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D3.2: Report on the description and evaluation of
baseline algorithms for unimodal authentication

Abstract:
This deliverable specifies the technological overview of current biometric baseline systems,
both state-of-the-art unimodal face and speaker authentication approaches. The deliver-
able will elaborate the main scientific contributions, details of implementation, evaluation
and results on baseline face authentication and speaker authentication through combining
techniques of face localisation, facial feature localisation & face verification and silence
detection & speaker verification respectively. These baseline algorithms are evaluated in-
dependently and as well tested together as unimodal authentication systems using the
well-known BANCA database. The evaluation of these baseline algorithms/systems will:
a) provide a basis for developing new methodologies to enhance the performance of cur-
rent unimodal authentication systems, b) help in innovative development of fusion schemes
for integrating unimodal systems to form robust bi-modal authentication systems and c)
finally allow comparisons with these joint authentication methods.
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1 Introduction

MoBio’s objective is to develop new mobile services that are secured by joint bi-modal
biometric authentication means. The main building blocks of the joint bi-modal system
are fused face authentication and speaker authentication. In identity recognition systems,
a database is stored of client models that are generated via a process of enrollment. This
database is then accessed for one of two applications: authentication and identification.

In authentication applications, the user claims to have a specific identity in order to gain
access to some resource. Therefore, the system must only compare the captured data with
the stored model of the claimed client (one-to-one matching). If the user matches the
claimed client model to within some degree of uncertainty, he1 is accepted and given access
to the resource. If the user does not fit the model then he is deemed to be an impostor
and denied access. Passport control at an international border is an example of such a
system. In these cases, enrollment and testing is typically a co-operative process with the
client providing the required data willingly.

In identification applications, however, it is not known who the user claims to be. There-
fore, the system must search its entire database of client models to find a possible match
(one-to-many matching). For example, a witness to a crime may be presented with a photo
album of known criminals in order to identify a potential suspect. Enrollment and testing
in identification applications may be co-operative or covert (e.g. building a model/probe
of a suspect’s face from surveillance data).

In MoBio, we are concerned with identity authentication for applications such as tele-
phone banking. However, identity authentication using the face or the voice information is
a challenging research area due to natural and non-intrusive interaction with the authen-
tication system. In order to develop a reliable and robust joint bi-modal authentication
system, it is important to study and devise methods of uni-modal authentication. This
essentially requires the development of state-of-the-art face and speaker authentication sys-
tems. Such uni-modal authentication systems will provide basis components for bi-modal
authentication and model adaptation, also allowing further enhancement of current tech-
nology.

This report will focus on the implementation and evaluation of baseline systems, both
state-of-the-art uni-modal face and speaker authentication approaches as well as their as-
sociated pre-processing steps such as face detection and voice activity detection algorithms.

1For the sake of simplicity, we refer to the user in the masculine form
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Figure 1: Baseline Algorithms for Face Authentication

1.1 Face Authentication

The goal of any face authentication system is to reliably validate (i.e. accept or reject) a
claimed identity based on images of the user’s face and a model of the claimed identity.
The main steps required to accomplish reliable uni-modal face authentication are: face
detection, face point localisation and face verification2 (see Figure 1 for a schematic repre-
sentation). In this report, a number of baseline algorithms are implemented and compared
for the following three steps.

The first step toward face authentication is face detection that attempts to roughly deter-
mine the location of any faces in a given image. Face detection is a challenging problem
because faces vary greatly in size, shape, orientation, colour and texture, and are influenced
by lighting conditions, expression and occlusion. In this report, three baseline systems for
face detection are presented:

• VJFD: The Viola-Jones face detector [89]

• LBP-SVM: Local Binary Pattern features [67, 68] combined with Support Vector
Machines [34]

• c-MCT-C: A cascade of Modified Census Transform features based classifiers [30]

Once a face has been detected (and approximately localised), face point localisation deter-
mines the precise location of individual facial features such as eyes, nose and mouth. Most
face point localisation systems are based on statistical deformable models of shape (e.g.

2We use the term ‘verification’ to describe the computational process of client/impostor classification,
as opposed to ‘authentication’ that describes the overall application
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Figure 2: Baseline Algorithms for Speech Authentication

the Active Shape Model [17]) and/or appearance (e.g. the Active Appearance Model [16])
that can be fitted to an image. Using a statistical model helps to address the problem
of variation in shape, size and appearance of the human face in addition to differences
in illumination and expression. An advanced facial feature localisation technique based
on Constrained Local Models (CLM) [21], is implemented as a baseline algorithm and
evaluated. This method uses an appearance model similar to that of the AAM but for
the generation of feature templates as against approximating image pixels directly. The
method has been demonstrated to improve the localisation accuracy of facial features.

Finally, face verification refers to the computational process of validating a claimed iden-
tity based on one or more images of a face, and either accepting or rejecting the identity
claim. Here, three verification strategies are compared:

• EFLDM: An Enhanced Fisher linear discriminant model [52, 53, 97]

• PB-GMM: A parts-based Gaussian mixture model [13, 57]

• ULBPH: A uniform local binary pattern histogram-based method [68, 2, 1]

1.2 Speech Authentication

The purpose of a speaker authentication system is to decide whether a given speech utter-
ance was pronounced by a claimed client or by an impostor. The main components of such
speech authentication systems are voice activity detection followed by speaker verification
(see Figure 2 for a block diagram).

Voice activity detection (VAD) consists of isolating speech frames (relevant information
for speaker authentication) from the rest of the audio signal. The silence segments obvi-
ously do not contain much speaker information, but may contain detrimental information
such as ambient noise, music and background speech. This report, presents two baseline
systems for voice activity detection:
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• GMM-VAD: GMM-based voice activity detection [60]

• NN-VAD: VAD via neural network-based phoneme recognition, where all phonemes
are merged together to form speech class [62]

Following the detection of voice activity, speaker verification determines whether the de-
tected voice activity corresponds to the claimed client or an impostor. Speaker verification
systems are generally classified into text-dependent and text-independent types. Various
technologies such as Hidden Markov Models (HMMs), Gaussian mixture models (GMMs),
Support Vector Machines (SVMs), pattern matching algorithms, Neural networks (NNs),
decision trees, etc. have been used to process voice activity for speaker verification. The
report describes two state-of-the-art verification systems:

• GMM-SVM: Factor analysis with support vector machines [60]

• GMM-UBM: GMM-UBM with channel compensation technique [11]

1.3 Evaluation protocols

Identity verification technology is still developing and many novel methods have been
proposed in recent years. However direct comparison of the reported methods is often
difficult if tests are performed on different data with large variations. Evaluation protocols
alleviate this problem by defining a set of data, and how it should be used in a system in
order to conduct systematic unbiased experiments and record performances. Over the last
several years, different datasets for face verification and speaker verification have become
available. In this report, the BANCA dataset and its corresponding protocols has been used
for testing the uni-modal face authentication system (See Appendix A for further details.).
Individual algorithms of face detection and face point localisation were also tested using
other datasets including XM2VTS, BioID and BioSign.

1.4 Report structure

The report has been organised as follows. In Section 2, face detection methods are in-
troduced, independently evaluated and their performances compared against one another
using different datasets. A similar evaluation of face point localisation is presented in Sec-
tion 3. The implementation of the state-of-the-art uni-modal face verification schemes is
presented along with evaluation results and comparison in Section 4. Similarly, voice activ-
ity detection algorithms are introduced in Section 5 and speaker verification techniques are
evaluated in Section 6. Finally, the uni-modal systems for face and speaker authentication
are summarised in Section 7.
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2 Face Detection

The first step of any face verification system is detecting the locations of faces present
within images. Face detection is particularly challenging because of variability in scale,
location, orientation, pose (frontal, profile, angular, etc.), appearance and lighting condi-
tions during capture.

There are several terms related to face detection and they are used in different mean-
ings by different authors. For the purposes of this report, the following definition of face
detection is considered:

“Given an arbitrary image, the goal of face detection is to determine whether or
not there are any faces in the image and, if present, return the image location
and extent of each face.” [96].

Among the many face detection methods, the ones based on learning algorithms and classi-
fication have attracted much attention recently and have demonstrated significantly better
results than earlier, hand-crafted knowledge based methods. These methods are essen-
tially data-driven and rely heavily on training sets which in turn trigger discussions on
the suitability of particular datasets for such a task. Another important aspect of face
detection techniques is the evaluation of its performance. Most methods use metrics such
as detection rates and false alarm rates in addition to learning time, execution time and
the number of samples required in training for comparing performances.

In the remainder of this section, a short review of several face detection methods (Sec-
tion 2.1) in addition to detailed implementations of competetive baseline face detectors are
presented in Section 2.2. Performance evaluation metrics are described in Section 2.3 and
results comparing these techniques are illustrated in Section 2.4

2.1 Related work

A number of different techniques have been proposed for face detection. In a recent
survey [96], these methods have been classified into four different types: a) Knowledge-
based methods, b) Feature invariant approaches, c) Template matching methods and d)
Appearance-based methods.

Knowledge-based methods include studies that are rule-based, typically utilising human
knowledge of the constitution of a face. These top-down methods typically use manually
tailored rules for what a face looks like [96]. Feature invariant techniques include algo-
rithms that aim at determining structural components that exist in the face and use them
in turn to find faces. The main aim of these approaches is to extract facial components
such as eyes, nose, etc. and use them in conjunction with coded rules for identifying face
candidates. Though these techniques are quite straightforward, translating human knowl-
edge into well-defined rules is often hard.
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In contrast, number of bottom-up strategies have also been proposed. These techniques
work with the underlying assumption that identifying invariant features in faces that allow
reliably detecting faces under changing lighting condition and poses.

The template-based methods aim at matching the input image to a stored set of patterns
containing the description of the face and its features, usually using correlation-type tech-
niques.

Finally, in contrast to the template-based technique, the appearance-based models learn
to capture the variability in appearance from a set of training images and further use these
learnt models for face detection.

A lot of progress has been made especially in real-time face detection since the work
of [96], but in terms of detection accuracy, some of the methods presented in this survey
are still top-class. One of the best performing detectors mentioned in this survey is the
one developed by Schneiderman and Kanade [79] which is based on wavelet transform and
AdaBoost learning. The problem of this detector is its high computational cost.

The work by Viola and Jones [89] can be considered a breakthrough in face detection:
the combination of an efficient computation of Haar-like features and a simple-to-complex
cascade of AdaBoost based classifier result in a face detector capable of real time face
detection from videos.

Stan Z. Li et al. [50] developed an extended system of Viola and Jones by replacing Ad-
aBoost with FloatBoost and improvising the cascade of classifiers into a classifier pyramid
which is able to detect faces at different poses in real time.

Support vector machines, having been developed specifically for solving two-class clas-
sification problems, are well suited for the face detection task. This was first proposed
by Osuna et al. [70]. A problem with support vector machines in face detection is that a
large number of support vectors may be needed resulting in rather slow detection systems.
However, in [51] the authors reported to have developed a support vector machine based
face detector working at 4 frames / second.

2.2 Baseline systems

2.2.1 Viola-Jones Face Detector (VJFD)

The first baseline method for face detection is based on the Viola-Jones face detector [89].
This detector is well known for its high detection accuracy under limited computational
overload. An OpenCV library [69] based implementation of the face detector is also avail-
able. The detection system is widely used and is highly robust and efficient, therefore,
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making it a suitable baseline method for comparison against different other detection meth-
ods. Viola and Jones use features that resemble Haar wavelet responses as an input for
their detectors. These features, albeit very simple, seem to provide enough information
for reliable face detection. The most prominent advantage of these features is their speed:
using so called integral images, these features can be computed in constant time from any
subwindow of an image.

