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D3.4: Description and evaluation of advanced
algorithms for uni-modal authentication

Abstract:
This deliverable describes and evaluates the advanced unimodal systems for face detec-

tion, face point localisation, face verification and speech verification that were developed
within the MOBIO project. In face detection, the presented advanced algorithms are based
on using novel features and more efficient detection post-processing techniques. The pro-
posed face point localisation method introduces a new local and global constraint model
for the point locations. In face verification, advanced feature extraction and score nor-
malization strategies are employed, whereas the advanced speech verification systems are
based on using the joint factor analysis. All the developed algorithms are evaluated against
the baseline systems described in project deliverable D3.2, showing clear improvement in
verification performance both in the face and the speech modality.
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1 Introduction

The MOBIO project aims at developing new, effective methods for face and speech based
authentication in the context of portable devices. The project studies both uni-modal
authentication using either face or speech modality, and bi-modal authentication combining
these two modalities.

The components of face authentication system considered in the project are face detec-
tion, face point localization and face verification. For the speech authentication system,
voice activity detection and speaker verification components are needed.

Existing state-of-the-art methods for these tasks were implemented for the project
deliverable D3.1: Baseline systems for uni-modal authentication. These methods were
described and evaluated in D3.2: Report on the description and evaluation of baseline
algorithms for unimodal authentication [5].

The project deliverable D3.3: Advanced systems for uni-modal authentication builded
on D3.1, aiming at developing novel methods for face and speech based authentication that
exceed the baseline systems in performance. The purpose of this report is to describe and
evaluate the advanced systems and perform comparison to baseline systems to assess the
progress achieved in the project.

1.1 Face Authentication

The goal of face authentication is to determine, based on facial images of a user, whether
or not a claimed identity is true.

Aiming for a complete face authentication subsystem, methods for three necessary
modules in the processing chain have been studied: (1) face detection, (2) facial feature
localization and (3) face verification.

The face detection module determines if there are faces in an input image and returns
their locations and sizes. Three baseline face detectors were presesented in D3.2:

• VJFD: The Viola-Jones face detector

• LBP-SVM: Local Binary Pattern features combined with Support Vector Machines

• c-MCT-C: A cascade of Modified Census Transform features based classifiers

In this report, two advanced systems are described and evaluated against the baseline
systems:

• LPQL: Local Phase Quantization Label face detector

• CFD: Context-based Face Detector

The second module in the processing chain, face point localization, aims to determine
the exact locations of anatomical landmarks, such as the eyes, using the output of face
detector as a starting point. D3.2 presented Constrained Local Models (CLM) as the
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baseline face point localization method. In this report, an advanced system combining
local and global shape models [55] is presented.

After the face has been localized and possibly geometrically normalized using the de-
tected landmarks, the actual face verification is performed. Here the goal is to accept or
reject the identity claimed by the user based on the input face images and a model of the
user. The baseline face verification methods are the following:

• EFLDM: An Enhanced Fisher linear discriminant model

• PB-GMM: A parts-based Gaussian mixture model

• ULBPH: A uniform local binary pattern histogram-based method

This report presents two advanced systems:

• LFB-GMM: Local Frequency Band Gaussian mixture model

• PS MLBPHLDA tnorm: Multi-scale Local Binary Pattern Histogram Discrimi-
nant Analysis with Score Normalization for robust face recognition

1.2 Speech Authentication

In speaker authentication, the goal is to accept or reject the claimed identity of a user
based on a speech utterance. For this purpose, voice activity detection followed by speaker
verification are needed.

The purpose of voice activity detection (VAD) is to detect speech frames from an
input speech signal. D3.2 presented an compared two methods for voice activity detection
(GMM-VAD and NN-VAD) and as their performance is adequate for the purposes of speech
authentication, no further work on voice activity detection was done but the baseline
systems were used.

Speaker verification system either accepts of rejects the claimed user identity based on
the speech frames from VAD subsystem and a model of the user voice. The two baseline
speaker verification systems of D3.2 were

• GMM-SVM: Factor analysis with support vector machines and

• GMM-UBM: GMM-UBM with channel compensation technique.

In this report, two advanced systems based on factor analysis are described:

• GMM-LFA: GMM-Latent Factor Analysis and

• GMM-JFA: GMM-Joint Factor Analysis.

MOBIO D3.4: page 10 of 56



MOBIO [214324] D3.4: Advanced Algorithms for Unimodal Authentication

1.3 Evaluation

To allow for direct comparison to performance of baseline systems reported in D3.2, the
same evaluation protocols are used. Specifically, the face detection and face point local-
isation methods are compared using BANCA, XM2VTS, BioSign and BioID face image
datasets and comparing the system outputs to manually annotated groud truth. Face ver-
ification systems are evaluated using BANCA image data and speech verification systems
using the speech data from BANCA database. For details of the datasets, see Appendix
A of D3.2.
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2 Face Detection

The aim of face detection is to determine if there are any faces in an input image and return
their location and size. Face detection is typically the first step in a face authentication
system, and its result is cruicial for a successful authentication. Two new face detectors
are described in this report, namely the Context-based Face Detector (CFD) developed
at IDIAP research institute and Local Phase Quantization Label (LPQL) face detector
developed at University of Oulu.

2.1 Related work

Deliverable D3.2 [5] prerented a review of existing methods for face detection, and the
reader is referred to that report for an introduction to face detection methods.

Recently, clearly more publications in computer vision venues have been targeting gen-
eral object recognition than face detection specifically. There have however been some
noteworthy works on face detection as well. Destrero et al. [17] considered the problem
of feature selection in face detection and face recognition, using a regularization approach
aiming at a sparse set of features. Chen et al. [13], on the other hand, presented a method
for creating artificial samples for training a face detector. Butko and Movellan [9] aimed
at speeding up the face detection process by simulating the visual search in humans and
were able to double the speed of the well known Viola-Jones detector. A face detector
for uncontrolled outdoor conditions for privacy protection purposes was presented in [23],
achieving a detection rate of about 90 %.

2.2 Sliding window detectors

Like most recent face detectors, the systems presented in this report are based on the
sliding window approach, which is reviewed in the following.

To detect objects one usually proceeds by scanning the image at different positions and
scales. At each position and scale a subwindow is formed and tested against a classifier
previously trained with geometric normalized samples of size Sc = (Wc, Hc). This is often
refered to as a sliding window approach.

There are two main sliding window (scanning) methods: the multiscale and the pyramid
[46]. The multiscale approach varies the size of the scanning subwindow and the classifier
has to interpolate its content to Sc in order to decide if the subwindow contains the object
or not. The pyramid approach computes a set of scaled versions of the original image
and for each one varies the position of a Sc fixed size subwindow. No interpolation is
needed for this approach (the subwindow and the classifier have the same size), but the
image pyramid must be computed first. It can be shown that both methods test the same
number of subwindows and the experimental results have shown that they produce similar
results.

For any sliding window approach the total number of subwindows to classify is quadratic
to the number of pixels. This is because every position in the image must be matched at
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every possible scale. Therefore, there can be billions of subwindows even for small images
and thus it is inefficient to do an exhaustive search. Typically one uses some heuristics that
reduce this number to practical values by limiting the number of scales or searching every
N pixels (by having an offset of N pixels between subsequent subwindows) [56]. Real-time
performance can be achieved by limiting the number of subwindows to process but at the
cost of missing some objects.

Usually applying the sliding window approach with any face detector will result in mul-
tiple detections and false alarms (see Fig. 1). These detections must be further processed,
this is often refered to as pruning false alarms and merging multiple detections [46].

Figure 1: Typical face detections using the multiscale approach and the MCT boosting
cascade classifier described in [21] (without clustering multiple detections and removing
false alarms).

Since the true location and the number of objects is not known it is prefered to have a
finer scanning than to miss any object or misspredict its location too much. However this
will also increase the number of false alarms because a larger number of subwindows has
to be explored. This is because even a state of the art classifier has a false acceptance rate
(FAR) that is not zero, usually of the order of 0.1% to achieve good performance.

2.3 Context-based face detection

2.3.1 Overview

The Idiap advanced face detection system is based on modelling the detections from a face
detector. This is a generic technique that could be applied to any object detection problem
(provided there is an associated object classifier). The goal is to classify false alarms and
merge multiple detections in a principled way without using heuristics. A classifier is
built using the contextual information obtained from the object classifier to discriminate
between false alarms and true detections. The contextual information is represented by
the detection distribution around a target subwindow, this context can then be used to
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iteratively refine the detections. Finally the detections are clustered using a modified
version of the Adaptive Mean Shift algorithm.

2.3.2 Handling multiple detections

The most common approach to solve the multiple detection problem is to heuristically
merge them based on the overlapping percentage. Below we present the heuristic methods
that have been presented in the literature.

