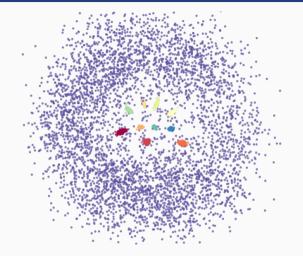


Topological Autoencoders

Michael Moor[†], **Max Horn**[†], Bastian Rieck[‡] and Karsten Borgwardt[‡] 13. November, 2019

Machine Learning and Computational Biology Group, ETH Zurich

Motivation



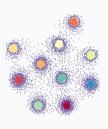
Representation of our data, but in 100 dimensional space

1

Motivation - Dimensionality reduction

Issues

Most methods preserve connectivity at *local* scales



t-SNE

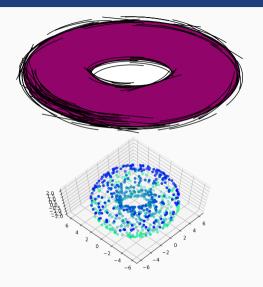
Goal

We want to preserve connectivity at *multiple* scales

UMAP

Autoencoder

Topology - The study of connectivity



Betti numbers characterize topological spaces

- β_0 connected components
- β_1 cycles
- β_2 voids

Issues

- Great for manifolds (which are usually unknown)
- But instead *approximated* via samples
- Topology on samples is noisy

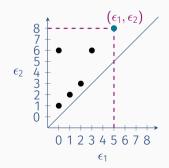
Persistent Homology - Topology at multiple scales

Vietoris-Rips Complex: Calculate neighbourhood graph (simplicial complex for higher dimensions) for all weight thresholds and keep track of the appearance and disappearance of topological features.

Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

$$E := \{ (u, v) \mid \operatorname{dist} (p_u, p_v) \leq \epsilon \}$$



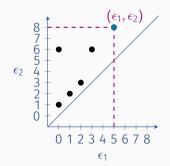
Persistent Homology - Topology at multiple scales

Vietoris-Rips Complex: Calculate neighbourhood graph (simplicial complex for higher dimensions) for all weight thresholds and keep track of the appearance and disappearance of topological features.

 $E := \{ (u, v) \mid \operatorname{dist}(p_u, p_v) \leq \epsilon \}$

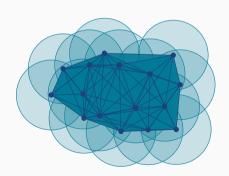
Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$



Persistent Homology - Topology at multiple scales

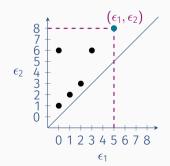
Vietoris-Rips Complex: Calculate neighbourhood graph (simplicial complex for higher dimensions) for all weight thresholds and keep track of the appearance and disappearance of topological features.



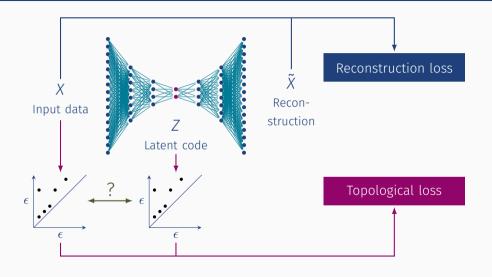
 $E := \{ (u, v) \mid \operatorname{dist}(p_u, p_v) \leq \epsilon \}$

Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

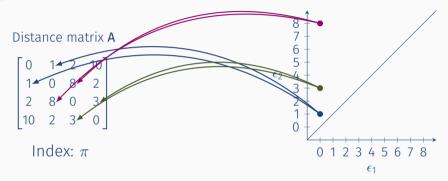


Method - Overview



Distance matrix and relation to persistence diagrams

While the persistence computation is an inherently discrete process, we can nevertheless compute gradients due to one key observation.

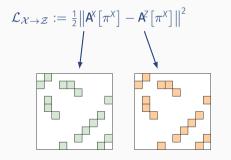


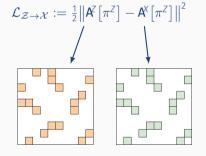
Insight

We can map all Persistent Homology computations of Flag complexes to individual edges of the distance matrix!