AdaBoost [29] is used to select the most prominent features among a large number of
extracted features and construct a strong classifier from boosting a set of weak classifiers.
The use of a cascade of classifiers made their system one of the first real-time frontal-view
face detector. The system has resulted in a large amount of research and publications con-
cerning face detectors of similar nature. In summary, the three factors behind the success
of this type of a detector are:

• Haar-like features which are very fast to compute – can be computed in constant
time.

• A fast and reliable classifier resulting from boosting

• Cascade of classifiers where most windows can be discarded in a very early stage of
the cascade resulting in fast processing.

2.2.2 Local Binary Pattern-Support Vector Machine (LBP-SVM) Model

An alternative baseline model for face localisation is using LBP features [67, 68] with
SVM [18]. Below, a brief description of the system is provided. More details on the face
detection method can be found in [34].

LBP Based Description for Face Detection

The basic methodology for LBP based face description is as follows: The facial image
is divided into local regions and LBP texture descriptors are extracted from each region
independently. The descriptors are then concatenated to form a global description of the
face.

For face detection, an LBP based representation that is suitable for low-resolution images
and has a short feature vector needed for fast processing is used. A specific of this repre-
sentation is the use of overlapping regions and a 4-neighbourhood LBP operator (LBP4,1)
to avoid statistical unreliability due to long histograms computed over small regions. Addi-
tionally, the holistic description of a face is enhanced by including the global LBP histogram
computed over the whole face image. A standard resolution of 19×19 is considered and the
LBP facial representation is derived as follows (see Figure 3): Divide a 19× 19 face image
into 9 overlapping regions of 10× 10 pixels (overlapping size=4 pixels). From each region,
compute a 16-bin histogram using the LBP4,1 operator and concatenate the results into
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Figure 3: Facial representation for low-resolution images: a face image is represented by a
concatenation of a global and a set of local LBP histograms.

a single 144-bin histogram. Additionally, apply LBP u2
8,1 to the whole 19 × 19 face image

and derive a 59-bin histogram which is added to the 144 bins previously computed. Thus,
obtain a (59+144=203)-bin histogram as a face representation.

Training Data

Generally, building appearance based face detectors requires large training sets of im-
ages in order to capture the variability of facial appearances. However, only a set of 2900
face images is used in this model as positives samples. To collect nonface patterns, the
”boostrap” strategy is used in five iterations. First, 4500 patterns from a set of natural
images which do not contain faces are randomly extracted. Then, at each iteration the
system is trained, the face detector is run, and all the nonface patterns that were wrongly
classified as faces are collected and used for training. Overall, 6155 nonface patterns are
obtained as negative training examples.

SVM Classification

A face detection system using a Support Vector Machine (SVM) classifier [18] is built
since it is well founded in statistical learning theory and has been successfully applied to
various object detection tasks in computer vision.

In short, given training samples (face and nonface images) represented by their extracted
LBP features, an SVM classifier finds the separating hyperplane that has maximum dis-
tance to the closest points of the training set. These closest points are called support
vectors. To perform a nonlinear separation, the input space is mapped onto a higher di-
mensional space using Kernel functions. In this approach, to detect faces in a given target
image, a 19 × 19 subwindow scans the image at different scales and locations. A down-
sampling rate of 1.2 and a moving scan of 2 pixels are considered. At each iteration, the
representation LBP (w) is computed from the subwindow and fed to the SVM classifier to
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determine whether it is a face or not (LBP (w) denotes the LBP feature vector represent-
ing the region scanned by the subwindow). The classifier decides on the “faceness” of the
subwindow according to the sign of the following function:

F (LBP (w)) = Sign(
l∑

i=1

αiyiK(LBP (w), LBP (ti)) + b) (1)

where LBP (ti) is the LBP representation of the training sample ti, yi is 1 or -1 depending
on whether ti is a positive or negative sample (face or nonface), l is the number of samples,
b is a scaler (bias), and K(., .) the kernel function.

Post-Processing

Additionally, given the results of the SVM classifier, a set of heuristics is performed to
merge multiple detections and remove the false ones. A merging procedure similar to that
of the Viola and Jones’s system [89] is adopted.

Optimizations

So far, the optimization of the system has not been considered as the original goal be-
hind LBP-SVM face detector was only to show the discriminative power of the LBP based
facial representation. Therefore, the performance of the system could be easily enhanced
by using larger sets of training samples. Also, one can largely speed-up the system by using
the notion of integral histograms for fast LBP face representation extraction. Finally, a
cascade of classifiers would also improve the speed of the system.

2.2.3 Cascade of Boosted LBP-based Classifiers (c-MCT-C)

The third state-of-the-art frontal face detection system considered in this report is based on
the combined use of the cascade paradigm of [89] and Modified Census Transform (MCT)
features [30]. MCT belongs to the family of LBP features.

Like most face detection systems, the face detector scans the input image at many scales.
The conventional approach is to compute a pyramid of sub-sampled images. A fixed scale
sub-window x is then scanned across each of these images (Figure 4) and sent to the cascade.

Let F (x) denote a n-level cascade of strong classifiers with increasing complexity. The
strong classifier f j(x) =

∑
i w

j
i · h

j
i (x) is a linear combination of weak classifiers hi (wi is

the associated weight) that are trained using a boosting algorithm [29]. For a given stage
j, if f j(x) < θj then the window x is rejected (considered as a non-face) otherwise the
window is sent to the next level for a more detailed evaluation. Finally at the last stage,
the sub-window is considered as a face if fn(x) ≥ θj. The threshold θ of each stage is
determined to detect close to 100% of the faces.
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Image Pyramid

x F(x)

Face

Non-Face

f1(x)

f2(x)

fn(x)

F(x)

Face Non-Face

Figure 4: Face Detection using a Pyramid scanning and a cascade.

The objective of a cascade is to eliminate as many negative examples as possible at the
earliest stage possible: simple classifiers are used to reject the majority of the sub-windows
while detecting almost all of the positive instances. More complex classifiers can then focus
on a reduced number of sub-windows. Thus, the construction of a cascade of classifiers
reduces the computation time.

The MCT operator is a non-parametric 3 × 3 kernel which summarizes the local spa-
tial structure of an image. At a given pixel position (xc, yc), MCT is defined as an ordered
set of binary comparisons of pixel intensities between every pixel and the mean of the pixel
values within the mask. The decimal form of the resulting 9-bit word (MCT code) can be
expressed as follows:

MCT (xc, yc) =
8∑

n=0

s(in − µ)2n (2)

where µ corresponds to the mean, in to the grey values of the 8 surrounding pixels and the
centre pixel, and function s(x) is defined as:

s(x) =

{
1 if x ≥ 0
0 if x < 0 .

(3)

2.3 Evaluation

Labelling a ground truth box around a face is a highly subjective operation. As a result,
quantifying the degree to which a detected box is correctly positioned and scaled with
respect to the true face is a somewhat difficult task. Furthermore, many datasets do not
provide ground truth (presumably for this very reason).
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However, the locations of specific facial features (e.g. the centres of the eyes) are much less
ambiguous. Therefore, in order to evaluate the accuracy of the face detectors, we define a
fixed mapping that determines predicted locations of the eye centres, pl and pr, from the
detected bounding box. We then compute the maximum distance, dmax, from these points
to their ground truth counterparts, ql and qr, normalised with respect to the inter-ocular
distance, |ql − qr|, as our error metric [41]:

dmax =
max(|pl − ql|, |pr − qr|)

|ql − qr|
. (4)

This has the added benefit that exactly the same metric can be applied in order to compare
eye localisation before and after face point localisation (see Section 3.3). To summarise
the distribution of this metric over all images in each dataset, we present the median (i.e.
50th percentile) and 90th percentile statistics. In addition, the number of images where
no face was detected at all are also recorded.

2.4 Results

The three baseline face detectors were applied to the evaluation datasets described in Ap-
pendix A and the results are shown in Table 1. The results show that the Viola-Jones
detector typically out-performs the other baseline methods. However, it should be noted
that the performance of a particular detector is also highly dependent on the training data.
In this case, the relatively poor performance of the LBP-SVM detector can be attributed
to a small training set. In contrast, the VJFD implemented in OpenCV was trained with
a large and varied dataset and therefore exhibits superior performance.

However, it can be observed that the VJFD has more missed detections than c-MCT-
C on the BANCA database. Note that those results on BANCA could be refined as this
database offers various conditions. Finally, it should be noted that the VJFD crops the
face larger than the two others baseline systems. It thus suggests that the performance
of the system is also linked to the size of the observation window. Therefore, a higher
performance of the other systems could be probably obtained with a similar observation
window. The high rates of missed detections for the LBP-SVM adn c-MCT-C methods on
the BioID dataset suggest that the training data used for these implementations was not
representative of the test data in BioID. Therefore, it is likely that performance can be
improved also by including more varied data in the training set.

Finally, examples of face detection on images from four datasets (Figures 5-8) and one
example of a failed detection are illustrated (Figure 9).
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Figure 5: Detected examples from the BANCA dataset, using the Viola-Jones detector.

Figure 6: Detected examples from the XM2VTS dataset, using the Viola-Jones detector.

Figure 7: Detected examples from the BioID dataset, using the Viola-Jones detector.

Figure 8: Detected examples from the BioSign dataset, using the Viola-Jones detector.
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Missed detections dmax

Med. 90%

BANCA
VJFD 189 (2.9%) 0.09 0.15
LBP-SVM 424 (6.5%) 0.24 2.2
c-MCT-C 154 (2.4%) 0.11 0.18

XM2VTS
VJFD 12 (0.51%) 0.11 0.18
LBP-SVM 13 (0.55%) 0.17 0.39
c-MCT-C 71 (3%) 0.14 0.21

BioID
VJFD 56 (3.7%) 0.092 0.15
LBP-SVM 345 (23%) 0.19 0.46
c-MCT-C 372 (24%) 0.14 0.25

BioSign
VJFD 5 (0.91%) 0.094 0.14
LBP-SVM 57 (10%) 0.3 0.68
c-MCT-C 21 (3.8%) 0.11 0.17

Table 1: Missed detections (i.e. images where no face was detected at all) and statistics
(specifically the median value and 90th percentile over the entire dataset) of dmax for the
eye points.

Figure 9: Viola-Jones detection failure on the BANCA dataset. It is likely that the neckline
of the subject’s jumper was mistaken for a jawline, while the chain may have provided
mouth-like features.
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3 Face Point Localisation

Following face detection, face point localisation can improve face verification performance.
The goal of face point localisation techniques is to detect the presence and location of
facial landmarks (e.g. the centre of the eye, a corner of the mouth) using the already
located faces obtained from the face detector, and is a challenging problem owing to: (a)
high inter-personal variability (e.g. gender and race); (b) the intra-personal changes (e.g.
pose, expression, presence/absence of glasses, beard, mustaches); and (c) the acquisition
conditions (e.g. illumination and image resolution).

3.1 Related work

Face point localisation techniques attempt to automatically find landmark points on a
given face within an image. Several different methods of face point localisation have been
proposed and a majority of these techniques can be conveniently categorised into: a) model
based methods [17, 20], b) classification type approaches [54, 85] and c) probabilistic tech-
niques [12, 38].