In [56] detections are partitioned into disjoint subsets, by associating two detections
to the same one if they overlap. The final step consists of composing for each subset just
one subwindow having the average coordinates of all subwindows in that subset. Some
restrictions can be further imposed on the partitioning: two detections are considered in
the same subset if they overlap more than a threshold (typically 60% of the area of the
bigest) and a detection is removed if it is contained by another one. The selection of
the best detections (one per subset typically) is done iteratively. At each step the most
overlapping detections are merged using a score weighted average and then the subsets are
computed again.

Our experiments have shown that this method is sensitive to the scanning parameters:
when too coarse, the true detections can be isolated and considered as false alarms and
when too fine, false alarms appear in clusters and are usually considered as a final detection.
Some variations are implemented in face detection libraries like OpenCV or Torch3vision,
which we refer to as HMergeO, and HMergeT respectively.

A similar heuristic approach has been proposed by Rowley et al. [47]. They preserve
the detections with higher number of overlapping detections within a small neighborhood
and eliminate the other ones. The final output is given by the centroids of the preserved
detections.

A more principled approach was recently proposed in [52] and [53] where the authors
study the score distribution in both location and scale space. Their experimental results
have shown that the score distribution is significatively different around a true object
location than around a false alarm location, thus making possible to build a model to
better distinguish the false alarms and enhance detection. This approach is motivated
by the fact that the object classifier is usually trained with geometric normalized positive
samples and it does not process the context (area around given samples). Also, some
false alarm subwindows may have a higher score than a true detection nearby and may be
selected as the final detections using an heuristic merging technique.

2.3.3 Our approach

The advanced Idiap system is a new generic method for face (object) detection that makes
use of the contextual information for improving detection accuracy. We address some
problems of the previous methods such as: multiple detections, false alarms and sensitivity
to scanning parameters (it should work equally well for fine or coarse face scanning).
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We build a context-based model used for pruning false detections based on the work of
[52] and [53]. Similarly we define the context as the detection distribution around a target
subwindow, by varying its scale and position and checking it against a classifier. The
context is described using multiple features such as its density, the geometric distribution
for scale and position axis and some score statistics. Our model automatically selects the
best features from the contextual information and optimizes its internal parameters.

We also use this contextual information to improve the object detections. We argue
that we can estimate from the context the direction where an object is more likely to reside
and using this idea in a greedy way it is possible to devise an algorithm for refining object
detections.

Finally, a modified version of the Adaptive Mean Shift (AMS) is used to solve the
problem of clustering multiple detections in a more principled way. The advantage over
previous methods is that it uses practically no parameters, it has no heuristics, the number
of clusters does not need to be known apriori and its properties are theoretically established.

Figure 2: Context-based face (object) detection method consisting of the following blocks:
i) CtxModel - the context-based model to discriminate and remove false alarms, initialized
with the multiscale or pyramid scanning (MS/PR) and ii) DetRefine - one step of the
method to refine detections. The final block is the AMS clustering algorithm to process
the converged collection of subwindows (SWs).

The proposed context-based face detection method is presented in Fig. 2. The first step
is to run the multiscale or the pyramid (MS/PR) scanning over the input image using a
face (object) classifier. The detections (SWs) are checked against the context-based model
(CtxModel) to remove false alarms. These are further refined and a new collection of
subwindows is generated. If the refinement has not converged, the subwindows are again
checked against the context-based model. Otherwise they are clustered using the AMS
algorithm to merge the detections that were converged closely.
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2.4 Local Phase Quantization Labels (LPQL) face detector

The Local Phase Quantization Label (LPQL) face detector is based on the discrete labels
produced by the Local Phase Quantization (LPQ) operator [42]. The LPQ operator,
originally developed for blur tolerant texture recognition, has shown good performance in
recognition of textures even when there is no blur [42] as well as in face recognition [2, 12].
The prior works utilizing LPQ operator have, however, considered only histograms of LPQ
labels. In face detection, the LPQ labels are used directly in a boosting framework.

The LPQ operator is based on examining the local phase in (2R + 1)-by-(2R + 1)
neighborhoods N(x,y) at each pixel position (x, y) of the image I(x, y). These local spectra
are computed using a short-term Fourier transform defined by

F (u, v, x, y) =
R∑

s=−R

R∑
t=−R

I(x− s, y − t)e−j2π(us+vt). (1)

This transform is separable, so the computation of STFT coefficients can be done efficiently
using simply 1-D convolutions for the rows and columns successively.

Following the procedure by [42], local Fourier coefficients are computed at four fre-
quency points (β, 0); (0, β); (β, β); (β,−β), where β is a small scalar. The phase informa-
tion in the Fourier coefficients is recorded by observing the signs of the real and imaginary
parts of each component in F (u, v, x, y), i.e. quantizing the phase into 4 discrete levels.
For this, the coefficients are first reordered into a vector

I(x, y) =



Re{F (β, 0, x, y)}
Im{F (β, 0, x, y)}
Re{F (0, β, x, y)}
Im{F (0, β, x, y)}
Re{F (β, β, x, y)}
Im{F (β, β, x, y)}
Re{F (β,−β, x, y)}
Im{F (β,−β, x, y)}


,

which is then encoded into a discrete label by observing the sign of each of the components

ILPQ(x, y) =
8∑
j=1

s(Ij(x, y))2j−1 (2)

where Ij(x, y) is the j-th component of the vector I(x, y) and s(z) is the thresholding
function

s (z) =

{
1, z ≥ 0
0, z < 0

(3)

To detect faces an image, the sliding window approach using cascade of GentleBoost
based classifier is applied. A subwindow scans the image at different scales and locations,
and each subwindow is fed into a cascade of classifiers.

MOBIO D3.4: page 16 of 56



MOBIO [214324] D3.4: Advanced Algorithms for Unimodal Authentication

The classifiers in the cascade are based on a sum of functions (weak classifiers). One
such funcion fm maps the possible LPQ codes at one specific neighborhood size Rm and
location (xm, ym) within the window into real values:

fm(wLPQ) = wLPQ(xm, ym, Rm) 7→ R, (4)

and the decision of the classifier is

sign

(∑
m

fm(wLPQ)− t

)
. (5)

The functions fm are learned using the GentleBoost approach in a similar manner to
Multi-block LBP face detector described in [61].

2.5 Evaluation

To allow for direct comparison between advanced systems presented above and the baseline
systems, the same performance measures as in D3.2 are used. The performance measure is
based on predicted locations of eye centers, pl and pr, and the corresponding ground truth
locations qland qr. The normalised maximum distance is then used as the performance
measure:

dmax =
max(|pl − ql|, |pr − qr|)

|ql − qr|
. (6)

The median and 90th percentile statistics are reported for each test image dataset as a
performance measure in addition to the number of missed detections.

2.6 Results

The results of evaluating the performance of the advanced face detectors as well as the
results for the baseline face detectors are shown in Table 1.

The results show that the performance of advanced face detectors is higher than that
of the baseline detectors. It should be noted that, as already reported in D3.2, the Viola-
Jones detector shows very good performance and in some of the datasets, it still gives the
best performance.

On the BANCA dataset, the Context-Based Face Detector results in the smallest num-
ber of missed faces, followed by the Local Phase Quantization Labels detector. Measured
by the detection accuracy, the Viola-Jones still performs best, however the difference to
LPQL detector is very small.

LPQL and VJ detector show very similar performance on the BioID and BioSign
datasets, and the number of missed faces by the CFD is somewhat higher. On the XM2VTS
dataset, LPQL detector shows better accuracy and fewer missed detections than the VJ
detector.
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Missed detections dmax
Med. 90%

BANCA
VJFD 189 (2.9%) 0.09 0.15
LBP-SVM 424 (6.5%) 0.24 2.2
c-MCT-C 154 (2.4%) 0.11 0.18
CFD 105 (1.7%) 0.19 0.28
LPQL 129 (2.1%) 0.092 0.16

XM2VTS
VJFD 12 (0.51%) 0.11 0.18
LBP-SVM 13 (0.55%) 0.17 0.39
c-MCT-C 71 (3%) 0.14 0.21
CFD 39 (1.7%) 0.17 0.23
LPQL 4 (0.17%) 0.097 0.16

BioID
VJFD 56 (3.7%) 0.092 0.15
LBP-SVM 345 (23%) 0.19 0.46
c-MCT-C 372 (24%) 0.14 0.25
CFD 535 (35%) 0.2 0.28
LPQL 26 (1.7%) 0.094 0.16

BioSign
VJFD 5 (0.91%) 0.094 0.14
LBP-SVM 57 (10%) 0.3 0.68
c-MCT-C 21 (3.8%) 0.11 0.17
CFD 60 (11%) 0.17 0.24
LPQL 5 (0.91%) 0.092 0.14

Table 1: Missed detections (i.e. images where no face was detected at all) and statistics
(specifically the median value and 90th percentile over the entire dataset) of dmax for the
eye points.
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3 Face Point Localisation

The aim of this module is to determine the exact locations of anatomical landmarks on
the surface of the face (e.g. eyes, nose, corners of the mouth). Having recovered these
locations, we can stretch the image of the face, as if it were printed on a sheet of rubber,
so that the feature locations are shifted to ‘normalized’ locations. This has shown to be
effective in adjusting for small rotations of the head and facial expression, thus potentially
making verification more robust.