Topological loss term

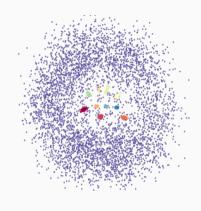
$$\mathcal{L}_{t} = \mathcal{L}_{\mathcal{X} \to \mathcal{Z}} + \mathcal{L}_{\mathcal{Z} \to \mathcal{X}}$$





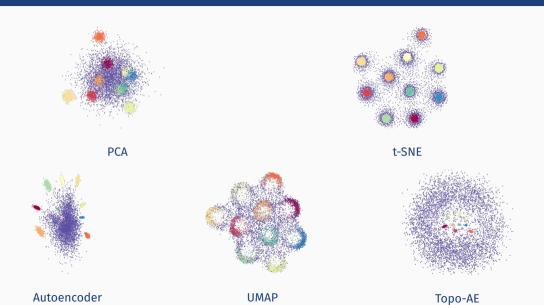
Experiments

Datasets

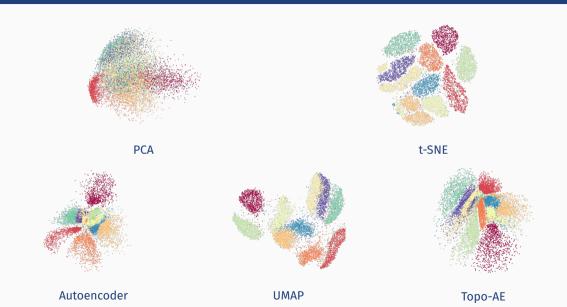


SPHERES MNIST FASHION-MNIST

Spheres

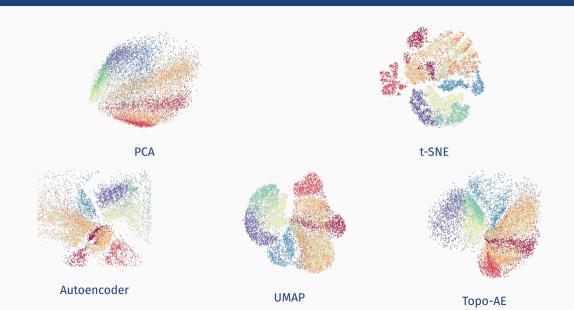


MNIST



10

FashionMNIST



Insights and Summary

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our loss term is differentiable and allowing the training of MLPs via backpropagation
- Our method was uniquely able to capture spatial relationships of nested high-dimensional spheres

For further information and more theory

Check out our paper on ArXiv!

Appendix

Bound of bottleneck distance between persistence diagrams on subsampled data

Theorem

Let X be a point cloud of cardinality n and $X^{(m)}$ be one subsample of X of cardinality m, i.e. $X^{(m)} \subseteq X$, sampled without replacement. We can bound the probability of the persistence diagrams of $X^{(m)}$ exceeding a threshold in terms of the bottleneck distance as

$$\mathbb{P}\Big(d_b\Big(\mathcal{D}^X,\mathcal{D}^{X^{(m)}}\Big)>\epsilon\Big)\leq \mathbb{P}\Big(d_H\Big(X,X^{(m)}\Big)>2\epsilon\Big),$$

where d_{H} refers to the Hausdorff distance between the point cloud and its subsample.

Expected value of Hausdorff distance

Theorem

Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ be the distance matrix between samples of X and $X^{(m)}$, where the rows are sorted such that the first m rows correspond to the columns of the m subsampled points with diagonal elements $a_{ii} = 0$. Assume that the entries a_{ij} with i > m are random samples following a distance distribution F_D with $\operatorname{supp}(f_D) \in \mathbb{R}_0$. The minimal distances δ_i for rows with i > m follow a distribution F_Δ . Letting $Z := \max_{1 \le i \le n} \delta_i$ with a corresponding distribution F_Z , the expected Hausdorff distance between X and $X^{(m)}$ for M < n is bounded by:

$$\mathbb{E}\left[\mathsf{d}_{\mathsf{H}}(X,X^{(m)})\right] = \mathbb{E}_{Z \sim F_Z}[Z] \leq \int_0^{+\infty} \left(1 - F_D(z)^{(n-1)}\right) dz \leq \int_0^{+\infty} \left(1 - F_D(z)^{m(n-m)}\right) dz$$