Model based methods aim at building generic models of the face so that the model can
be fit to any new instance of the face automatically. A standard approach to this type
of problem is collecting a manually labelled training set of images that enable the model
to learn the shape and texture variation typically present in the faces. In contrast, the
classification type methods treat the problem of face point localisation as a score/cost max-
imisation problem of a trained two class classifier. However, the probabilistic formulations
for face point localisation aim at finding the best estimation of human face configuration
in a given image. Probabilistic formulation of such problems involve deducing unknown
parameters given known observations based on specific estimators such as Maximum A
Posteriori or Maximum Likelihood and using an inference strategy such as the Condensa-
tion algorithm [39], Belief Propagation, etc.

Model based methods combine both shape and texture to build models and match to
unseen images [17, 20, 23, 64, 86]. The input to such model is an approximate localisation
of the face (either segmented manually or found automatically using a global detector such
as the ones described in the previous section) and the goal would be to automatically locate
prominent internal features on the face.

There are two different approaches to this problem. The first approach fits a generative
model to the face region. The best match of the model simultaneously calculates feature
point locations. Examples of this approach are the Active Appearance Model (AAM) [16]
and 3D-Morphable Model [88] methods. The second approach is feature-based and splits the
face into separate subregions that can be found using feature detection methods, with con-
straints on the relative configuration of feature points. The Active Shape Model (ASM) [17]
and Pictorial Structure Model (PSM) [26] are examples of this type.
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Generative model-based

A popular example of the generative approach is the Active Appearance Model (AAM)
algorithm [16], which uses a combined model of shape and texture. A Principal Component
Analysis (PCA) model of shape is learnt from a set of manually labelled images and also
a model of the triangulated texture variation across the training set. A joint model of the
shape and texture parameters allows the generation of new object instances, which resem-
ble the training set. The AAM then searches new images by using the texture residual
between the model and the target image to iteratively update model parameters to provide
an estimate of the current image.

A related method is the 3D-Morphable Model due to Vetter et al. [88]. This method
constructs a 3D model of the whole head from textures and 3D vertices obtained using a
laser range finder. PCA is applied to the 3D coordinates and surface texture to build the
generative model. The Morphable model is then fitted to new 2D images using a coarse to
fine correspondence method based on optical flow. The method requires a few key points
to be hand labelled to produce the dense correspondence from 3D to 2D. However recent
approaches aim to mitigate the requirement for manual intervention. For example Romd-
hani et al. [77] use SIFT features [56], an appearance based rejection and a projection
constraint to initialise the 3D morphable model automatically.

Due to the success of generative models, they have been developed significantly in many
ways. Matthews et al. [61] have developed a more efficient update scheme which utilises
the inverse compositional update algorithm [5]. Xiao et al. have developed hybrid 2D-3D
versions of the AAM and applied them to human faces [94]. In the medical domain, AAM’s
have been extended to 3D by Mitchell et al. [64] and applied to cardiac image volumes.
Van Ginneken et al. [86] compare the AAM and ASM with pixel based segmentation and
also investigate hybrid approaches that improve on the normal pixel based AAM. Scott et
al. [82] extend the texture sampling part of the algorithm to edge and cornerness values,
instead of the normalised pixel values used in the original AAM, and demonstrate signifi-
cantly improved results on faces and spinal images.

A recent alternative to the AAM algorithm that has been applied to both human face
photographs and cardiac images is the RankBoost approach to shape prediction described
by Zheng et al. [99]. This classification type method uses Rankboost [28] to rank the
possible image warpings from the mean shape to the an unseen image and thus compute
feature points.

Feature-based

A classic example of the feature based approach to model matching is the Active Shape
Model (ASM) algorithm [17]. This method learns a statistical model of shape from man-
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ually labelled images and also PCA models of intensity profiles around individual feature
points. When applied to an unseen image the best local match of each feature is found and
the shape model fitted to the updated points. Therefore individual false detections which
invalidate the learnt shape configuration are avoided. The search proceeds iteratively until
the feature points converge.

Another elegant method of combining feature responses and shape constraints is is that of
the Pictorial Structure Model (PSM) [26]. This approach is very efficient due to the use of
pairwise constraints and a tree structure. The method uses the whole response surface of
each detector and a dynamic programming search to find the global optimum set of final
feature locations. However the PSM is mainly a global search method and does not use
a fully-connected shape model. Therefore locally it is less accurate compared to methods
that use the full shape model (e.g. ASM). Recently a denser graph matching approach us-
ing k-fans has been suggested to provide a stronger shape constraint [27]. The single tree
based PSM is however very useful to provide initialisation points for local search methods
that do use a fully-connected shape model (such as the AAM), given a rough localisation
of the object.

Another method that combines shape and feature detection is the Simultaneous Mod-
eling And Tracking (SMAT) algorithm described by Dowson and Bowden [23]. The SMAT
method tracks an object given an initialisation and generates new templates from a clus-
tered set of templates sampled from previous frames. It uses a shape model to constrain
feature configurations, but does not form a combined model of shape and texture. Similar
template selection methods were also published around the same time [19].

An extension of the ASM approach is the Shape Optimised Search (SOS) [19]. The SOS
computes the response surface around each individual feature point, instead of merely com-
puting the best response (as in the ASM). The model is then fitted to this set of response
surfaces by allowing the shape parameters to vary whilst optimising the sum of feature
responses (using the Nelder-Mead simplex optimiser [66]). Limits on the shape parameters
enforce the relative shape constraint and utilising the whole response surface provides more
robustness compared to the ASM approach [19].

3.2 Baseline systems

3.2.1 Constrained Local Models (CLM)

In contrast, the baseline system presented in this section builds on the template selection
methods [23, 19] by using an appearance model, learnt from a fixed training set, to generate
templates (rather than using selection methods such as nearest neighbour). This method,
termed the Constrained Local Model (CLM) is therefore unable to generate false templates
(from false matches) and can be applied to search static images as well as video, but at
the expense of requiring a manually labelled training set.
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Figure 10: CLM Algorithm

The CLM algorithm [21] is an efficient and robust model matching method that uses a
joint shape and texture appearance model. The main distinction of CLM as against AAM
is that the appearance model is used in CLM to generate a set of feature templates as
against trying to approximate the image pixels directly. The CLM approach attempts
to learn the variation in appearance of a set of region templates surrounding individual
features and matches the model to unseen images using a search mechanism. The process
work iteratively by generating templates using the joint model to regions sampled around
each feature point, correlating the templates to the target image to generate a response
and finally optimising the shape parameters so as to maximise the sum of responses (see
Figure 10 for a schematic illustration of the CLM process).

The CLM algorithm combines the constraints on appearance and shape as follows:-

1. Initialise the set of feature points by applying individual feature detectors, con-
strained using an algorithm such as the Pictorial Structure Model (PSM) [26], within
the detected face region. This PSM model is very efficient due to the use of pairwise
constraints and a tree structure, but is mainly a global search method that does not
use a full shape model.

2. Repeat:-

(a) Fit the joint model to the current set of feature points to generate a set of

MOBIO D3.2: page 24 of 74



MOBIO [214324] D3.2: Baseline Algorithms for Unimodal Authentication

templates.

(b) Use the shape constrained search method to predict a new set of feature points.

Until Converged.

When tracking the initial points are propagated from the previous frame. On a new se-
quence (or if tracking failed) a global search can be used.

Constrained Local Appearance Models

A joint shape and texture model is built from a training set of 1052 manually labelled
faces using the method of Cootes et al. [17]. However in the CLM approach the texture
sampling method is different. A training patch is sampled around each feature and nor-
malised such that the pixel values have zero mean and unit variance.3 The texture patches
from a given training image are then concatenated to form a single grey value vector. The
set of grey scale training vectors and normalised shape co-ordinates are used to construct
linear models, as follows.

x = x + Psbs g = g + Pgbg (5)

Where x is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set
of shape parameters. Similarly g is the mean normalised grey-level vector, Pg is a set of
orthogonal modes of variation and bg is a set of grey-level parameters. The shape and
template texture models are combined using a further PCA to produce one joint model.
The joint model has the following form.

b = Pcc where Pc =

(
Pcs

Pcg

)
& b =

(
Wsbs

bg

)
(6)

Here b is the concatenated shape and texture parameter vector, with a suitable weighting
Ws to account for the difference between shape and texture units (see []). c is a set of
joint appearance parameters. Pc is the orthogonal matrix computed using PCA, which
partitions into two separate matrices Pcs and Pcg which together compute the shape and
texture parameters given a joint parameter vector c.

Shape Constrained Search

Given a set of initial feature points, the joint shape and texture model is used to gen-
erate a set of grey value texture patches. The templates are applied to the search image
and response images computed. Let (Xi, Yi) be the position of feature point i and Ii(Xi, Yi)
be the response of the ith feature template at that point. The positions can be concatenated
into a vector X,

3The face regions from the training images are re-sampled to a fixed sized rectangle to allow for scale
changes
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X = (X1, . . . , Xn, Y1, . . . , Yn)T (7)

where X is computed from the shape parameters bs and a similarity transformation Tt

from the shape model frame to the response image frame. X is calculated as follows.

X ≈ Tt (x + Psbs) (8)

The parameters of the similarity transform, Tt and, shape parameters bs are concatenated

into p =
(
tT |bT

s

)T
. Therefore X can be represented as a function of p. Given a starting

value for p the search proceeds by optimising a function f(p) based on the image response
surfaces Ii and the statistical shape model learnt from the training set. The objective
function is

f(p) =
n∑

i=1

Ii(Xi, Yi) + K

s∑
j=1

−b2
j

λj

(9)

The second term is an estimate of the log-likelihood of the shape given shape parameters bj

and eigenvalues λj. This log-likelihood follows the approach of Dryden [24] in assuming the
bj are independent and Gaussian distributed. The parameter K is a weight determining
the relative importance of good shape and high feature responses. The value of K can

be determined by computing the ratio of
∑n

i=1 Ii(Xi, Yi) and
∑s

j=1

b2j
λj

when applied to a

verification set with human labelled ground truth. The optimisation of f(p) is performed
using the Nelder-Mead simplex algorithm [66].

3.3 Evaluation

In order to quantify improvement in eye location with points predicted from the detected
bounding box of the face, the evaluation using dmax for the eye points (see Section 2.3) is
repeated following face point localisation.

In addition, three measures over the set of all points for every processed image are com-
puted: (i) maximum Euclidean distance from ground truth, dmax; (ii) the 90th percentile
value of Euclidean distance from ground truth, d90; and (iii) the mean Euclidean distance
from ground truth,

dmean =
1

n

n∑
i=1

|pi − qi|
|ql − qr|

, (10)

where n is the number of labelled points. As in Section 2.3, all quantities are normalised
with respect to the inter-ocular distance, |ql − qr|, to provide scale invariance. Computing
dmax permits a direct comparison with the corresponding values for the eye points. The
90th percentile value gives a similar measure but is slightly more robust in the presence
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of one or two outliers. The mean Euclidean distance is a standard metric used in other
studies [21]. Having computed each measure for every image in each dataset the cumula-
tive frequency curve is plotted (Figure 11), and the median value and 90th percentile value
over all images for each dataset is computed.

As in Section 2.4, the method is evaluated on four datasets: BANCA, XM2VTS, BioID
and BioSign (see Appendix A). Note that the images used to train the CLM are completely
independent of these datasets, since they consisted of different subjects imaged under dif-
ferent conditions. Face points localisation is initialised using the output of each presented
face detector to evaluate any effect this has on point localisation accuracy.