This report presents the advanced system developed at UMAN that combines a local
model of shape, encapsulated by a small number of constraints between neighbouring
features, with a global shape model that enforces constraints between every pair of features
on the face [55]. The motivation behind this is to ensure that sensible candidates are
selected for the feature locations before regularization and to permit solutions that are
close to but not exacty within the shape space, allowing a better fit to the data.

3.1 Related work

Since a detailed review of existing methods was presented in D3.2 (Section 3.1), here we
refer again only the most relevant works. In particular, this method builds on the Active
Shape Model (ASM) [14] and Pictoral Structure Matching (PSM) [20] methodologies to
implement guided candidate selection before regularization.

Under the ASM paradigm, feature locations are first predicted in the image (e.g. based
on the output of a face detector). For each feature, nearby matches are searched within
a region around the predicted position, using a measure such as normalized correlation
to determine goodness of fit. Since it is not computationally feasible to evaluate the
probability of every set of candidates, only the best match for each feature is retained and
this set of matches regularized using a global shape model derived from PCA. This process
is iterated to convergence within a multi-scale framework.

In contrast, under the PSM paradigm every image location is considered a candidate as
opposed to just the best match for each feature. To find the most probable set of candidates,
the PSM uses an approximation to the global shape model that applies constraints only
between pairs of neighbouring points in a tree structure. As a result, dynamic programming
can be used to solve this Markov Random Field (MRF) and find the most probable set of
candidates efficiently.

The shortcoming of the ASM is that it does not account for spatial constraints when
selecting candidates such that one false match can corrupt all feature locations following
regularization (where error is distributed approximately evenly among all points). The
shortcoming of the PSM is that it uses only an approximation to the true probability
distribution over shape and therefore can permit more variability than desired.
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(a) (b) (c) (d)

Figure 3: Schematic of a two-level cascade search: (a) initialize; (b) find candidate points;
(c) select best set of candidates using MRF; (d) regularize using global model and either
iterate, go to next level or finish.

3.2 Advanced system

The method we describe in the following sections addresses these shortcomings by impos-
ing local constraints when selecting candidates before regularizing using the true shape
model (see Figure 3). Furthermore, this is implemented in a hierarchical (multi-scale)
framework [33] that is shown to improve performance. Currently, the approximate shape
distribution employed in the candidate selection process is defined by hand; however, recent
research has shown that this can be automated to improve performance further [26].

To be more specific, in our proposed technique we formulate the deformable object
matching as a global shape alignment problem combined with MRF-based local modeling.
We represent the model as a set of N points, X = {xi = (ui, vi)}. Given a query image, I,
our aim is then to find the optimal set, X∗, that maximizes the posterior,

p(X|I) ∝ p(I|X)p(X). (7)

Since the number of possible positions for each xi is very large, however, considering the
combinatorial number of all possible X is computationally intractable, even if we restrict
the set of candidates for each xi to some smaller number (e.g. by considering only locally
optimal candidates within a region of interest). By making certain assumptions of condi-
tional independence between features, however, we can approximate the joint prior with
an MRF that reduces the complexity of the problem such that an approximate solution,
Y, can be found efficiently. We can then regularize this approximation to give a solution
that is closer to the optimum, X∗.
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We summarize this approach as follows:

1. Initialize point locations, X∗0

2. For t = 1 . . . T

(a) Select most promising candidates, Yt = arg maxY p(I|Y)p(Y|X∗t−1)

(b) Regularize candidates in order to update points, X∗t = arg maxX p(X|Yt)

In the following sections, we describe these two steps in detail before outlining how
they are integrated within a hierarchical ‘cascade’ framework.

3.2.1 MRF-guided Candidate Selection

The first step involves finding the set of candidates, Yt, that maximizes the posterior,

p(Y|I) = p(I|Y)p(Y|X∗t−1). (8)

The first term in (8) is the likelihood that indicates how well the image data supports
the hypothesized candidates. It is common to assume that the patch, Qi, associated with
each candidate, yi, does not overlap with any other patch such that

p(I|Y) =
∏

p(Qi|yi) (9)

⇒ − log p(I|Y) = −
∑

log p(Qi|yi) =
∑

φ(yi) (10)

where φ(·) is an error function that indicates goodness of fit with the image data. In
our case, we use (negated) normalized correlation over the x- and y-gradient images for
accurate feature localization. To make inference practical, we restrict the set of candidates
considered for each yi to the ki lowest-scoring local minima of φ(yi) within a search region
of size ri.

The second term in (8) is the MRF prior, where the conditional dependence on X∗t−1

is introduced as a result of taking all measurements in a normalized (with respect to scale
and orientation) coordinate frame defined by the current estimate of X∗. By making
certain assumptions of conditional independence between points, we can approximate the
joint prior with a more sparsely connected graph. In the case where we consider only
dependencies between pairs of points,

p(Y|X∗t−1) ≈
∏

p(yi|yj,X∗t−1) (11)

⇒ − log p(Y|X∗t−1) ≈ −
∑

log p(yi|yj,X∗t−1) =
∑

ψ(yi,yj) (12)

where ψ(·) is an error function that indicates goodness of fit between a pair of candidates
corresponding to connected nodes in the graph (we have omitted the dependency on X∗t−1

for clarity). Typically, it is assumed that
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p(yi|yj) ∼ N(yi − yj;µij,Σij) (13)

where µ and Σ are the mean and covariance of the displacement distribution, learned from
training data. As a result, ψ(·) is the Mahalanobis distance from the mean displacement.
When combining global and local models, however, we instead model relationships between
residuals:

p(yi|yj,X∗) ∼ N((yi − x∗i )− (yj − x∗j);µij,Σij) (14)

∼ N((yi − yj)− (x∗i − x∗j);µij,Σij) (15)

In the case of a rigid shape model, this is equivalent to modelling the raw displacements.
When the shape is allowed to vary with respect to its coordinate frame, however, the
distance x∗i − x∗j varies and modifies the pairwise potential. In practice, we maximize (8)
by minimizing an energy function,

E =
∑

φ(yi) + λ
∑

ψ(yi,yj), (16)

where λ is a parameter that weights the influence of the prior and likelihood terms. This
energy function is minimized using inference algorithms such as dynamic programming (as
used in this work), belief propagation [15] or tree re-weighted message passing [31].

3.2.2 PCA-based Regularization

Having selected a set of candidate feature locations, we regularize them by projecting onto
a learned subspace of allowable solutions. Specifically, we align the set of 2N -dimensional
training vectors, X = (u1, . . . , uN , v1, . . . , vN)T, using Procrustes analysis and then learn
their underlying linear subspace via PCA [14]. As a result, any X can be described by a
(similarity, in this case) transformation, S, and a vector of shape coefficients, b:

X = S(X + Pb + ε) (17)

where X is the mean shape over the training data (in a normalized reference co-ordinate
frame), P is a set of orthogonal modes of variation, and ε accounts for residual displace-
ments associated with every feature point in the global shape. We then compute an optimal
value of X by projecting the selected candidates onto this subspace:

X∗t = St(X + PPT(S−1
t−1Yt −X)) (18)

where St is the estimated pose, S, at time t.
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3.2.3 Cascade Implementation

We extend the proposed model by applying the search algorithm in a hierarchical fashion,
first localizing a small subset of highly salient points which are then used as an initialization
for a more complex model with a greater number of points and shape modes. Importantly,
search parameters and the properties of the MRF are re-learned at each level such that the
correct distribution parameters (i.e. all µij and Σij) are employed rather than (incorrectly)
assuming constant values for all levels. Our motivation is to use the most salient points
to efficiently and accurately estimate the global pose (translation, scale and orientation)
of the object before estimating the locations of the remaining features with a more flexible
global shape model. Given the cascade of combined global and MRF-based local shape
models and a target image, the following algorithm (see also Figure 3) is used to localize
the object of interest using C levels:

1. Initialize point locations, X∗0,0, using locations that are fixed with respect to face
detector output.

2. For c = 1 . . . C

(a) Initialize X∗0,c by fitting the shape model at level c to X∗T c−1,c−1 via weighted
least-squares with a zero-mean Gaussian prior over shape parameters, b.

(b) Compute points X∗T c,c using the search algorithm with level-specific values for
number of iterations (T c), MRF parameters (λc and all µcij and Σc

ij) and search
parameters (kci and rci ). This involves searching in a radius rci around the current
estimate of each point position and finding the best kci candidates for each. An
MRF solver picks the best combination of candidates by minimising (16). These
are then used to update the global pose and shape parameters.