Explicit Gradient Derivation

Letting θ refer to the parameters of the *encoder*, we have

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\theta}} \mathcal{L}_{\mathcal{X} \to \mathcal{Z}} &= \frac{\partial}{\partial \boldsymbol{\theta}} \left(\frac{1}{2} \| \boldsymbol{A}^{X} [\boldsymbol{\pi}^{X}] - \boldsymbol{A}^{Z} [\boldsymbol{\pi}^{X}] \|^{2} \right) \\ &= - \left(\boldsymbol{A}^{X} [\boldsymbol{\pi}^{X}] - \boldsymbol{A}^{Z} [\boldsymbol{\pi}^{X}] \right)^{\top} \left(\frac{\partial \boldsymbol{A}^{Z} [\boldsymbol{\pi}^{X}]}{\partial \boldsymbol{\theta}} \right) \\ &= - \left(\boldsymbol{A}^{X} [\boldsymbol{\pi}^{X}] - \boldsymbol{A}^{Z} [\boldsymbol{\pi}^{X}] \right)^{\top} \left(\sum_{i=1}^{|\boldsymbol{\pi}^{X}|} \frac{\partial \boldsymbol{A}^{Z} [\boldsymbol{\pi}^{X}]_{i}}{\partial \boldsymbol{\theta}} \right), \end{split}$$

where $|\pi^X|$ denotes the cardinality of a persistence pairing and $\mathbf{A}^X[\pi^X]_i$ refers to the *i*th entry of the vector of paired distances.

Density distribution error

Definition (Density distribution error)

Let $\sigma \in_{>0}$. For a finite metric space $\mathcal S$ with an associated distance dist (\cdot, \cdot) , we evaluate the density at each point $x \in \mathcal S$ as

$$f_{\sigma}^{S}(X) := \sum_{y \in S} \exp(-\sigma^{-1} \operatorname{dist}(X, y)^{2}),$$

where we assume without loss of generality that $\max \operatorname{dist}(x,y) = 1$. We then calculate $f_{\sigma}^{X}(\cdot)$ and $f_{\sigma}^{Z}(\cdot)$, normalise them such that they sum to 1, and evaluate

$$\mathsf{KL}_{\sigma} := \mathsf{KL}\Big(\mathsf{f}_{\sigma}^{\,\chi} \parallel \mathsf{f}_{\sigma}^{\,\chi}\Big),\tag{1}$$

i.e. the Kullback–Leibler divergence between the two density estimates.

Quantification of performance

Data set	Method	KL _{0.01}	KL _{0.1}	KL ₁	ℓ-MRRE	ℓ-Cont	ℓ -Trust	ℓ-RMSE	Data MSE
Spheres	Isomap	0.181	0.420	0.00881	0.246	0.790	0.676	10.4	_
	PCA	0.332	0.651	0.01530	0.294	0.747	0.626	11.8	0.9610
	TSNE	0.152	0.527	0.01271	0.217	0.773	0.679	<u>8.1</u>	_
	UMAP	0.157	0.613	0.01658	0.250	0.752	0.635	9.3	_
	AE	0.566	0.746	0.01664	0.349	0.607	0.588	13.3	0.8155
	TopoAE	0.085	0.326	0.00694	0.272	0.822	0.658	13.5	0.8681
F-MNIST	PCA	0.356	0.052	0.00069	0.057	0.968	0.917	9.1	0.1844
	TSNE	0.405	0.071	0.00198	0.020	0.967	0.974	41.3	_
	UMAP	0.424	0.065	0.00163	0.029	0.981	0.959	13.7	_
	AE	0.478	0.068	0.00125	0.026	0.968	0.974	20.7	0.1020
	TopoAE	0.392	0.054	0.00100	0.032	0.980	0.956	20.5	0.1207
MNIST	PCA	0.389	0.163	0.00160	0.166	0.901	0.745	13.2	0.2227
	TSNE	0.277	0.133	0.00214	0.040	0.921	0.946	22.9	_
	UMAP	0.321	0.146	0.00234	0.051	0.940	0.938	14.6	_
	AE	0.620	0.155	0.00156	0.058	0.913	0.937	18.2	0.1373
	TopoAE	0.341	<u>0.110</u>	0.00114	0.056	0.932	0.928	19.6	0.1388

Quantification of performance - 2

Data set	Method	KL _{0.01}	KL _{0.1}	KL ₁	ℓ-MRRE	<i>ℓ</i> -Cont	<i>ℓ</i> -Trust	ℓ-RMSE	Data MSE
CIFAR	PCA	0.591	0.020	0.00023	0.119	0.931	0.821	<u>17.7</u>	0.1482
	TSNE	0.627	0.030	0.00073	0.103	0.903	0.863	25.6	_
	UMAP	0.617	0.026	0.00050	0.127	0.920	0.817	33.6	-
	AE	0.668	0.035	0.00062	0.132	0.851	0.864	36.3	0.1403
	TopoAE	0.556	0.019	0.00031	0.108	0.927	0.845	37.9	0.1398