3.4 Results

The results of this evaluation are summarised in Table 2 and a specific example of a cu-
mulative frequency curve is shown in Figure 11. Due to the small number of ground truth
points provided in BANCA and BioSign (two and four, respectively), values for d90 are not
presented on these datasets. Similarly, the only labelled points in the BANCA dataset are
the eye points so dmax is not reproduced for the eyes in this dataset.

From Table 2, it appears that the final error is largely unaffected by the initialisation i.e.
that the CLM typically converges on the same stable solution. Furthermore, for datasets
with a dense labelling of points (XM2VTS and BioID, in this case), dmax increases quite
significantly. However, comparing this measure with dmean suggests that this increase is
largely as a result of a small number of outliers. Note also that the eye centres are typically
among the most salient of the face points and can usually be localised with high accuracy.
Therefore, including less salient points naturally increases the average error, as evidenced
by dmean for the XM2VTS and BioID datasets (with 22 landmarks each).

From Figure 11, the error between localised eye points and ground truth was reduced in
over 90% of examples for the BANCA dataset. As a result, the maximum distance between
eye points was less than 10% of the inter-ocular distance in around 70% of cases, and less
than 16% of inter-ocular distance in 90% of cases following face point localisation.

Finally, randomly selected examples from each dataset are shown (Figures 12-15) in addi-
tion to one example of a failure mode (Figure 16).
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Eye points All points
dmax dmax d90 dmean

Med. 90% Med. 90% Med. 90% Med. 90%

BANCA
VJFD 0.069 0.14 - - - - 0.054 0.11
LBP-SVM 0.078 2.4 - - - - 0.063 2.2
c-MCT-C 0.075 0.16 - - - - 0.06 0.14

XM2VTS
VJFD 0.049 0.095 0.19 0.34 0.13 0.24 0.067 0.11
LBP-SVM 0.049 0.12 0.19 0.37 0.13 0.27 0.067 0.13
c-MCT-C 0.052 0.16 0.21 0.57 0.14 0.42 0.071 0.22

BioID
VJFD 0.044 0.13 0.17 0.34 0.12 0.24 0.064 0.12
LBP-SVM 0.055 0.23 0.18 0.49 0.13 0.4 0.071 0.21
c-MCT-C 0.046 0.13 0.17 0.34 0.12 0.24 0.065 0.12

BioSign
VJFD 0.041 0.12 0.067 0.23 - - 0.042 0.14
LBP-SVM 0.043 0.14 0.067 0.2 - - 0.041 0.12
c-MCT-C 0.041 0.11 0.065 0.18 - - 0.041 0.099

Table 2: Statistics (specifically the median value and 90th percentile over the entire dataset)
of dmax (both for the eyes and all points), d90 and dmean.
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Figure 11: Cumulative distribution of dmax, used by Jesorsky [41], for the eyes over the
BANCA dataset, initialized using the c-MCT-C face detector.
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Figure 12: Localized examples from the BANCA dataset, initialized using the Viola-Jones
detections (Figure 5).

Figure 13: Localized examples from the XM2VTS dataset, initialized using the Viola-Jones
detections (Figure 6).

Figure 14: Localized examples from the BioID dataset, initialized using the Viola-Jones
detections (Figure 7).
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Figure 15: Localized examples from the BioSign dataset, initialized using the Viola-Jones
detections (Figure 8).

Figure 16: Localization failure on the XM2VTS dataset, initialized using the Viola-Jones
detector. Although the eyes are located accurately lower face points such as the mouth
and chin are not located correctly.
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4 Face Verification

Face verification, an application of face recognition, authenticates a person’s identity by
comparing the captured image with the user’s own template(s) stored in the system. Such
systems perform one to one comparison to determine whether the person presenting himself
to the system is the person he claims to be. Zhao et al. [98] and others [40] have discussed
extensively the challenges of face recognition which raise issues in mathematics, comput-
ing, engineering, psycho-physics and neuroscience. These challenges can be summarised in
two points: (1) A large variability in facial appearance of the same person and (2) High
dimensionality of data and small sample size.

A large variability in facial appearance of the same person is caused by variations of facial
pose, illumination, and facial expression. These variations are further increased by changes
in the camera parameters, such as aperture, exposure time, lens aberrations and sensor
spectral response. As mentioned in [45, 40], the intra-personal variations are usually larger
than the image variation due to change in the face identity, called the inter-personal vari-
ation. This variability makes it difficult to build a simple model to describe an individual
from a small number of sample images or perform linear discriminant analysis to separate
different persons. Mathematically, the face manifold is highly complicated and non-linear.
Furthermore, it is difficult to perfectly align the face to a canonical co-ordinate frame under
these conditions. Therefore, misalignments are caused by translation, rotation, occlusion
and scale errors in the normalised face image, thus making the recognition problem even
more difficult.

In addition there exist issues surrounding the high dimensionality and small sample size
of data. In general, the number of image samples per person available is much smaller
than the dimensionality of the image space. Therefore, the system cannot build reliable
models of each individual to recognise the face identity from a probe image. This is called
the generalisation problem. Also, a small sample size may lead to numerical problems in
matrix operations because of the singularity of within-class covariance matrices [6].

In general, two directions, feature representation and pattern classification based on the
extracted features, must be pursued to deal with the first challenge. The first problem
is concerned with the representation of a face image in a “good” feature space where the
face manifolds become simpler. Both image normalisation and face representation can
help in this respect. The second direction relates to the design of a classifier to solve the
difficult non-linear classification and regression problems in the new face space and obtain
good generalisation. In other words, the face image is segmented and then normalised
by geometric and photometric normalisations which eliminate the effect of face rotation
in plane, and scaling, and improve the face image quality. Then, a face representation,
such as Gabor wavelets which reduce the non-linear behaviour of face data due to intra-
personal variation, is extracted from the normalised image. Although good normalisation
and face representation methods help in reducing the degree of non-linearity, commonly
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the dimensionality of the face representation is increased. Therefore, an effective dimen-
sionality reduction method and a classifier are needed to deal with the above problem. The
development of a successful algorithm requires the exploration of both directions.

One of the greatest challenges of the still face recognition is to solve the generalisation
problem in the context of limited sample size. However, the video face recognition can
overcome this problem as video can provide abundant image data for establishing the face
model.

4.1 Related work

Video-based recognition has been overviewed in [92, 100] and can be divided into the
following three categories:

• 3D/super-resolution model: Video data can contain face images taken from signifi-
cantly different viewing angles and/or resolutions. For example, face can be captured
in the surveillance scenarios. As a result, it may be possible to use this data jointly
to reconstruct a 3D model or a super resolution face image.

• Facial dynamics: Video data can provide temporal continuity (dynamic information)
which can potentially improve the recognition performance. Such continuity can be
facial expression, geometric continuity related to head and/or camera movement, or
photometric continuity. Lee et al. [49] performed video-based face recognition using
probabilistic appearance manifolds, where K-means clustering with PCA is applied
to model different head poses. The transition probability between images in each
of the pose manifold is used to encode the connectivity between the pose manifolds
in order to model appearance under different poses. Zhou and Chellappa [101] pro-
posed a generic probabilistic framework to track and recognise face simultaneously by
estimating the joint posterior probability distribution of motion vector and identity
variable. Liu and Chen [55] proposed to use adaptive hidden Markov Model to model
the dynamics of face rotation sequences. An empirical comparative studies [35, 49]
showed that facial dynamics information is useful for recognition.

• Unordered multiple images: Video data can be treated as an unordered image set,
ignoring the temporal information, which not only helps solving the generalisation
problem in the training stage, but also improving the classification accuracy by choos-
ing the good image frame, (for example, frontal face image), to match in the test
stage. In general, there are two common approaches to recognition. The first ap-
proach is to compute the similarity score for each query image frame in the video
with the gallery and then combine the scores over the query video sequence. For
example, Gong et al. [33] applied the voting based fusion method to summarise the
similarity. The baseline methods proposed in this report in Section 4.2 takes the
average of the similarities between the query and gallery image frame for face verifi-
cation. The second approach is directly to compute a similarity between the probe
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and gallery image sets. Yamaguchi et al. [95] applied canonical correlation to measure
the similarity between the image sets based on the angle between subspaces. Wolf
and Shashua [93] introduced the kernel principle angle to measure the similarity of
image sets. Kim et al. [46] proposed Discriminative Canonical Correlation based
on maximising the canonical correlations of within-class sets while minimising the
canonical correlations of between-class sets in order to improve recognition accuracy.

4.2 Baseline systems

4.2.1 Parts-Based Gaussian Mixture Model (PB-GMM)

The first face verification baseline model implementation presented in this report combines
part-based approaches and GMM modeling. Parts-based approaches divide the face into
blocks, or parts, and treats each block as a separate observation of the same underlying
signal (the face). According to this technique, a feature vector is obtained from each block
by applying the Discrete Cosine Transform (DCT) and the distribution of these feature
vectors is then modelled using GMMs. Several advances have been made upon this tech-
nique, for instance, Cardinaux et al. [13] proposed the use of background model adaptation
while Lucey and Chen [57] examined a method to retain part of the structure of the face
utilising the parts-based framework as well as proposing a relevance based adaptation.

Feature Extraction

The feature extraction algorithm is described by the following steps. The face is nor-
malised, registered and cropped. This cropped and normalised face is divided into blocks
(parts) and from each block (part) a feature vector is obtained. Each feature vector is
treated as a separate observation of the same underlying signal (in this case the face) and
the distribution of the feature vectors is modelled using GMMs. This process is illustrated
in Figure 17.

The feature vectors from each block are obtained by applying the DCT. Even advanced
feature extraction methods such as the DCTmod2 method [78] use the DCT as their basis
feature vector; the DCTmod2 feature vectors incorporate spatial information within the
feature vector by using the deltas from neighbouring blocks. The advantage of using only
DCT feature vectors is that each DCT coefficient can be considered to be a frequency
response from the image (or block). This property is exploited by the JPEG standard [72]
where the coefficients are ranked in ascending order of their frequency.

Feature Distribution Modelling

Feature distribution modelling is achieved by performing background model adaptation
of GMMs [13, 57]. The use of background model adaptation is not new to the field of bio-
metric authentication; in fact, it is commonly used in the field of speaker verification [22].
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Input Image Image Blocks

Features (DCT) from Blocks

Figure 17: A flow chart of describing the extraction of feature vectors from the face image
for Parts-Based approaches.

Background model adaptation first trains a world (background) model Ωworld from a set
of faces and then derives the client model for the ith client Ωi

client by adapting the world
model to match the observations of the client.

Two common methods of performing adaptation are mean only adaptation [74] and full
adaptation [48]. Mean only adaptation is often used when there are few observations avail-
able because adapting the means of each mixture component requires fewer observations
to derive a useful approximation. Full adaptation is used where there are sufficient obser-
vations to adapt all the parameters of each mode. Mean only adaptation is the method
chosen for this work as it requires fewer observations to perform adaptation, this is the
same adaptation method employed by Cardinaux et al. [13].