As an example, in experiments with models of the face we use a two-level cascade with 7
points in the first level and 22 points in the second (Figure 4). The feature finder is iterated
at each level until E reaches a minimum. Typically this involves only a few iterations,
though this can be modified by imposing hard limits on the number of iterations and by
modifying termination criteria.

3.2.4 Parameter Estimation

When learning each level of the cascade, we re-estimate the MRF parameters and search
parameters from training data to reflect the increasing accuracy of our estimated solution.
For example, due to high uncertainty in scale and orientation of the detected face (the
MRF potentials are invariant to global translations), the spread of pairwise potentials at
the first level is likely to be large. After applying one iteration of the search, however, we
would expect the error distribution between the updated points and their true values to
have a much smaller spread. Therefore, we re-estimate all µij and Σij at each level.

We also estimate appropriate values for all ri (i.e. the search radius for point i) at each
level because once we have accurately located a small subset of highly salient points at
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Figure 4: Models from two levels of hierarchy, containing 7 and 22 points, respectively.

one level, we should not need to search as far for these points at the next. Therefore, we
set ri to the maximum distance between the estimated and true location for point i over
the training set. In effect, this is a principled method of constraining points that we think
have already been accurately localized.

Similarly, we estimate ki (i.e. the number of local minima to consider for point i) by
noting the maximum rank among the considered candidates of the true candidate (i.e. the
closest candidate to the true location). In effect, we consider fewer candidates for highly
discriminant landmarks that result in few spurious local minima, maintaining efficiency in
a principled manner.

Finally, λ (i.e. the weighting between prior and likelihood) is estimated during the
training phase via an exhaustive search over a fixed (typically ∼50) number of values,
based on the mean error after applying the model to the training set of images.

3.2.5 Comparison with Baseline System

There are a number of differences between this system and the baseline system (a Con-
strained Local Model [16]). This system uses an alternative appearance model, normalized
gradient correlation; this has been shown to be more accurate than using grey values di-
rectly. Where the CLM uses a non-linear optimization in shape space directly, the advanced
system permits solutions that lie outside of shape space; this allows the model to fit more
closely to the data, improving accuracy further.

3.3 Evaluation

For a direct comparison with D3.2, we repeat evaluations that quantify the improvement
in eye location estimation using the dmax metric and present statistics for: (i) maximum
Euclidean distance from ground truth, dmax; (ii) the 90th percentile value of Euclidean
distance from ground truth, d90; and (iii) the mean Euclidean distance from ground truth,
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Figure 5: Examples taken from the 1052 images used to train the advanced system.

dmean =
1

n

n∑
i=1

|pi − qi|
|ql − qr|

, (19)

where n is the number of labelled points. As usual, all quantities are normalised with
respect to the inter-ocular distance, |ql − qr|, to provide scale invariance. Computing dmax
permits a direct comparison with the corresponding values for the eye points. The 90th
percentile value gives a similar measure but is slightly more robust in the presence of one or
two outliers. The mean Euclidean distance is a standard metric used in other studies [16].
Having computed each measure for every image in each dataset the cumulative frequency
curve is plotted (Figure 6), and the median value and 90th percentile value over all images
for each dataset is computed.

As in D3.2, the method is evaluated on four datasets: BANCA, XM2VTS, BioID and
BioSign. Again, the images used to train the advanced system are completely independent
of these datasets, consisting of different subjects imaged under different conditions (Fig-
ure 5). Feature localisation is initialised using the output of the baseline face detector from
UOULU (based on the Viola-Jones algorithm). Only this face detector was used to initial-
ize the feature localizer in the following analysis since it exhibited the best performance of
the baseline systems.

3.4 Results

The results of this evaluation are summarised in Table 2 and a specific example of a
cumulative frequency curve is shown in Figure 6. Due to the small number of ground truth
points provided in BANCA and BioSign (two and four, respectively), values for d90 are not
presented on these datasets. Similarly, the only labelled points in the BANCA dataset are
the eye points so dmax is not reproduced for the eyes in this dataset.

From Table 2, we see that the median values are reduced for both dmean over all points
and dmax over the eye points in almost all cases (median dmean remains unchaged for BioID).
In all but one case (BANCA) the 90th percentile of dmean is unchanged or reduced.

However, it can be seen that in several cases (e.g. BANCA and BioSign) the 90th
percentile increases for dmax over the eye points. This suggests a slightly higher rate of
failure in the advanced feature localizer that we believe to be a result of the fact that the
advanced system does not regularize the final output (whereas the baseline system does).
This has the effect that the model is allowed to fit to the data more closely, resulting in
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Eye points All points
dmax dmax d90 dmean

Med. 90% Med. 90% Med. 90% Med. 90%

BANCA
Baseline 0.069 0.14 - - - - 0.054 0.11
Advanced 0.059 0.21 - - - - 0.045 0.14

XM2VTS
Baseline 0.049 0.095 0.19 0.34 0.13 0.24 0.067 0.11
Advanced 0.025 0.11 0.19 0.38 0.12 0.26 0.059 0.11

BioID
Baseline 0.044 0.13 0.17 0.34 0.12 0.24 0.064 0.12
Advanced 0.026 0.13 0.21 0.39 0.13 0.26 0.064 0.12

BioSign
Baseline 0.041 0.12 0.067 0.23 - - 0.042 0.14
Advanced 0.024 0.18 0.06 0.26 - - 0.032 0.11

Table 2: Statistics (specifically the median value and 90th percentile over the entire dataset)
of dmax (both for the eyes and all points), d90 and dmean. The feature localizer was initialized
using the baseline Viola-Jones detector in all cases.

high accuracy when all features can be found. However, in cases where features can not be
localized using only image data the estimate is permitted to stray from the true solution.
Work is ongoing to detect these cases and account for them accordingly (e.g. by including
a ‘dummy’ point to substitute for missing data).
Figure 6 provides a more complete picture of the situation. We see that the 90th percentile
for dmax over the eye points is indeed higher for the advanced system. However, we also
see that the advanced system out-performs the baseline system in over 80% of cases.
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Figure 6: Cumulative distribution of dmax over the eye points for the BioSign dataset, using
the baseline Viola-Jones detector as initialization. Although the 90th percentile value is
greater for the advanced system compared to the baseline, the advanced system is superior
in 80% of cases.
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4 Face Verification

4.1 Related work

In an unconstrained environment, reliable face recognition is still difficult to achieve. In
particular, illumination is known to be the one of the most significant problems. For ex-
ample, ambient lighting varies greatly everyday, as well as between indoor and outdoor
environments. Moreover, directed light source may over-saturate a part of face image and
make another part being invisible because of cast and attached shadows. Therefore, pho-
tometric normalization and illumination robust features are important for face recognition.

Photometric normalization

Generally, conventional image processing transformations can be applied to reduce the
image to a more canonical form where the illumination variations can be suppressed. For
example, Gross & Brajovic [25] use an anisotropic smoothing iteration method to estimate
the luminance of face image, so that the reflectance of the face image can be extracted by
dividing the face intensity image with the luminance. Self Quotient Image model proposed
by Wang et al.[58] normalizes the illumination by dividing the image by a smoothed version
of itself. The advantage of these methods is that it does not involve any training images
to model the illumination variations. An overview of the photometric normalization can
be found in [62].

Illumination robust feature

In face recognition, researchers commonly use Gabor features which simulate the multi-
scale and multi-orientation nature of the receptive field. However, one of the shortcomings
of such feature is that the computation cost is high. Therefore, Local Binary Pattern
(LBP)[41], derived using ordinal contrast encoding, has been proposed. This coding reflects
the intrinsic nature of the face by capturing the mutual ordinal relationships between
neighbours at pixel level or region level, and thus provides a degree of response stability in
the presence of illumination changes. In order to be robust to face misalignment, a local
histogram of the LBP image [1] is generally used as a face descriptor. Alternatively, Heusch
et al. [27] and Ekenel et al. [19] implement DCT on LBP image for face recognition.

Recently, researchers suggested the use of phase information for face recognition because
the phase information is invariant to blur. For example, Zhang et al. [60] proposed global
and local Gabor phase pattern histogram for face recognition. Ahonen et al. [2] proposed
Local Phase Quantization Histogram (LPQH). More recently, Chan et al. [12] improved
the LPQH representation by extending it to the multiresolution framework [11] to enhance
its robustness to face misalignment.
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4.2 Local Frequency Band Gaussian Mixture Model

4.2.1 Overview

The Idiap advanced face verification is an extension of the GMM parts-based approach.
The GMM parts-based approach performs a spatial decomposition of the face, and so
Idiap’s advanced face verification extends this by performing a spatial and frequency de-
composition of the face. The frequency decomposition results in a separate image for each
frequency response, a GMM parts-based classifier is then derived for each separate im-
age. These classifiers are then combined using weighted summation with the weights being
derived using linear logistic regression.

4.2.2 General Text and Related Work

A recent advance in face verification has been the effective use of feature distribution
modelling techniques. The first effective method of performing face verification using
feature distribution modelling was in 2002 by Sanderson and Paliwal [50]; despite the
earlier work of Samaria et al. [48, 49] and Nefian and Hayes [40] who used HMMs.

