than for a conventional UBM-GMM based
system in a similar noisy scenario.

Among the BSC systems, it is to be noted that systems GS64-FS64 and GS256-MS24
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Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 11.9420 16.6295 11.8304 12.0536 13.2812 8.9286
feature GS64 13.2812 15.9598 16.6295 12.7232 10.4911 13.0580
sets DCT15 28.5714 29.5759 29.0179 34.3750 30.0223 18.5268

Table 6: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Mismatched-noisy condi-
tion. Noise type: white noise, SNR: 0dB. Lowest HTERs are marked in bold.

Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 7.9241 9.3750 7.0312 8.7054 10.7143 10.7143
feature GS64 9.7098 7.5893 14.5089 10.2679 8.3705 12.8348
sets DCT15 15.9598 14.1741 14.3973 15.9598 19.0848 12.2768

Table 7: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Mismatched-noisy condi-
tion. Noise type: babble noise, SNR: 10dB. Lowest HTERs are marked in bold.

are two of the consistently better performing combinations (ref. Tables 3-9) although others
perform almost as well. The first system, GS64-FS64, uses the 8×8 lip-ROI grayscale values
as its visual features and the Fourier Spectra (with 128-point DFT) as its audio features.
The second system, GS256-MS24, uses the 16×16 lip-ROI grayscale values as its visual
features and the Mel Spectra (with 24 Mel filters) as its audio features.

Next, we discuss the comparison of performance of the Boosted Slice Classifier systems
with the reference systems (ref. Table 10). For the Matched-clean condition, it is evident
that the score fusion of the reference audio and visual systems (MC-GMM and F-GMM)
have performed the best compared to the Boosted Slice Classifier systems. However, for the
more realistic Mismatched-noisy condition, the proposed Boosted Slice Classifier system
have outperformed the reference score fusion system significantly in most of the cases, for
different noise types and noise levels. This shows that the proposed feature-level fusion
framework does have a significant benefit in such scenarios and it is a promising approach
to multimodal biometric systems, comparable to score-level fusion approaches.5

5For completeness, we also implemented another feature-level fusion approach that is completely dif-
ferent from ours, the Asynchronous Hidden Markov Model (AHMM) [Ben03]. It is one of the very rare
approaches proposed for feature-level fusion. Our experimental results have shown that the proposed
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Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 9.4866 10.9375 7.9241 11.8304 9.4866 9.4866
feature GS64 10.2679 11.7188 15.9598 12.3884 10.3795 12.8348
sets DCT15 28.0134 26.1161 25.5580 25.4464 29.2411 16.9643

Table 8: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Mismatched-noisy condi-
tion. Noise type: babble noise, SNR: 5dB. Lowest HTERs are marked in bold.

Audio feature sets
MS40 MS32 MS24 FS128 FS64 MC16

Visual GS256 14.3973 17.5223 14.8438 16.8527 14.7321 11.9420
feature GS64 17.0759 17.5223 18.4152 16.7411 17.9688 14.0625
sets DCT15 37.1652 32.3661 36.1607 38.9509 33.1473 28.9062

Table 9: Verification performance (HTER %) of the Boosted Slice Classifier system using
various combinations of audio and visual feature sets, under Mismatched-noisy condi-
tion. Noise type: babble noise, SNR: 0dB. Lowest HTERs are marked in bold.

It is to be noted that score fusion performance could be improved by using more so-
phisticated techniques [SP04]. However, this is beyond the scope of the current work.
Furthermore, such approaches will increase the computational complexity of the system.

3.4.2 Computational Complexity

In addition to showing a reasonably robust verification performance, the Boosted Slice
Classifier systems are computational much faster than the conventional systems. This is
partly due to the simple nature of the individual slice classifiers which are implemented
as quadratic discriminant classifiers in 2-dimensional space. Restricting the slices to only
2 dimensions solves the “curse of dimensionality” problem. Each slice classifier can be
evaluated using very few floating point operations. Furthermore, the mean number of
boosted features Nh as selected in the development stage (ref. Sec. 3.2.3) was found to
vary between 10 to 20; hence, the final strong classifier can be evaluated as a simple linear
sum of small number of boosted slice classifier outputs.

Boosted Slice Classifier framework compares well with the AHMM system in all the experimental condi-
tions.
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Matched Mismatched-noisy
clean white noise babble noise

10dB 5dB 0dB 10dB 5dB 0dB
Reference MC-GMM (audio) 4.13 31.92 39.73 45.76 16.63 42.97 46.88
systems F-GMM (visual) 5.24 5.24 5.24 5.24 5.24 5.24 5.24

MC-GMM + F-GMM 2.79 8.26 15.18 28.13 2.57 10.16 25.01
(score fusion)

Boosted GS64-FS64 5.92 8.37 9.71 10.49 8.37 10.38 17.97
Slice GS256-MS24 8.26 8.26 8.15 11.83 7.03 7.92 14.84
Classifier
systems

Table 10: Comparison of verification performance (HTER %) of the Boosted Slice Classifier
system using the consistently better performing combinations of audio and visual feature
sets with the reference systems under various conditions.

In comparison, both the audio and visual reference systems (MC-GMM and F-GMM)
use the UBM-GMM framework. Evaluating each individual Gaussian involves many more
floating point operations than a single slice classifier, since they are calculated on the full
audio (33-dimensional) or visual (18-dimensional) feature space. These include complex
mathematical operations like exponentiation and logarithm extraction, neither of which
are required by the BSC systems. Furthermore, the GMMs for the audio system use 32
Gaussians, while those for the visual system use 256 Gaussians, leading to many more
floating point operations in total than the corresponding strong classifier of the proposed
system.

3.5 Feature-level Fusion using Boosted Slice Classifiers - Con-
cluding Remarks

In this part of the deliverable, we proposed an advanced fusion strategy involving feature-
level fusion of audio and visual modalities for the task of bimodal person verification.
Firstly, we reported a preliminary study which investigates if feature-level fusion can indeed
be useful for biometric systems. This study has shown positive results.

Based on these results, we proposed a feature combination technique called “slice” and
used this in a boosting framework to create a fast and reasonably reliable bimodal verifi-
cation system. This system has shown robustness under mismatched conditions involving
two kinds of noise at medium to high SNRs in the audio modality.

Our experiments suggest that feature-level fusion approaches have promise compared
to conventional score fusion and should be investigated further. One direction is to include
dynamic information from the audio and visual frames in addition to the static feature
vectors used in this work. Furthermore, the dimensionality of the slices could be increased
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to more than two. This could extract more joint audio-visual information about a person,
although at the cost of increased computational complexity. 6

4 Final conclusion

In this deliverable, we investigated advanced fusion schemes for audio-visual person authen-
tication from two distinct perspectives: 1) video-based score-level fusion and 2) feature-level
fusion.

In the first part, we proposed a score-level fusion strategy that relies on a set of score dis-
tribution descriptors extracted from video. Experiments conducted on a standard database
showed that improved results can be obtained by exploiting the abundant score informa-
tion made available by video-based biometric data, for both unimodal systems and bimodal
systems.

In the second part, we proposed a feature-level fusion strategy using a novel concept
called audio-visual slice, which performed reasonably well on both matched (clean) and
mismatched (noisy) data, and is computationally efficient at the same time.
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