Verification

To verify an observation, x, it is scored against both the client (Ωi
client) and world (Ωmodel)

model, this is true even for methods that do not perform background models adaptation
[78]. The two models, Ωi

client and Ωworld, produce a log-likelihood score which is then
combined using the log-likelihood ratio (LLR),

h(x) = ln(p(x | Ωi
client))− ln(p(x | Ωworld)), (11)

to produce a single score. This score is used to assign the observation to the world class
of faces (not the client) or the client class of faces (it is the client) and consequently a
threshold τ has to be applied to the score h(x) to declare (verify) that x matches to the
ith client model Ωi

client, i.e if h(x) ≥ τ .
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4.2.2 Enhanced Fisher Linear Discriminant Model (EFLDM)

The second baseline system considered in this report is to project each of the image frames
to the Fisherface space, and then use normalised correlation to measure the similarity be-
tween the images in template and query in the projected space. The final similarity score
is the average of those similarities. A brief description of this system is given.

Fisher Linear Discriminant Model (FLD)

Fisher Linear Discriminant aims to find a linear projection from an original fixed size
feature vector such that in the projected space, objects are best separated. The objec-
tive criterion, in a two class case, can be formally described as maximizing the ratio of
(squared) between-class centroids and the sum of within-class variances. In the case of mul-
tiple classes, this criterion becomes maximizing the trace of the product of two matrices:
inverse averaged within-class covariance matrix and the sum of between-class covariance
matrix (of the projected space).

Belhumeur et al. [6] first proposed to use FLD, also called Fisherface, to reduce the di-
mensionality of face image. However, due to large pixel dimensions and few image samples
per user, the within-class covariance matrix is often non-singular. In order to overcome
this problem, Belhumeur et al.proposed first to apply principal component analysis (PCA)
to the original face image (stacked in a column vector), such that 95% of the variance is
retained.

Having projected face images into the PCA space, it is straightforward to apply the stan-
dard FLD, thereby overcoming the problem of non-singular within-class covariance matrix.
A special property of FLD is that, if there are C persons in a development database, one
can have at most C − 1 dimensions in the FLD space.

In this implementation, the number of eigenvectors in the PCA transformation matrix
is selected by keeping 98% of the eigenvalue energy. In order to improve the generali-
sation capability of FLD, an Enhanced Fisher Linear Discriminant Model (EFLDM) has
been implemented [52, 53, 97]. This method decomposes the FLD procedure into a si-
multaneous diagonalisation [31] of the two within- and between-class scatter matrices. It
first diagonalises the within-class scatter matrix and then the between-class scatter matrix.

Similarity measurement

In the testing stage, the face image is extracted with the eye positions provided from
the c-MCT-C face detector and scaled to a size of 60× 71 pixels. Photometric normalisa-
tion is not performed on the cropped image. EFLDM then projects the high-dimensional
raw image vector, x, formed by concatenating pixel values in the image space, to a low
dimensional discriminative feature y.
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y = WEFLDM
Tx (12)

After projecting into the EFLDM space, the similarity measurement between query image
In and the m template images, Sim(In), defined in (13), is obtained by taking the average
of normalised correlations between the discriminative features of the query image frame yn

and those of templates y′[1...m].

Sim(In) =
1

m

m∑
i=1

yT
ny′i

‖yn‖‖y′i‖
(13)

The similarity measurement of query video and template is the average of the similarity
scores between the query images in the video and the template images.

4.2.3 Uniform Local Binary Pattern Histograms (ULBPH)

The third baseline system for face verification is using uniform local binary pattern his-
tograms (ULBPH) [58, 68] with histogram intersection for face recognition [2, 1]. The
system is briefly introduced in this section.

Local Binary Pattern Histogram

The basic methodology for LBPH based face description is first to apply uniform LBP
operator to a face image. The resulting LBP image is then divided into non-overlapping
sub-regions, M1, M1,..MJ . In each region j, a histogram is computed as a regional feature
fj. This regional feature can be used to measure the face similarity by averaging the scores
of local similarity of the corresponding regional histograms of the pair of images I and I′

being compared.

In this implementation, the face image is extracted with the eye positions provided from
the c-MCT-C face detector and scaled to a size of 120× 142 pixels. Photometric normal-
isation is not performed on the cropped face. The radius and neighbourhood of the LBP
operator are set to 2 and 8 respectively, and the resulting LBP image is then divided into
9× 9 non-overlapping regions.

Similarity measurement

When comparing different distance measures for face recognition, the histogram inter-
section was found to perform better than chi-squared [14]. Therefore, the similarity mea-
surement of the image pairs Sim(I, I′) using histogram intersection is defined in (14).

Sim(I, I′) =
1

J

J∑
j=1

∑
i

min(fj(i), f
′
j(i)) (14)
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where i is an index of the histogram bin, j = 1, . . . , J is an index of each image in the
enrollment video, fj(i) denotes the i-th histogram bin of image j in video I, and f ′j(i) is
defined similarly but for video I′.

For face verification from an image, the similarity measurement between the query im-
age and template images is defined as the average of the similarity measurements between
the query image and each image in the template. Similarly, for face verification from a
video, the similarity measurement between the query video and the template images is
defined as the average of the similarity measurements between each query image in the
video and template images.

4.3 Evaluation

Two types of curve are used to compare the performance: the Detection Error Trade-off
(DET) curve [59] and the Expected Performance Curve (EPC) [7]. A DET curve is ac-
tually a Receiver Operating Curve (ROC) plotted on a scale defined by the inverse of a
cumulative Gaussian density function.

It has been pointed out [7] that two DET curves resulted from two systems are not compa-
rable because such comparison does not take into account how the thresholds are selected.

The annual NIST speaker evaluation has adopted a specific operating threshold, defined
as a function of the cost of false acceptance and false rejection error rates, and the class
prior probabilities (subject to being either a genuine user or an impostor). EPC is a gen-
eralisation of the NIST evaluation method by using multiple threshold, with a normalised
cost defined by a weighted error rate (WER):

WER(β, ∆) = βFAR(∆) + (1− β) FRR(∆), (15)

where β ∈ [0, 1] balances between FAR and FRR.

In order to use EPC, two data sets have to be defined: the development score set, ob-
tained from g1 and its evaluation counterpart, which is based on g2. For each chosen
β, the development score set is used to minimise (15) in order to obtain an operational
threshold. This threshold is then applied to the evaluation set in order to obtain the final
pair of false acceptance rate (FAR) and false rejection rate (FRR).

The EPC curve simply plots half total error rate (HTER) versus β, where HTER is the
average of FAR and FRR. The lower an EPC curve is the better the performance. An
EPC makes possible the comparison of different systems.
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Figure 18: DET curves of the baseline systems computed on the g2 (evaluation set) of the
BANCA video according to the P protocol.

4.4 Results

In this report, the baseline systems were evaluated using the BANCA database under the
P protocol in an open set verification scenario (see Appendix A). A comparison of all four
systems using DET and Expected Performance Curves are shown in Figures 18 and 19,
respectively.

From the results, it can be obverved that both figures are consistent in showing that the
GMM systems are slightly better than ULBPH, and that both the GMM and the ULBPH
systems perform significantly better than the EFLDM system based on the Fisher Linear
Discriminant.

As a baseline system, EFLDM is suboptimal on this database for at least two reasons:
Firstly, the Fisher discriminant is estimated on an independent set of identities different
from the actual client identities. Secondly, it operates directly on image pixels, as opposed
to GMM (which utilizes DCT coefficients) and ULBPH (which utilizes LBP). In essence,
the latter two approaches rely on feature reprentations that are more robust to inaccurate
face localization and degraded image conditions. Such an observation is consistent with
previous studies in the literature.

The two GMM systems reported here are similar except that the number of Gaussian
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Figure 19: Expected performance curves of the baseline systems evaluated on the g2 (eval-
uation set) of the BANCA video according to the P protocol.

components are different (300 versus 512). However, the performance of both systems are
not significantly different. This implies that the choice of number of Gaussian components
is not very important. Although no efforts were made to optimize the systems, one recom-
mended way to tune the number of Gaussian components of a GMM system is by using a
series of 2n for a linear function of n, for instance, 32, 64, 128, 256, 512, 1024, 2048 etc.

An important difference between ULBPH and GMM is that ULBPH represents a holistic
approach to face recognition whereas GMM represents a part-based approach. The advan-
tage of a holistic approach is its ability to gauge the overall appearance of a face image.
However, since a face image is not strictly rigid, the part-based approach can better gauge
the local facial features such as eyes, nose, etc. In so doing, however, the part-based ap-
proach foregoes its ability to have a holistic view. In order to demonstrate that the GMM
model does not use the spatial configuration, one can, for instance, artificially interchange
image blocks (from which the DCT coefficients were derived) such that the resultant image
no longer resembles a face.

Note that one should not conclude just based on the current experiment setting that
the part-based approach is better than the holistic approach. This is because both systems
reported here essentially rely on different feature representations. However, it is certainly
sensible to combine both the systems in order to leverage the complementary nature of
part-based and holistic information.
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Figure 20: The source-filter model : the source signal, the vocal tract effect (the filter) and
the resulting speech signal

5 Voice Activity Detection

Voice activity detection (VAD) (also known as speech activity detection) is a technique
used in speech processing wherein the presence or absence of human speech is detected in
regions of audio (which may also contain music, noise, or other sound). VAD is a funda-
mental step towards speech authentication. The main uses of VAD are in speech coding,
speech recognition and other speech based applications. It can facilitate speech process-
ing, and can also be used to deactivate some processes during non-speech segments: it can
avoid unnecessary coding/transmission of silence packets in VOIP, saving on computation
and on network bandwidth. VAD is usually language independent.

However, speech is a complex signal subject to several effects throughout its production
occurring at several levels: semantic, linguistic, articulatory, and acoustic. The differences
of these effects causes differences in the acoustic properties of the resulting speech signal.
The speaker-dependent differences are used to discriminate between speakers: vocal tract
characteristics, learned speaking habits characteristics. All these characteristics are hidden
in the speech signal produced by the speaker, and the fundamental question is ”how to
locate and extract these speaker-dependent effects from the speech signal?”.

The speech signal can be seen as the result of the passage of a signal source through
the vocal tract, which gives it its spectral form characteristics: its frequency content (spec-
trum) is altered by the resonances (formants) of the vocal. This point of view is called the
source-filter model (see Figure 20 for illustration). The most powerful systems are based
on coefficients characterizing the evolution of the vocal tract shape throughout the speech
signal production.

MOBIO D3.2: page 40 of 74



MOBIO [214324] D3.2: Baseline Algorithms for Unimodal Authentication

Figure 21: Feature Extraction :vector characterizing the vocal effect (the filter)

The vocal tract characteristics vary slowly during the production of the speech signal: they
can be seen as constants during some tens of milliseconds (usually T=10, 20 or 30ms). From
the point of view of the speaker identity (using only the vocal tract characteristics), the
useful information is a vectors sequence (one vector every T ms). The nth vector comprises
information about the vocal tract shape at time nT (see Figure 21 for illustration scheme).

VAD is an important enabling technology for a variety of speech-based applications. There-
fore various VAD algorithms have been proposed that provide different compromises be-
tween latency, sensitivity, accuracy and computational cost. There are algorithms based
on energy envelope, GMM modeling of speech and silence working with various kinds of
features or alternative approaches like using phone recognizer to analyze where is speech.