The GMM Parts-Based approach, introduced by Sanderson and Paliwal, has been em-
ployed by several researchers [10, 34]. This method consists of dividing the face into blocks,
or parts, and to then consider each block separately. The distribution of these parts is then
modelled using Gaussian Mixture Modelling. This technique divides the face into blocks,
or parts, and treats each block as a separate observation of the same underlying signal
(the face). Feature vectors are obtained from each block by applying the Discrete Cosine
Transform and the distribution of these feature vectors is then modelled using GMMs.
Several advances have been made upon this technique, for instance, Cardinaux et al. [10]
proposed the use of background model adaptation while Lucey and Chen [34] examined a
method to retain part of the structure of the face utilising the Parts-Based framework as
well as proposing a relevance based adaptation.

Feature Extraction

The feature extraction algorithm is described by the following steps. The face is normalised,
registered and cropped. This cropped and normalised face is divided into blocks (parts)
and from each block (part) a feature vector is obtained. Each feature vector is treated
as a separate observation of the same underlying signal (in this case the face) and the
distribution of the feature vectors is modelled using GMMs. This process is illustrated in
Figure 7.

The feature vectors from each block are obtained by applying the DCT. Even advanced
feature extraction methods such as the DCTmod2 method [50] use the DCT as their basis
feature vector; the DCTmod2 feature vectors incorporate spatial information within the
feature vector by using the deltas from neighbouring blocks. The advantage of using only
DCT feature vectors is that each DCT coefficient can be considered to be a frequency
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Figure 7: A flow chart of describing the extraction of feature vectors from the face image
for Parts-Based approaches.

response from the image (or block). This property is exploited by the JPEG standard [43]
where the coefficients are ranked in ascending order of their frequency.

Feature Distribution Modelling

Feature distribution modelling is achieved by performing background model adaptation
of GMMs [10, 34]. The use of background model adaptation is not new to the field of
biometric authentication in fact it is commonly used in the field of speaker verification
[18]. Background model adaptation first trains a world (background) model Ωworld from a
set of faces and then derives the client model for the ith client Ωi

client by adapting the world
model to match the observations of the client.

Two common methods of performing adaptation are mean only adaptation [44] and full
adaptation [32]. Mean only adaptation is often used when there are few observations avail-
able because adapting the means of each mixture component requires fewer observations
to derive a useful approximation. Full adaptation is used when there are sufficient obser-
vations to adapt all the parameters of each mode. Mean only adaptation is the method
chosen for this work as it requires fewer observations to perform adaptation, this is the
same adaptation method employed by Cardinaux et al. [10].

Verification

A description of the Parts-Based approach is not complete without defining how an obser-
vation is verified. To verify an observation, x, it is scored against both the client (Ωi

client)
and world (Ωmodel) model, this is true even for methods that do not perform background
model adaptation [50]. The two models, Ωi

client and Ωworld, produce a log-likelihood score
which is then combined using the log-likelihood ratio (LLR),

h(x) = ln(p(x | Ωi
client))− ln(p(x | Ωworld)), (20)

to produce a single score. This score is used to assign the observation to the world class
of faces (not the client) or the client class of faces (it is the client) and consequently a
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threshold τ has to be applied to the score h(x) to declare (verify) that x matches to the
ith client model Ωi

client when h(x) ≥ τ .

4.2.3 Local Frequency Band Approach

The proposed method is to divide the face into separate blocks and to then decompose these
blocks in the frequency domain. This can be achieved by treating the frequency response
from each block separately to form frequency sub-images. This method is applied to the
DCT feature vectors obtained by applying the Parts-Based approach. Each coefficient can
be considered independently because each coefficient of the DCT is orthogonal.

The technique is summarised as follows: (1) the face is cropped and normalised to a
68× 68 image, (2) this image is divided into 8× 8 blocks with an overlap of 4 pixels in the
horizontal and vertical axes, (3) the DCT coefficients from each block are separated and
used to form their own frequency sub-image, and (4) a feature vector is formed by taking
a block from the frequency sub-image and vectorising the block. The way in which the
frequency sub-images are formed is demonstrated in Figure 8.

Figure 8: The figure above describes how the face can be decomposed into separate fre-
quency sub-bands (sub-images).

Motivation

To illustrate the differences between the frequency decomposition approach and the full
Parts-Based approach the following statements are made. For the Parts-Based approach
it is often stated that the face is broken into blocks and the distribution of each block is
then modelled [50, 34], however, another stricter statement would be that the frequency
information from each block is simultaneously modelled since each dimension of the feature
vector represents a different sampling frequency of the DCT. By contrast the frequency
decomposition approach separates the frequency information from each local block and
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forms a feature vector from the resulting frequency sub-images. Many feature vectors are
formed from a frequency sub-image and then modelled using background model adaptation,
thus, the image is decomposed in both the spatial domain and the frequency domain.

A side effect of working on the frequency sub-images is that the feature vectors formed
from these sub-images will retain extra spatial information. This is because the Parts-
Based approach obtains an observation from a block, however, the frequency decomposition
approach gets the response from each block and then forms a feature vector using responses
from several blocks. This means that the feature vectors formed from the frequency sub-
images will actually span several blocks when compared to the Parts-Based approach, for
instance the feature vector could be formed from a frequency sub-image by spanning an
entire row or column of the image.

Feature Extraction

Three methods of forming a feature vector from the frequency sub-images are examined,
these are to form a feature vector: (1) across the row of the frequency sub-image (row-based
approach), (2) across the column of the frequency sub-image (column-based approach), or
(3) from a 4 × 4 block of the frequency sub-image which is then vectorised (block-based
approach). The choice of a 68 × 68 image results in frequency sub-images of size 16 × 16
which allows for the fair comparison of the three different feature extraction methods as
each method will result in feature vectors of dimension D = 16 with o = 16 observations
from each frequency sub-image. A visualisation of these three methods is provided in
Figure 9.

Classifier

Having obtained these feature vectors a classifier is formed using the same background
model adaptation approach that was used for the Parts-Based approach [10]. Each local
frequency sub-band (k) produces a separate classifier (Ck) and these classifiers are then
combined using weighted linear score fusion, Cw sum =

∑K
k=1 βkCk. This fusion technique

is used as it was shown by Kittler et al. [30] that the sum rule (which is what weighted
linear classifier score fusion abstracts to be) is robust to estimation errors. The weights,
βk, for the classifiers are derived using an implementation of linear logistic regression [6].

4.3 Multi-scale Local Binary Pattern Histogram Discriminant
Analysis with Score Normalization for robust face recogni-
tion (PS MLBPHLDA tnorm)

The advance system from University of Surrey first normalizes the face image to a canonical
form in which the illumination variations are suppressed. Then the image is represented by
the multi-scale local binary pattern histogram discriminative descriptor. This method is
optimised for small foot print computer platforms and exhaused by innovative postprocess-
ing. Accordingly, the similarity score of each query image is normalized by the test norm.
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(a)

(b)

(c)

Figure 9: Forming the feature vectors (a) along the row of the frequency sub-image, (b)
along the columns of the frequency sub-image and (c) using blocks of the frequency sub-
image.

For a sequence of frames in a video, the final similarity score is the average of frame-based
similarities. A brief description of this system is given in following.

4.3.1 Preprocessing sequence approach

In this report, a preprocessing method [54] based on a series of steps presented in Figure
10, designed to reduce the effects of illumination variation, local shadowing and highlights,
while still keeping the essential visual appearance information for use in recognition is used.

This process first applies a gamma correction, which is a nonlinear gray level transfor-
mation replacing the pixel value in I with Iγ where γ > 0. The objective of this process
is to enhance the local dynamic range of the image in dark and shadow regions, while
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Figure 10: The block diagram of the Preprocessing sequence approach.

suppressing the bright region. In our work, γ is set to 0.2. Then the image is processed by
a band-pass filter that is the difference of Gaussian filtering, shown in Equ 21, to remove
the influence of intensity gradients such as shading effects, while homomorphic filtering
uses the high-pass filter.

DoG = (2π)−
1
2 [σ−1

1 e
−x

2+y2

(2σ1)2 − σ−1
2 e

−x
2+y2

(2σ2)2 ] (21)

The reason of choosing the band-pass filter is that it not only suppresses low frequency
information caused by illumination gradient, but also reduces the high frequency noise due
to aliasing artifacts. In our work, σ1 is set to 1 and σ2 is set 2. Then, the two stage contrast
equalisation presented in Equ 22 and Equ 23 is employed to further re-normalise the image
intensities and standardise the overall contrast.