5.1 Baseline systems

5.1.1 GMM-based (GMM-VAD)

The various sentences pronounced by a speaker can be seen as a sequence of vectors be-
longing to RM , M being the number of coefficients necessary to characterize the vocal
tract shape at a given time. The state-of-the-art systems use the contained information
in the various acoustic vectors independently of their generation times. The most popular
approaches in this category are based on the use of GMM. In this case it is possible to
discard frames which can disturb the speaker verification process. The non-speech frames
contain only information about the session (noise, microphone, telephone, ...) and not
about the speaker. Thus their use could lead to probable performance decrease. In using
GMM modeling, the frames are considered as independent and identical distributed so the
non speech frame elimination can be performed without any change in theoretical frame-
work.
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Figure 22: Speech labels given by the Speech Selection System

This frame selection method is based on an energy criterion: frames with low energy
are considered as non-speech and frames with high energy are considered as speech (see
Figure 22). The short-term log-energy is estimated every 10ms, the resulting value are first
normalized using mean removal and variance normalization in order to fit a 0-mean and
1-variance distribution. The resulting scalar values are then used to train a GMM with
3 components, using the Expectation Maximization (EM) algorithm. Indeed X% of the
most energized frames are selected through the GMM, with:

X = w1 + (merged ∗ α ∗ w2) (16)

where w1 is the weight of the highest (energy) Gaussian component, w2 is the weight of
the middle component, merged is an integer which can equal 0 or 1, and α is a parameter
fixed to 0.3. The value of merged is decided according to the likelihood loss when merging
the gaussian components 1 and 2 and the components 2 and 3. If the loss is higher for
components 1 and 2, merged is set to 0 else to 1.

The 3-Gaussians VAD based system retains frames with the highest energies. This im-
plies that in the case of speech signals with low SNR, the problem of separating high and
low energy frames becomes more difficult. In this case only voiced speech frames are re-
tained. However, this is not a disadvantage, since the voiced speech frames contains the
most information about the speaker identity (with respect to unvoiced frames).

The segmentation into speech (and silence) ranges has been smoothed to get rid of very
small segments. The model uses a moving window with a length set to 10 frames and if
there is a total of at least 3 frames in all the speech segments starting in this window, it
builds a contiguous segment from the first to the last segment in the window. Otherwise,
the segments are not kept for being part of the smoothed segmentation. The next window
position starts at the beginning of the last segment starting in the old window.

5.1.2 Neural network-based phoneme recognition (NN-VAD)

Non-speech frames are discarded and only speech frames are considered in the following
processing of training models and verification. Speech/non-speech segmentation is per-
formed using a phoneme recognizer [81], where all phoneme classes are linked to speech
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Figure 23: LCRC phone recognizer

class; silence and speaker noises (breathing, coughing, etc.) are omitted. Further post-
processing with two rules based on short time energy of the signal is applied:

• if the average energy in speech segment is 30dB less than the maximum energy in
the conversation side, then segment is labeled as silence.

• in case of stereo signals, where two speakers are in separate channels of one telephone
call, we use the energy from the opposite channel to eliminate cross-talks. If the
energy in the opposite conversation is bigger than energy minus 3dB in the processed
side, the segment is also labeled as silence.

These two steps eliminate very quiet speech segments and cross-talk regions.

If it could be assumed that the phonemes represent speech, then it is possible to use a
phoneme recognizer to find speech segments in audio recordings. In this report, a hybrid
system based on Neural Networks (NN) is presented. Feature extraction makes use of long
temporal context based on temporal patterns (TRAPs) [37]. First, Mel filter bank ener-
gies are obtained in the conventional way [25]. After sentence mean normalization in each
band, temporal evolution of critical band spectral densities are taken around each frame.
Based on previous work in phoneme recognition [80], the context of 31 frames (310 ms)
around the current frame is selected. This context is split into 2 halves: Left and Right
Contexts (hence the name “LCRC”). This allows for more precise modeling of the whole
trajectory while limiting the size of the model (number of weights in the NN) and reducing
the amount of necessary training data [80]. Both parts are processed using DCT to de-
correlate and reduce dimensionality. Two NNs are trained to produce phoneme posterior
probabilities for both context parts. Third NN functions as a merger and produces final
set of phoneme-state posterior probabilities (Figure 23).

A simple Viterbi decoder4 without any language model constraints processes the output of
the merger and produces string of phonemes. In [80], it has been shown that this system
outperforms phoneme recognizers with GMM/HMM modeling.

4SVite, which is part of STK-toolkit developed at Brno University of Technology:
http://www.fit.vutbr.cz/speech/sw/stk.html
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5.2 Evaluation

The VAD is not evaluated stand-alone (there is rarely data available with labeling of speech
and silence regions). Instead, we report results for speaker verification that uses VAD as a
pre-processing step in Section 6.4.
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6 Speaker Verification

Speaker recognition systems fall into two categories: text-dependent and text-independent.

If the text must be the same for enrollment and verification this is called text-dependent
recognition. In a text-dependent system, prompts can either be common across all speak-
ers (e.g.: a common pass phrase) or unique. In addition, the use of shared-secrets (e.g.
passwords and Personal Identification Numbers) or knowledge-based information can be
employed in order to create a multi-factor authentication scenario.

Text-independent systems are most often used for speaker identification as they require
very little if any cooperation by the speaker. In this case the text during enrollment and
test is different. In fact, the enrollment may happen without the user’s knowledge, as in
the case for many forensic applications. As text-independent technologies do not compare
what was said at enrollment and verification, verification applications tend to also employ
speech recognition to determine what the user is saying at the point of authentication.

Each speaker recognition system has two phases: Enrollment and verification. During en-
rollment, the speaker’s voice is recorded and typically a number of features are extracted
to form a voice print, template, or model. In the verification phase, a speech sample or
”utterance” is compared against a previously created voice print. For identification sys-
tems, the utterance is compared against multiple voice prints in order to determine the
best match(es) while verification systems compare an utterance against a single voice print.
Because of the process involved, verification is faster than identification.

6.1 Related work

A number of different systems for speaker authentication have been proposed in the lit-
erature and a majority of them are based on a statistical framework. According to this
framework, a probabilistic model of a typical human voice is constructed by training on
a large collection of voice recordings from different people to produce a universal back-
ground model (UBM). From this generic model, a more specific, client-dependent model is
then derived using adaptation techniques and data from a particular client (GMM-UBM
paradigm). It is then possible to estimate the likelihood ratio of the claimed client model
to that of the generic model. The system them accepts or rejects the claim if the likelihood
ratio is higher than a given threshold, selected in such a way as to achieve either a low
rejection rate, a low acceptance rate, or some combination of both.

There is a number of techniques that have previously proven to improve feature extraction
and modeling capability and help fight against the main problem in speaker verification -
diversity in channel and acoustic conditions. These techniques are: Cepstral Mean Sub-

MOBIO D3.2: page 45 of 74



MOBIO [214324] D3.2: Baseline Algorithms for Unimodal Authentication

traction, Feature Warping [71], RelAtive SpecTrAl (RASTA) filtering [87], Heteroscedas-
tic Linear Discriminant Analysis (HLDA) [47], Feature Mapping [75] and Eigenchannel
Adaptation [9]. These technique are used in systems based on Gaussian Mixture Model-
ing (GMM) [76], or factor analysis (FA) [44, 91, 60] and systems based on sequence kernel
Support Vector Machines (SVM) classifying either GMM mean supervectors [83] or vectors
constructed from Maximum Likelihodd Linear Regression (MLLR) transformations [84],
which are transformations commonly used in speech recognition for speaker adaptation,
system based on prosodic features [42] or system based on phone strings or lattices [36, 65].
For combination of several systems see [10, 42, 73].

6.2 Baseline systems

6.2.1 GMM/SVM-based (GMM-SVM)

The use of GMM in a GMM-UBM framework has been a standard in the speaker verifica-
tion [8]. In addition to this framework, the Latent Factor Analysis (LFA) is systematically
applied for all systems in training and testing [43, 90, 60]. From the resulting session com-
pensated model it is possible to extract supervectors by concatenating Gaussian means.
These supervectors can be used directly in a SVM classifier. This association between the
factor analysis and SVM allows to benefit from the FA decomposition power and SVM
classification power. The implemented baseline system uses Z-T-norm for score normaliza-
tion.

Feature extraction

The signal is characterized by 50 coefficients including 19 linear frequency cepstral co-
efficients (LFCC), their first derivative, their first 11 coefficients of second derivatives and
the delta-energy. They are obtained as follows: 24 filter bank coefficients are first com-
puted over 20ms Hamming windowed frames at a 10ms frame rate. Bandwidth is limited
to the 300-3400Hz range.

Here, the energy coefficients are first normalized using a mean removal and variance nor-
malization in order to fit a 0-mean and 1-variance distribution. The energy component is
then used to train a three component GMM, which aims at selecting informative frames.
The most energized frames are selected through the GMM. Once the speech segments of a
signal are selected, a final process is applied in order to refine the speech segmentation:
1- overlapped speech segments between both the sides of a conversation are removed,
2- morphological rules are applied on speech segments to avoid too short ones, adding or
removing some speech frames.

Finally, the parameter vectors are normalized to fit a 0-mean and 1-variance distribu-
tion. The mean and variance estimators used for the normalization are computed file by
file on all the frames kept after applying the frame removal processing.
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World models

Two GMM world models are used, one for males and one for females. The two GMM
are trained using Fisher English Training Speech Part 1 (LDC:LDC2004S13), and consists
of about 10 million speech frames each for males and females.

Resulting world models are 512 gender dependent GMM’s with diagonal covariance ma-
trices. For a better separation of initial classes, frames are randomly selected among the
entire learning signal via a probability followed by an iteration of the EM algorithm, to
estimate the GMM parameters. During the estimation of the world model parameters,
instead of using all the learning signals in their temporal order, 10% of frames is selected
randomly at each new iteration. For the two last iterations, the entire signal is classically
used in its temporal order. During all the process, a variance flooring is applied so that no
variance value is less than 0.5.

Client, test and impostor models with Factor Analysis

A speaker model can be decomposed into three different components: world, a speaker
dependent and session dependent components [43, 90, 60]. A GMM mean super-vector is
defined as the concatenation of the GMM component means. In the following, (h, s) will
indicate the session h of the speaker s. The latent factor analysis model, can be written
as:

m(h,s) = m + Dys + Ux(h,s), (17)

where m(h,s) is the session-speaker dependent super-vector mean, D is S × S diagonal
matrix (S is the dimension of the supervector), ys the speaker vector (its size equal S), U
is the session variability matrix of low rank R (a S × R matrix) and x(h,s) are the session
factors, a R vector. Both ys and x(h,s) are normally distributed among N (0, I). D satis-
fies the following equation I = τDtΣ−1D where τ is the relevance factor required in the
standard MAP adaptation.

The client model is obtained by performing the decomposition of equation 17 and by
retaining only the speaker dependent components:

ms = m + Dys, (18)

The success of the factor analysis model relies on a good estimation of the U matrix,
thanks to a sufficiently high amount of data, where a high number of different recordings
per speaker is available. In these experiments the U matrix is trained by using about 240
speakers (120 males and 120 females) coming from NIST’04. For each speaker about 20
sessions are considered.
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Kernel based scoring and SVM modeling

By using (18), the factor analysis model estimates supervectors containing only speaker
information, normalized with respect to the session variability. A probabilistic distance
kernel that computes a distance between GMM’s, well suited for a SVM classifier. Let Xs

and Xs′ be two sequences of speech data corresponding to speakers s and s′, the kernel
formulation is given below.

K(Xs,Xs′) =
M∑

g=1

(√
αgΣ

− 1
2

g mg
s

)t(√
αgΣ

− 1
2

g mg
s′

)
. (19)

This kernel is valid when only means of GMM models are varying (weights and covari-
ance are taken from the world model). ms is taken here from the model in eq. 18, i.e.
ms = m + Dys.