J(x, y) =
I(x, y)

(mean(|I(x, y)|a)) 1
a

(22)

Ĵ(x, y) =
J(x, y)

(mean(min(τ, |J(x, y)|)a)) 1
a

(23)

a, set to 0.1, is used to reduces the influence of large values and τ ,set to 10, is a threshold
used to truncate large values after the first stage of normalisation. Lastly, a hyperbolic
tangent function in Equ 24 is applied to suppress the extreme values and limit the pixel
values in normalised image,̂I, to a range between −τ and τ

Î(x, y) = τtanh(
Ĵ(x, y)

τ
) (24)

4.3.2 Multi-scale Local Binary Pattern Histogram Discriminant Descriptor

The multi-scale local binary pattern representation with Linear Discriminant Analysis,
LDA [11] is used in this report. Local binary pattern operators at R scales are first applied
to a face image. This generates a grey level code for each pixel at every resolution. The
resulting LBP images are cropped to the same size and divided into non-overlapping sub-
regions, M0, M1,..MJ−1. The regional pattern histogram for each scale is computed based
on Equ (25)
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hP,r,j(i) =
∑

x′,y′∈Mj

B(LBPP,r(x
′, y′) = i) | i ∈ [0, L− 1], r ∈ [1, R], j ∈ [0, J − 1],

B(v)

{
1 when v is true

0 otherwise

(25)

B(v) is a Boolean indicator. The set of histograms computed at different scales for
each region, Mj, provides regional information. L is the number of histogram bins. By
concatenating these histograms into a single vector, we obtain the final multiresolution
regional face descriptor presented in Equ(26)

fj = [hP,1,j,hP,2,j, · · · ,hP,R,j] (26)

This regional facial descriptor can be used to measure the face similarity by fusing the
scores of local similarity of the corresponding regional histograms of the pair of images
being compared. However, by directly applying the similarity measurement to the multi-
scale LBP histogram [41], the performance will be compromised. The reason is that this
histogram is of high dimensionality and contains redundant information. By adopting the
idea from [4], the dimension of the descriptor can be reduced by employing the principal
component analysis (PCA) before LDA. PCA is used to extract the statistically indepen-
dent information as a prerequisite for LDA to derive discriminative facial features. Thus a
regional discriminative facial descriptor, dj, is defined by projecting the histogram infor-
mation, fj, into LDA space Wlda

j , i.e.

dj = (Wlda
j )T fj (27)

This discriminative descriptor, dj, gives 4 different levels of locality: 1) the local binary
patterns contributing to the histogram contain information at the pixel level, 2) the pat-
terns at each scale are summed over a small region to provide information at a regional level,
3) the regional histograms at different scales are concatenated to produce multiresolution
information, 4) the global description of face is established by concatenating the regional
discriminative facial descriptors. Our results show that combining Multi-scale Local Bi-
nary Pattern Histogram with LDA is more robust in the presence of face mis-alignment
and a uncontrolled environment.

4.3.3 Similarity measurement

After projecting the regional histogram into LDA space, the similarity measurement be-
tween query image In and the average of m template images, Sim(I, In) is obtained by
taking the sum of the normalised correlation between the average of the regional discrimi-
native descriptor dj of the template images, and the regional discriminative descriptor d′j
of probe image respectively which is presented below.

Sim(I, In) =
J−1∑
j=0

djd
′
j

‖dj‖‖d′j‖
(28)
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4.3.4 Score Normalisation in each frame

In verification, the similarity score is degraded by many factors, such as a change of pose,
illumination, occlusion and the characteristic of different persons enrolled in the system,
and it will degrade the system performance as a predefined threshold for making a decision
to accept or reject the claimed identity is chosen in an off-line training stage. Interest-
ingly, although client specific thresholds can achieve a better adaptation to class specific
distributions, as exemplified by Yang et al.’s Z-norm [59]. These methods are not effective
when imaging conditions such pose, environment and sensor change. To cope with these
problems, we propose to postprocess the similarity scores by test-normalisation(T-norm)[3]
because it removes the score variation caused by condition changes. The T-norm is defined
as:

Norm(I, In) =
Sim(I, In)− µC

σC
(29)

where the parameters, µC and σC , are the mean and standard deviation of the distribution
of the similarity between a cohort impostor templates and an incoming image. Thus,
T-norm is a test dependent approach. In this work, the cohort impostor templates are
all the subject templates in the enrolment set except the template(s) for the claimed
subject during testing and this is called Gallery norm. Lui et al. [35] has recently proposed
nonlinear T-norm which is mapping the normalised score to the sigmoid function to improve
the accuracy of the face verification and our simple T-norm results also show that the
performance of our proposed methods mentioned in [12] can be boosted up by over 70%.

4.4 Evaluation

To be consistent with the evaluation of the baseline algorithms reported in D3.2, BANCA
video with P protocol is used to test the performance of automated face verification and
the Detection Error Trade-off (DET) curve is used to compare the performance.

Experiment setup of PS MLBPHLDA tnorm

In this experiment, the face images are using the IDIAP baseline face detector called
a Cascaded Boosted LBP-based face detector[22]. In the enrolment stage, the average
face descriptor is extracted from the video as a subject template for the histogram-based
representation, while a set of face descriptors derived from several videos is used to create
a subject template for the LDA representation. In the test stage, the face descriptor in
each frame is extracted and compared with the enrolled subject templates to derive the
similarity measurement. The similarity of video is the average of the similarities computed
for each frame.
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4.5 Results

A comparison of all systems using DET and Expected Performance Curves are shown in
Figures 12 and 13, respectively. It clearly shows that both advanced systems are better
than those baseline systems reported in D3.2. In contrast to IDIAP advanced system,
PS MLBPHLDA system performance without score normalisation is significantly better.
In this report, the best method of the advanced systems, achieved 4% in average of EER of
g1 and g2 at β = 1, is PS MLBPHLDA tnorm which is at least 4 times better than others.
The main reason for the superior performance is the photometric normalisation and the
multiresolution framework with the test normalisation providing the robust solution for the
change of conditions. In [12], PS MLBPHLDA tnorm was also tested on BANCA image
database with P protocols and got 2.11% in average of HTER of g1 and g2 at β = 1. The
performance in video database is worse than that in image database because most of the
images from video cropped by the face detector, shown in 11, are misaligned. In other
words, the performance of PS MLBPHLDA tnorm can further be improved by replacing
more powerful face detection and/or alignment methods.

Figure 11: Images from BANCA video cropped by the face detector [22] under Controlled,
Degraded and Adverse Scenarios, presented in row 1, 2 and 3 repectively
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Figure 12: The average of DET curves of the evaluated systems computed on the g1 and
g2 of the BANCA video according to the P protocol.
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Figure 13: The average of DET curves of the evaluated systems computed on the g1 and
g2 of the BANCA video according to the P protocol.
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5 Speaker Verification

Both advanced speaker recognition systems from LIA and BUT were based on Factor Anal-
ysis (FA), which is nowadays the core technique of all state-of-the-art speaker recognition
systems. The following section 5.1 introduces Joint FA from the theoretical point of view.
Sections 5.2 and 5.3 then present the details of implementation of LIA and BUT verifi-
cation systems. Section 5.4 summarizes the results obtained on BANCA and discusses
them.

5.1 Joint Factor Analysis

This section is based on the introductory JFA chapter from JHU 2008 report [7]. Joint
factor analysis (JFA) is a two-level generative model of how different speakers produce
speech and how their (remotely) observed speech may differ on different occasions (or
sessions). The hidden deep level is the joint factor analysis part that models the generation
of speaker-and-session-dependent GMMs. The output level is the GMM generated by the
hidden level, which in turn generates the sequence of feature vectors of a given session.

The GMM part needs no further introduction. As is customary in speaker recognition,
all of the GMMs differ only in the mean vectors of the components [45]. The component
weights and the variances are the same for all speakers and sessions. The session-dependent
GMM component means are modeled as:

Mki = mk + Ukxi + Vkys(i) + Dk~z ks(i) (30)

Here the indices are: k for the GMM component; i for the session; and s(i) for the speaker
in session i. The system hyperparameters are:

mk, speaker-and-session-independent mean vector;
Uk, rectangular channel-factor loading matrix ;
Vk, rectangular speaker-factor loading matrix ;
Dk, diagonal speaker-residual scaling matrix ;

The hidden speaker and session variables are:
xi, session-dependent vector of channel-factors ;
ys, speaker-dependent vector of speaker-factors ;
~z ks, speaker-and-component-dependent vector of speaker-residuals.

Standard normal distributions are used as a prior for all of these hidden variables.

5.1.1 Supervector model

We can summarize our JFA model by stacking component-dependent hyperparameters into
larger matrices:

V =

 V1

V2
...

 , U =

 U1

U2
...

 , D =

 D1 0 · · ·
0 D2 · · ·
...

...
. . .

 (31)
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We refer to V as the eigenvoice matrix ; to U as the eigenchannel matrix ; and D as the
residual scaling matrix. By also stacking component-dependent vectors into larger vectors,
which we shall refer to as supervectors :

Mi =

 M1i

M2i
...

 m =

 m1

m2
...

 zs =

 ~z 1s

~z 2s
...