The LIA SpkDet toolkit benefits from the LIBSVM [15] library to induce SVM and to
classify instances. SVM models are trained with an infinite (very large in practice) C
parameter thus avoiding classification error on the training data (hard margin behavior).
The negative labeled examples are speakers from the normalization cohort.

6.2.2 Gaussian Mixture Model-based (GMM-UBM)

The second baseline system for speaker verfication is a GMM system that is based on
standard GMM-UBM paradigm [74]. It employs number of techniques that has previously
proven to improve GMM modeling capability and help fighting against the eternal problem
in speaker verification - diversity in channel and acoustic condition. These techniques are:
Cepstral Mean Subtraction, Feature Warping, HLDA and eigenchannel adaptation.

Features

The features used in the system are 13 Mel frequency cepstral coefficients (MFCC) co-
efficients (including zero’th cepstral coefficients, 20ms window, 10ms shift, 23 bands in
Mel filter bank). To compensate for channel mismatch in different conversations, three
simple feature processing techniques are successively applied: cepstral mean over whole
conversation is subtracted from the features, Feature Warping (3sec window, warping into
normal distribution) is applied and finally, temporal trajectories of individual feature vec-
tor coefficients are filtered using standard RASTA filter. After this processing, each feature
vector is augmented with its first second and third order derivatives. This results in 52
dimensional feature vectors containing information about context of 13 frames.

HLDA

As the next step, Heteroscedastic Linear Discriminant Analysis (HLDA) [47, 32], which
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is also in common use in speech recognition systems, is employed. HLDA provides a lin-
ear transformation that can de-correlate the features and reduce the dimensionality while
preserving the discriminative power of features. HLDA needs classes to estimate its class-
covariance statistics (which are then used to estimate the transform matrix). For this
purpose, GMM with 2048 Gaussian components is trained on test data from SRE2004
and the feature frames aligned with individual GMM mixture components are considered
as classes. HLDA transformation reducing the dimensionality from 52 to 39 is estimated.
GMM is then updated in the new HLDA space (by projecting collected class-covariance and
mean statistics through HLDA transformation). Features are also projected into HLDA
space and GMM is re-estimated (still only on SRE2004 test data) by few additional EM
iterations to obtain the UBM model.

Training speaker model and verification

Each speaker model is obtained by traditional relevance MAP adaptation [74] of UBM
using enrollment conversation. Only the means are adapted with relevance factor τ = 19.

In verification phase, standard Top-N Expected Log Likelihood Ratio (ELLR) scoring [74]
is used to obtain verification score, where N = 10 in the baseline system. However, for
each trial, both speaker model and UBM are adapted to channel of test conversation using
simple eigenchannel adaptation prior to computing the log likelihood ratio score. Note,
that when T-norm [3] is used to normalize the score, each T-norm model is also adapted
to channel of relevant tested conversation.

Eigenchannel subspace estimation

Let supervector be a MD dimensional vector constructed by concatenating all GMM mean
vectors and normalized by corresponding standard deviations. M is the number of Gaussian
mixture components in GMM and D is the dimensionality of features. Before eigenchannel
adaptation can be applied, the directions in which supervector is mostly affected by chang-
ing channel are identified. These directions, which are refered to as eigenchannels, are
defined by columns of MD×R matrix V, where R is the chosen number of eigenchannels
(R = 30 in our system). The matrix V is given by R eigenvectors of average within class
covariance matrix, where each class is represented by supervectors estimated on different
segments spoken by the same speaker.

More precisely, all speakers from NIST SRE2004 data for which at least two conversations
are available are selected. For each speaker, i, and all his conversations, j = 1, . . . , Ji,
UBM is adapted to obtain a supervector, sij. The corresponding average speaker super-

vector given by si =
∑Ji

j=1 sij/Ji is subtracted from each supervector, sij, and resulting
vectors form columns of MD × J matrix S, where J is the number of all conversations
from all selected speakers (J = 2961 in our case). Eigenchannels (columns of matrix V)
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are given by R eigenvectors of MD×MD matrix SST corresponding to R largest eigenval-
ues. Unfortunately, for this system, where MD = 2048 · 39 = 79872, direct computation
of these eigenvectors is unfeasible. A possible solution is to compute eigenvectors, V′, of
J×J matrix STS, eigenchannels are then given by V = SV′. In case the MAP criterion is
used for eigenchannel adaptation (see below), the length of each eigenchannel must be also
normalized to the standard deviation of S columns along the direction of the eigenchannel.
This normalization is irrelevant in the case of ML criterion.

Eigenchannel adaptation

Once the eigenchannels are identified, speaker model (or UBM) can be adapted to a test
conversation by shifting its supervector in the directions given by eigenchannels to better
fit the test conversation data. Mathematically, this can be expressed as finding the channel
factors, x, that maximize the following MAP criterion:

p(O|s + Vx)N (x;0, I), (20)

where s is supervector representing the model to be adapted5, p(O|s+Vx) is likelihood of
the test conversation given the adapted supervector (model) and N (·;0, I) denote normally
distributed vector. Assuming fixed occupation of Gaussian mixture components by test
conversation frames, ot, t = 1, . . . , T , it can be shown that x maximizing criterion (20) is
given by:

x = A−1

M∑
m=1

VT
m

T∑
t=1

γm(t)
ot − µm

σm

, (21)

where Vm is M × R part of matrix V corresponding to mth mixture component, γm(t) is
the probability of occupation mixture component m at time t, µm and σm are the mixture
component’s mean and standard deviation vectors and

A = I +
M∑

m=1

VT
mVm

T∑
t=1

γi(t). (22)

In this implementation, occupation probabilities, γm(t), are computed using UBM and
assumed to be fixed for given test conversation. This allows to pre-compute matrix A−1

only once for each test conversation. For each frame, only Top-N occupation probabilities
are assumed not to be zero. In the following ELLR scoring, also only the same top-
N mixture components are considered. All these facts ensure that adapting and scoring
different speaker or T-norm models on a test conversation can be performed very efficiently.

Eigenchannel adaptation can also be performed by maximizing ML criterion instead of
MAP criterion. This correspond to dropping the prior term, N (x;0, I), in criterion (20)
and term I in (22). In the experiments conducted, there is always enough adaptation data

5Note again that by our definition, supervector is mean supervector normalized by the corresponding
standard deviations.
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(test conversations contains approximately 2.5 minutes of speech) making the prior term
in MAP criterion negligible. Therefore, no difference in performance when using the two
criteria was found.

6.3 Evaluation

GMM-UBM

In the following experiments, results will be presented for 1-side training, 1-side test, all
trials condition from SRE2005 NIST evaluation, which were used for system development,
and for primary condition (1-side training, 1-side test, English only trials) from SRE2006
NIST evaluation.

GMM-SVM

The NIST SRE 2006 evaluation is used as development to determine the decision thresh-
olds. For the GMM-UBM based systems, 200 male speakers and 119 female speakers from
NIST 2004 are used as background data for TZ-norm6. For the SVM systems, NIST’04 and
fisher (380 male sessions and 299 female sessions) are used to perform score normalization
(TZ-norm) and as negative examples to train the SVM classifiers.

6.4 Results

GMM-UBM

Table 3 documents the process of building our system. It shows line-by-line the improve-
ments in performance obtained by successively adding different techniques. The starting
point was GMM system with 2048 Gaussian mixture components, features were 13 MFCC
coefficients augmented with their derivatives and processed by cepstral mean normalization.
The error rate of this system is very high and is almost halved by adding simple RASTA
filtering. Replacing RASTA with Feature Warping improved the performance, however,
further small gain was obtained from combination of both techniques. Application of
RASTA filtering on top of Feature Warping appeared to be slightly more advantageous
then doing it in opposite order. In next two steps, features were also augmented with sec-
ond and third derivative coefficients. While adding second derivatives is clearly beneficial
for both SRE2005 and SRE2006 evaluation sets, advantage of adding third derivatives,
which were observed during the development on SRE2005 data, was not confirmed on
SRE2006.

The following two steps, each significantly improving the system performance, were: pro-
jection of 52 dimensional features into 39 dimensional HLDA space and application of

6Application of T-norm prior to Z-norm
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Eigenchannel adaptation.

So far, all the presented results were obtained without normalizing the verification scores
by any standard technique, such as T-norm or Z-norm [3]. As it can be seen in Table 3,
T-norm was not effective in improving performance of our full system. Experimentation
with the Z-norm and ZT-norm provided results that were mixed and unconvincing. This
contradicted the conclusions drawn in [44, 91], where Z-norm or ZT-norm were found nec-
essary for making channel variability modeling techniques really effective. Later it was
found that some systems are invariant against normalization and for others it is crucial.

The results are presented for our baseline system which is a “stable” BUT GMM sys-
tem designed for NIST SRE 2006 evaluation, for more details see [11]. However, lots of
work was done at BUT for NIST SRE 2008 (especially in the area of joint factor analysis),
the experimental results show that these techniques can perform almost two times better
on the same data.

GMM-SVM

In this section results of the best system submitted to NIST SRE08 are presented: We
have participated to 2 kind of tasks, the short2-short3 task and the 3conv-short3 task.
In the short2-short3 task one session of about 2.5 minutes of telephone speech is used in
training and testing. In the 3conv-short3 task 3 sessions of about 2.5 minutes of telephone
speech is used in training and 1 session is used for test.

GMM-SVM with TZ-norm. Figures 24, 25 and 26 show that the system is much more
powerful for males than for females, even though the system is the same for males and
females. The only difference lies in the used world models and eigen-channel matrix U. At
this stage we are seeking the causes of this performance shift.

Figures 24 and 25 show that the performance worse in det6 case (all languages) than in
det7 case (English only). This performance degradation was expected because the world
models are trained on English Only sessions.

Very good performances can be observed in the case of 3conv-short3 condition with re-
spect to the short2-short3 condition (by comparing our results with the results of other
sites submissions). This is probably caused by our selection frames which make lot of false
reject frames.

For the 3conv-short3 condition, impostor models, used for score normalization, are trained
using only 1 session (instead of 3 sessions). This is also the case of negative examples
used for training SVM classifiers. In condition 3conv-short3, the LIA submitted system
(SVM-GMM with TZ-norm) was the best one among all participants systems in the case
of native English trails (det8).
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System SRE2005 SRE2006
EER DCF EER DCF

MFCC+∆, CMN, 2048 G. 26.6% .089 23.8% .088
+ RASTA 14.3% .055 11.8% .059
+ Feature Warping 12.4% .052 10.0% .051
+ ∆∆ 11.2% .047 9.1% .049
+ ∆∆∆ 10.6% .047 9.3% .048
+ HLDA (52→39) 9.7% .042 8.2% .041
+ Eigenchannel adapt. 4.6% .020 4.0% .020
+ T-norm 4.6% .020 4.0% .018
Full system, 512 Gauss. 4.9% .026 4.7% .024

Table 3: The improvements in performance obtained by successively adding different tech-
niques.

System BANCA - EER[%]
subset G1 subset G2

GMM-UBM 11.06 8.21
GMM-SVN 9.0 9.0

Table 4: Comparison of technique on BANCA database with P protocol.
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Figure 24: DET Curves for male, female and gender-independent, all languages trials
(det6): (a) short2-short3 condition; (b) 3conv-short3 condition.
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Figure 25: DET Curves for male, female and gender-independent, only English trials
(det7): (a) short2-short3 condition; (b) 3conv-short3 condition.
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Figure 26: DET Curves for male, female and gender-independent, native English trials
(det8): (a) short2-short3 condition; (b) 3conv-short3 condition.
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Figure 27: DET curves for the BANCA dataset: (a) group g1 ; (b) group g2
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7 Summary

This document described some of the state-of-the-art unimodal biometric baseline sys-
tems for face and speaker authentication. The report presents detailed implementation,
evaluation and results on consituent baseline algorithms on face detection, facial feature
localisation & verification techniques for unimodal face authentication and speech/silence
detection & verification methods for unimodel speech authentication. The methods were
chosen based on: a) a detailed survey of the literature in the repective areas and b)
their proven performance capacity to cope with MOBIO’s concept. These representative
methodologies were selected to perform experimental comparison on the face and speaker
authentication tasks using the BANCA database and its corresponding experimental pro-
tocol. The mechanisms have also been tested individually using other datasets including
the XM2VTS, BioID and BioSign.

Following detailed experimentation, the following conclusions can be made:

• Face Detection: Three baseline methods, VJFD, LBP-SVM and c-MCT-C of face
detection have been compared in this report. The results on different datasets com-
paring these techniques clearly reveals that the VJFD method is the best followed
by the c-MCT-C and the LBP-SVM schemes. The performance was rated based on
low error rates and the minimum missed detections on most datasets.

• Facial Feature Localisation: Facial feature localisation is performed through the de-
tection of face points in the image. The CLM technique for face points localisation
has been reported in this paper. The evaluation of the CLM model indicated best
performances when combined with the VJFD face detector as against the c-MCT-C
and LBP-SVM schemes. In general the overall accuracy of the system was also found
to be low directly indicating the capacity of the face points localisation algorithm to
deliver reliable feature detections.

• Face Verification: Finally, unimodal face authentication is accomplished through
performing verification experiments integrating the face detection and facial feature
localisation algorithms. The face verification systems, DCT-GMM, EFLDM and
ULBPH, were tested on the BANCA dataset using the BANCA protocol and the
results illustrate that the techniques recorded comparably good performances. The
DCT-GMM method presented slightly higher precision in comparison to the other
methods.

• Speaker Verification from speech: Two baseline methods, GMM based with channel
compensation and SVM based with factor analysis have been compared in this report.
The results (see Table 4) on BANCA database show that Factor analysis perform
slightly better in terms of Equal Error Rate.

It is foreseen that the study of unimodal authentication systems in this report will help
building enhanced models of unimodal authentication system for face and speech verifi-
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cation also simultaneously helping the integration of successful schemes to form robust
bi-modal systems.
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A Evaluation datasets

A.1 BANCA

The BANCA dataset [4] is the principal evaluation dataset for the purposes of this re-
port. It is a collection of multi-modal (video and audio) data in four different European
languages (although only English is used in this report) and is intended for evaluating
personal identity verification systems.

For each language, the dataset principally contains data from 52 subjects that are split
into two gender-balanced groups, g1 and g2, with 13 males and 13 females in each group.
There is an additional group, wm, of 30 subjects (15 male and 15 female) that is used only
for building a world model. Each subject participated in 12 recording sessions, grouped
into three different scenarios:

• Controlled (Sessions 1-4): Captured in a controlled environment (quiet office)
using a high quality camera and two microphones (high and low quality).

• Degraded (Sessions 5-8): Captured in a less-controlled environment (an occupied
office) using a low quality camera (a web-cam, in this case) and two microphones
(high and low quality).

• Adverse (Sessions 9-12): Captured in an uncontrolled environment (staff cafete-
ria) using a high quality camera and two microphones (high and low quality).

In each recording session, two recordings were captured: (a) a client access where the user
matched their claimed identity; (b) an impostor attack where the user did not match their
claimed identity. The impostor attacks were balanced so that each client every other client
once only (conversely, every client is attacked once only). Furthermore, the attacks were
balanced so that there are an equal number of attacks for a given client/impostor within
each condition (controlled, degraded, adverse).

The high quality video data consists of PAL (i.e. 720 × 576 pixels) video at a colour
sampling resolution of 4:2:0, compressed at a ratio of 5:1. The low quality video was up-
sampled in resolution to match that of the high quality video. The audio data was captured
at a frequency of 32 kHz in both 12-bit (low quality) and 16-bit (high quality), and was
not compressed.

An evaluation protocol defines a set of data, how it should be used by a system to perform
a set of experiments and how the performance should be computed such that no bias is
introduced. In this case, the BANCA protocol was intended to the development of open-set
verification systems such that new clients can be added to the test list wihout having to
redesign the verification system (including parameters etc.). This is achieved by splitting
the data into two sets: the development set used to calibrate the system is calibrated with
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Figure 28: Usage of different sessions in BANCA configurations

the knowledge of the subjects identity in the test phase; and the evaluation set with the
fixed calibrations obtained from the development, with which training (enrollment) and
testing (access) is to be conducted. For fusion verification systems, a third set called the
fusion tuning set is introduced.

In BANCA, the following distinct experimental configurations have also been specified:
Matched Controlled (MC), Matched Degraded (MD), Matched Adverse (MA), Unmatched
Controlled (UC), Unmatched Degraded (UD), Unmatched Adverse (UA), Pooled test (P)
and Grand test (G). The table in Figure 28 summarises the usage of the different sessions
in each configuration. “TT” refers to the client training while “T” depicts the client and
imposter test sessions. For example, in configuration MC the true client data from session
1 is used for training and the true client data from sessions 2, 3 and 4 are used for testing.
All the imposter attack data from all sessions are used for imposter testing.

It is anticipated that from the measure performances on all configurations, it is possi-
ble to deduce information regarding the intrinsic performance given a particular condition,
performance in varied condition and a potential gain from more representative training
condition. The protocol also specifies the use of the false acceptance and the false rejection
rates as measures of performance.

A.2 XM2VTS

The XM2VTS dataset [63], containing 295 subjects, is an extension of the M2VTS dataset
and was designed for the development of personal identity verification systems. The data
were recorded in four sessions, spread out over five months, in order to capture variation
in appearance (e.g. hairstyle, wearing glasses etc.). Each session captured two PAL video
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Figure 29: Examples from the BANCA dataset, representing (from left) controlled, de-
graded and adverse capture conditions.

Figure 30: Examples from the XM2VTS dataset.

sequences of each subject: (i) a frontal view of the subject reading pre-defined text and (ii)
a sequence where the subject rotates the head. For the purposes of this report, however,
we use only two still images (720 by 576 pixels) of each subject per session (see Figure 30)
in order to evaluate the face detection and point localisation modules (a total of 2360
images). In addition to the image data, a dense labelling of 68 facial features was available
with which to evaluate the face point localisation module.

A.3 BioID

The BioID face dataset, containing 23 subjects, consists of 1521 greyscale images at a
resolution of 384 by 286 pixels (see Figure 31). Each image shows a frontal view of one of
the test subjects in an indoor environment and is manually labelled with the locations of
the eye centres. As a result, this dataset is used principally to evaluate the face detector.

A.4 BioSign

The BioSign dataset, containing 50 subjects, consists of 550 colour images at a resolution
of 320 by 240 pixels (see Figure 32). Each image, captured using a mobile phone, shows a
frontal view of each subject at a range of locations (both indoor and outdoor) and is labelled
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Figure 31: Examples from the BioID dataset.

Figure 32: Examples from the BioSign dataset.

with the locations of the eye centres and corners of the mouth. As a result, this dataset is
used to evaluate both face detection and (to a limited extent) face point localisation.
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B Parsing tools

In order for partners to develop system components independently, we use a system whereby
each component is developed as a stand-alone command-line executable. The output of
one component is saved as a text file that serves as the input to the next component in
the processing chain. Text file input/output was provided via a software library written
by UMAN.

B.1 Global input file

All tasks use a common mobio inputfile object that defines:

• input/output directories

• file extension of the input files (so that both video and audio can be tested)

• IDs of the participants to be enrolled (with corresponding input filenames)

• authentication challenges (defined by a true ID with corresponding files, plus the
claimed IDS to be tested against)

An example is given below:

input_dir: ./videos/

model_dir: ./models/

output_dir: ./output/

file_ext: avi

enrol:

{

ID: { name: person0 videos: { face0_1 face0_2 face0_3 } }

ID: { name: person1 videos: { face1_1 face1_2 face1_3 } }

ID: { name: person2 videos: { face2_1 face2_2 face2_3 } }

}

tests:

{

test: { ID: { name: person0 videos: { face0_4 face0_5 } }

challenge: { person0 person1 } }

test: { ID: { name: person1 videos: { face1_4 face1_5 } }

challenge: { ALL } }

}
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B.2 Face detection output

The face detection component reads a mobio inputfile object as input in order to specify
global parameters. The output of face detection is one mobio video faceboxes object
(stored as <output dir>/<videoname> faceboxes.txt) per video processed. This file
contains a list of frames, where each frame contains a list of faceboxes. Each facebox is
specified by its centre (in x and y), size (in x and y) and score (indicating the strength of
the detector output):

filename: face0_1

frame_length: 40

start_frame: 0

frames: {

frame: { facebox: { cx: 11 cy: 12 wx: 20 wy: 30 score: 0.95 } }

frame: { facebox: { cx: 21 cy: 22 wx: 20 wy: 30 score: 0.97 }

facebox: { cx: 51 cy: 52 wx: 20 wy: 30 score: 0.92 } }

frame: { }

frame: { facebox: { cx: 11 cy: 12 wx: 20 wy: 30 score: 0.95 } }

...

}

B.3 Feature localization output

The feature localization module reads a mobio inputfile object (that specifies global
parameters) and one mobio video faceboxes object (created by the face detection mod-
ule) per video. The output of feature localization is a mobio video face points object
(stored as <output dir>/<videoname> facepts.txt) per video processed. Like the
mobio video faceboxes object, this contains a list of frames where each frame contains
a list of faces (each corresponding to a facebox in <videoname> faceboxes.txt). Each
face contains a score (based on the feature locations, as opposed to the detection score)
and a list of feature locations (x-position, y-position and feature score):

filename: face0_1

frame_length: 40

start_frame: 0

frames: {

frame:

{

face:

{

score: 0.89

points:

{

pt: { x: 0 y: 1 score: 2 }
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pt: { x: 1 y: 2 score: 3 }

pt: { x: 2 y: 3 score: 4 }

}

}

}

frame:

{

face: { ... }

face: { ... }

}

frame: { }

...

}

B.4 Face authentication output

The face authentication module reads a mobio inputfile object (that specifies global
parameters) and one mobio video face points object (created by the feature localization
module) per video. The output of face authentication is a mobio outputfile object (stored
as <output dir>/<videoname> results.txt) per video that stores the video name, the
true identity corresponding to the video and a score structure for each claimed ID.

Videos are divided into segments for video/audio processing. Each segment is assigned
a score. These scores are then combined for the total score of the claimed ID against the
video:

filename: face0_1

actual_id: person0

results:

{

result:

{

claimed_id: person0

total_score: 0.87

segment_length: 40

start_time: 0

segments:

{

segment: { score: 0.42 }

segment: { score: 0.42 }

segment: { score: 0.42 }

segment: { score: 0.42 }

segment: { score: 0.42 }

}
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}

result:

{

claimed_id: person1

...

}

...

}
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