 , (32)

the JFA model can be expressed succinctly in supervector form as

Mi = m + Uxi + Vys(i) + Dzs(i) (33)

5.1.2 Generative ML training

In this section we give a rough summary of how the hyperparameters of a JFA system may
be trained. The steps are as follows:

1. Train the universal background model (UBM) on a large selection of development
data, possibly on all of it. The UBM is a GMM trained by maximum likelihood (ML),
via appropriate initialization followed by multiple iterations of the EM algorithm.
The UBM essentially provides the following functionality:

• Its component means are a good choice to use for the speaker-and-session-
independent supervector m; and its variances and weights are a good choice
to use for all speaker-and-session-dependent GMM variances and weights.

• It parametrizes a computationally efficient approximation to all GMM log-
likelihoods, used during training and operation of the JFA system. Specifically,
all GMM log-likelihoods are approximated by the EM-algorithm auxiliary func-
tion [39], often denoted ‘Q-function’ in the literature. Informally, given some
GMM, we approximate log p(data|GMM) ≈ Q(UBM,GMM, data). All further
processing makes use of this approximation.

2. Train the eigenvoice matrix V with an EM algorithm designed to optimize a max-
imum likelihood criterion over a database of as many speakers as possible. Pool
multiple sessions per speaker, to attenuate intersession variation.

3. Given V as obtained above and with D temporarily set to zero, train the eigenchannel
matrix U with a similar EM algorithm, over a database that has multiple sessions
per speaker. This data should be rich in channel variation. The Mixer Databases are
very good for this purpose.

4. Finally (and optionally), train D, with a similar EM-algorithm, on some held-out
data.
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5.1.3 JFA operation

When used operationally, the steps performed by a JFA system to score a given trial,
composed of one train and one test segment, can be described as follows:

1. Use the JFA model (33) and the train segment to make a MAP1 point-estimate of
the target speaker model. That is, the hidden variables x, y, and (optionally) z are
jointly estimated. Then x is discarded and M is denoted the target speaker model.
Note that this model now has a unspecified parameter x, because its value in a test
segment will be different from its value in the train segment. This uncertainty is
modeled by the standard normal prior over x.

2. Compute an approximation to the log-likelihood of the target speaker model, given
the test segment data, log p(test segment|M). Good approximations to use here
include [24]:

• The Q-function approximation, where the unknown nuisance variable x is inte-
grated out, see [28], equation 19.

• A linear simplification to the Q-function, where a MAP point-estimate of x is
used. For computational efficiency x is estimated relative to the UBM, i.e. with
y = 0 and z = 0.

3. Compute the same approximation to the UBM log-likelihood, i.e. with y = 0 and
z = 0. The raw score (or raw log-likelihood-ratio) is now the difference between the
target model log-likelihood and the UBM log-likelihood.

4. Normalize the raw score by applying the following in order: (i) divide by the number
of test frames, (ii) z-norm, (iii) t-norm.

5.1.4 Gender dependency

JFA systems benefit from gender-dependent components:

• Some, like the CRIM system at NIST SRE’08, are trained from the UBM onwards
on gender-dependent data. This gives independent male and female systems, which
can be used respectively for all-male or all-female trials.

• Others, like the BUT system at NIST SRE’08, are trained on mixed data, but then
use gender-dependent ZT-norm cohorts.

1MAP denotes maximum a-posteriori. The likelihood used here is the Q-function approximation and
the prior is the standard normal distributions over the hidden variables.
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5.2 LIA advanced system

The LIA advanced system is based on the Factor Analysis model decomposition. It consists
in an estimation of two components: speaker and channel. It corresponds to the same
approach than JFA without the eigen-voices concept. It is presented in 5.2.3.

Our advanced system is based on the system used for the NIST SRE 2008 evaluation
campaign. A full description of LIA system can be found in [37].

5.2.1 Feature extraction, frame selection

The LIA feature vector is composed of 50 coefficients including 19 linear frequency cepstral
coefficients (LFCC), their first derivative, their 11 first second derivatives and the delta-
energy. A 24 filter bank coefficients is first computed over 20ms Hamming windowed frames
with a shift of 10ms. The bandwidth is limited to the 300-3400Hz range.

Energy coefficients are normalized using a mean removal and a variance reduction.
After, they are used to train a three-components GMM, which is used to select high-level
energy frames (only about 30% of the frames are kept during NIST SRE 2006 and 2008
evaluations). Once the speech segments of a signal are selected, a final process is applied
in order to refine the speech segmentation:

1. overlapped speech segments between both sides of a conversation are removed,

2. morphological rules are applied on speech segments to avoid too short ones, adding
or removing some speech frames.

Finally, the parameter vectors are normalized to fit a 0-mean and 1-variance distribu-
tion. The mean and variance estimators used for normalization are computed file by file
using previously selected frames.

5.2.2 Universal background models

Two Universal Background Models (UBM) are used: one for males and the second for fe-
males. These two GMMs are trained on Fisher English Training Speech Part 1 (LDC:LDC2004S13),
and consists of about 20 millions of speech frames (about 55h).

The gender-dependent UBM are composed of 512 Gaussian components with diagonal
covariance matrices. The UBM parameters estimation is done it two passes:

• first, several pass of EM algorithm are done using only 10% of frames selected ran-
domly at each new iteration;

• the two last iterations are made with the entire signal.

During all the process, a variance flooring is applied.
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5.2.3 Factor analysis

The standard JFA, presented in 5.1, assumes that channel factor and speaker factor can
be separated. Our system is based on the Lattent Factor Analysis (LFA) and considers
only the channel factor (corresponding to the U matrix in equation 30). In this case, the
LFA models can be written as:

Mki = mk + Ukxi + Dk~z ks(i) (34)

For the advanced system, we work on the U matrix training/adaptation. In the baseline
system this matrix was the one trained for NIST SRE 2008 evaluation. Regarding to [38],
we worked on the general statistic to train the lattent variable of the U matrix. These are
the zero order and first order statistics with respect to the UBM model.

Let N(h,s) be the vector containing the zero order speaker and session dependent statis-
tics:

N(h,s)[g] =
∑
t∈(h,s)

γg(t), (35)

where γg(t) is the a posteriori probability of Gaussian g for the observation t. In the
equation,

∑
t∈(h,s) means the sum over all frames belonging the session h of speaker s.

Let X(h,s) be the vector containing the first order speaker and session dependent statis-
tics. The dimensions of X(h,s) is equal to M ×D:

{X(h,s)}[g] =
∑
t∈(h,s)

γg(t) · t (36)

A good estimation of the U matrix parameters needs a large amount of data from
several speakers and several sessions. It is not easy to respect theses constraints especially
in the case of small database as BANCA. That’s why we introduce this method to adapt
the U matrix parameters to a specific context from a matrix train in another one.

Working in the statistic level, we now define these parameters as:

N(h,s)[g]adv = α×N(h,s)[g]NIST + (1− α)×N(h,s)[g]BANCA (37)

and

{X(h,s)}[g]adv = α× {X(h,s)}[g]NIST + (1− α)× {X(h,s)}[g]BANCA (38)

where α can be set into the range [0; 1].
Then the U matrix parameters can be estimated as described in [38].

5.2.4 Normalization

In order to have a simpler system and as there is not enought data into BANCA database,
we decided to not perform any score normalization. But if needed, the system can still be
improved performing a score normalization (Tnorm, Znorm, ZTnorm, . . . ).
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5.2.5 Results

LIA results for NIST 20082 data are presented in Tables 3. During the NIST SRE 2008,
LIA concentrated on the task Det6, Det7 and Det8.

det6 det7 det8
DCF 4.28 1.64 1.50
EER 7.66% 3.34% 2.79%

Table 3: Summary of LIA results on NIST SRE 2008 evaluation campaign. The first line
contains DCF results and the second line the EER.

5.3 BUT advanced system

BUT advanced system is based on its submission for NIST 2008 SRE evaluation – a full
JFA system. This section is based on our consolidated system description presented at
Interspeech 2009 [8].

5.3.1 Feature extraction, segmentation

Features are derived with classical analysis window of 20 ms with shift of 10 ms: short time
gaussianized MFCC 19 + energy augmented with their delta and double delta coefficients,
making 60 dimensional feature vector. The system is therefore called “FA-MFCC20⇒60”.
Short-time gaussianization uses a window of 300 frames (3 sec).

Speech/silence segmentation is performed by our Hungarian phone recognizer [51],
where all phoneme classes are linked to ’speech’ class.

5.3.2 Universal background models

Two universal background models (UBMs) are trained on
Switchboard II Phases 2 and 3, Switchboard Cellular Parts 1 and 2, and NIST SRE
2004 and 2005 telephone data. In total, there were 16307 recordings (574 hours) from
1307 female speakers and 13229 recordings (442 hours) from 1011 male speakers. Two
gender-dependent UBMs with 2048 Gaussians were trained. We used 20 iterations of EM
algorithm for up to 256 Gaussians and 25 iterations for 512 and more. No variance flooring
was used.

5.3.3 Joint factor analysis

The Joint factor analysis (JFA) system closely follows the description of “Large Factor
Analysis model” in Patrick Kenny’s paper [29] and in section 5.1.

2http://www.itl.nist.gov/iad/mig/tests/sre/2008/
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Two gender-dependent UBMs are used to collect zero and first order statistic for train-
ing two gender-dependent JFA systems. The mean m of JFA equation was set to the
UBM mean and, in contrary to [29], it was never re-trained. The super-vector of variances
(diagonal of Σ from [29]) is also set to UBM values and not re-trained in the training of
JFA.

First, for each JFA system, 300 eigenvoices are trained on the same data as UBM, al-
though only speakers with more than 8 recordings were considered here. For the estimated
eigenvoices, MAP estimates of speaker factors are obtained and fixed for the following
training of eigenchannels. A set of 100 eigenchannels is trained on NIST SRE 2004 and
2005 telephone data (5029 and 4187 recordings of 376 females and 294 males speaker re-
spectively). Another set of 100 eigenchannels is trained on SRE 2005 auxiliary microphone
data (1619 and 1322 recordings of 52 females and 45 males speaker respectively). Both
sets are concatenated. In contrary to Kenny’s paper [29], the diagonal matrix describing
the remaining speaker super-vector variability (matrix D in JFA equation) is estimated on
top of eigenvoices and eigenchannels. A disjoint set of NIST SRE 2004 speakers with less
than 8 recordings (277 and 82 recordings of 44 females and 13 males speaker respectively)
is used for this purpose and MAP estimates of speaker and channel factors are fixed for es-
timating the diagonal matrix. To obtain speaker models, MAP estimates of all the factors
are estimated on enrollment segments using Gauss-Seidel-like iterative method [57]. Unlike
Kenny [29], we use only MAP estimates (not posterior distribution) of channel factors and
standard 10-best Expected Log Likelihood Ratio for scoring.

5.3.4 Normalization

Scores are normalized using zt-norm. We used 221 females and 149 males z-norm segments,
200 females and 159 males t-norm models, together 729 segments derived each from one
speaker of NIST SRE 2004 and 2005 data. Experiments have shown that in contrary to
simple eigenchannel adaptation where we obtained only small improvement from zt-norm,
for JFA system, gender-dependent zt-norm is crucial for good performance.

5.3.5 Results

The results for NIST 20063 and 20084 data are summarized in Tables 4 and 5. For NIST
2006 data, the condition that corresponds the most to MOBIO channels is “mic-mic”, while
for NIST 2008 data, we should look to det2 “interview speech from the same microphone
type in training and test” for comparable results. Note however, that NIST enrollment
and test sessions contain much more data (around 2.5 minutes) than BANCA utterances
(around 10 seconds).

3http://www.itl.nist.gov/iad/mig/tests/sre/2006/
4http://www.itl.nist.gov/iad/mig/tests/sre/2008/
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system det1 - all trials
phn-phn phn-mic mic-phn mic-mic

FA-MFCC20⇒60 1.34 1.27 1.71 2.89
2.60 2.86 4.03 5.20

Table 4: Summary of BUT results on 2006 data. The first line contains 100×DCF (decision
cost function), the second line EER in [%].

system-metric det1 det2 det3 det4 det5 det6 det7 det8
FA-MFCC20⇒60 4.01 1.00 3.97 3.00 3.09 2.95 1.40 1.38

8.11 2.73 8.00 7.50 7.13 5.71 2.85 2.79

Table 5: Summary of BUT results on 2008 data. The first line contains 100×DCF, the
second line EER in [%].

5.4 Tests on BANCA

The experiments with target data were performed on the BANCA database using the
experimental protocol described in [36]. The results are directly comparable to the ones
presented with the baseline systems in [5].

5.4.1 LIA tests

The UBM training requires a lot of data not available in the BANCA database, that’s why
the UBM trained for NIST SRE 2008 was used. More precisely, the two universal models
are used: one for male and one for female. The UBM to use is automatically chosen thanks
to a gender detection system.

As BANCA is composed of two data set, when the tests are performed on G1 set, the
U is adapted using the data available into G2; and vice-versa. The results are presented
into Table 6. With an EER lower than 3.5%, we can noticed that our results are close to
these obtained during NIST SRE 2008 campaign.

5.4.2 BUT tests

As BANCA does not offer sufficient number of speaker for the training of UBM and/or
speaker or channel factors, the NIST 2008 system, as it was described in section 5.3 was
used, with the following differences:

1. the system was gender-independent (one UBM was used).

G1 subset G2 subset

EER 3.32% 3.42%

Table 6: LIA results on BANCA. No normalization are performed. The numbers are equal
error rates (EER).
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G1 subset G2 subset

ZT-norm 7.10 5.33
No ZT-norm 6.61 7.49

Mean ZT-norm 3.65 4.93

Table 7: BUT results on BANCA with different score normalizations. The numbers are
equal error rates (EER).

N EER EER-meanzt

none 5.53 -
5 13.04 7.29
10 8.80 6.93
5 6.76 6.60
20 5.50 6.24
30 4.26 5.97
40 3.97 5.88
50 3.77 5.81
70 3.40 5.81
100 3.11 5.74
150 3.03 5.67

Table 8: Dependence of system performance on the number of speakers in z- and t-norm
cohorts. N is the number of speakers per gender and normalization cohort, so that the
real number for an experiment is N × 4. The first column with results stands for standard
zt-norm while in the second, only mean normalization was done.

2. the zt-norm speakers were selected from the opposite part of the database (from G2
for G1 and vice-versa).

The first results (see the 1st line of Table 7) were not satisfactory, therefore we started to
investigate the possible causes of the problem.

As we have already pointed out in [8], the normalization is crucial for correct perfor-
mance of any JFA-based system. Note that BUT system uses a gender-dependent nor-
malization. We have therefore looked at the numbers of available z/t-norm speakers. For
BANCA, where each part of the database includes only 26 speakers, this number is only
6: we need to separate genders and also z-norm and t-norm speakers, which makes up
6× 2× 2 = 24 speakers. In our NIST experiments, the numbers of speakers were substan-
tially higher, in the order of hundreds. We have therefore investigated in the importance
of number of z- and t-norm speakers on NIST 2006 data.

The results in Table 8 reveal that using only a small number of speakers not only does
not help, but on contrary, can hurt system performance. We have therefore run the system
without any normalization and found mixed results – improved performance on G1 subset
of BANCA, but a hit on part G2, see the 2nd line in Table 7.

MOBIO D3.4: page 48 of 56



MOBIO [214324] D3.4: Advanced Algorithms for Unimodal Authentication

Finally, we hypothesized that the normalization can still be beneficial if only the mean
of impostor distribution is estimated and subtracted, and no division by the standard
deviation is performed, as this estimation can be more sensitive to the limited amount
of speakers. While testing this technique on NIST data (right column in Table 8), we
have found that this technique under-performs the classical zt-normalization for usual
high numbers of speaker, but that it is less sensitive for limited amounts of normalization
speakers. The final result obtained on BANCA (3rd line in Table 7) clearly show superior
performance of mean-zt-norm on this task.

5.4.3 Conclusions

Both advanced systems are based on Factor Analysis. The LIA one is based on the Lattent
Factor Analysis which assumed that it’s not possible to extract the speaker channel which
is not separable from the rest of the speech signal. BUT system, for its part, is based on
the Joint Factor Analysis.

It is important to notice that whatever the Factor Analysis version used, both out-
perform the baseline system. JFA based system seems to require a score normalization
post-processing but a particular attention needs to be paid. Mean-zt-norm brought im-
provement for limited number of speakers in the z- and t-norm cohorts, but we are aware
of ad-hoc nature of this approach.
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6 Summary

This document presented the advanced unimodal algorithms for face and speech authenti-
cation developed in the MOBIO project. The developed algorithms were compared against
each other and against the baseline systems described in D3.2 [5].

In face detection and face point localisation, the performance of the baseline algo-
rithms was already high. Some improvement over the baseline methods in performance
was achieved as shown by the experiments. Still, there was no method that would clearly
outperform the others in all the cases.

In face verification, clear improvement over the baseline algorithms were achieved by
the advanced verification methods. In particular, the PS MLBPHLDA tnorm showed very
good verification performance, demonstrating the importance of score normalization in
the authentication task. This method achieved a half total error rate of 2.11 % on the P
protocol of BANCA dataset, which is among the best values reported for this dataset.

Both the advanced speech verification systems were using the Factor Analysis technique
to model the variability in speech samples. A clear improvement over the baseline systems
was demonstrated, both on the NIST and BANCA speech data. On BANCA dataset, the
GMM-LFA system achieved equal error rate of 3.37 % and the GMM-JFA system equal
error rate of 4.29 %.
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