Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks

Maksym Andriushchenko (EPFL*) Matthias Hein (University of Tübingen)

*Work done at the University of Tübingen

SMLD 2019. NeurIPS 2019

Adversarial vulnerability

Source: Goodfellow et al, "Explaining and Harnessing Adversarial Examples", 2014

Adversarial vulnerability

Source: Goodfellow et al, "Explaining and Harnessing Adversarial Examples", 2014

• Problem: small changes in the input ⇒ large changes in the output

Adversarial vulnerability

Source: Goodfellow et al, "Explaining and Harnessing Adversarial Examples", 2014

- ullet Problem: small changes in the input \Rightarrow large changes in the output
- Topic of active research for neural networks and image recognition, but what about other domains and other classifiers?

Motivation: other domains (going beyond images)

occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	salary
NaN	Wife	White	Female	0	1902	40	United- States	>=50k
Exec- managerial	Not-in-family	White	Male	10520	0	45	United- States	>=50k
NaN	Unmarried	Black	Female	0	0	32	United- States	<50k
Prof- specialty	Husband	Asian-Pac- Islander	Male	0	0	40	United- States	>=50k
Other- service	Wife	Black	Female	0	0	50	United- States	<50k

 Some input feature values can be incorrect: measurement noise, a human mistake, an adversarially crafted change, etc.

Motivation: other domains (going beyond images)

occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	salary
NaN	Wife	White	Female	0	1902	40	United- States	>=50k
Exec- managerial	Not-in-family	White	Male	10520	0	45	United- States	>=50k
NaN	Unmarried	Black	Female	0	0	32	United- States	<50k
Prof- specialty	Husband	Asian-Pac- Islander	Male	0	0	40	United- States	>=50k
Other- service	Wife	Black	Female	0	0	50	United- States	<50k

- Some input feature values can be incorrect: measurement noise, a human mistake, an adversarially crafted change, etc.
- For high-stakes decision making, it's necessary to ensure a reasonable worst-case error rate under possible noise perturbations

Motivation: other domains (going beyond images)

occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	salary
NaN	Wife	White	Female	0	1902	40	United- States	>=50k
Exec- managerial	Not-in-family	White	Male	10520	0	45	United- States	>=50k
NaN	Unmarried	Black	Female	0	0	32	United- States	<50k
Prof- specialty	Husband	Asian-Pac- Islander	Male	0	0	40	United- States	>=50k
Other- service	Wife	Black	Female	0	0	50	United- States	<50k

- Some input feature values can be incorrect: measurement noise, a human mistake, an adversarially crafted change, etc.
- For high-stakes decision making, it's necessary to ensure a reasonable worst-case error rate under possible noise perturbations
- The expected perturbation range can be specified by domain experts

• Our paper: we concentrate on boosted decision stumps and trees

- Our paper: we concentrate on boosted decision stumps and trees
- They are widely adopted in practice implementations like XGBoost or LightGBM are used almost in every Kaggle competition

- Our paper: we concentrate on boosted decision stumps and trees
- They are widely adopted in practice implementations like XGBoost or LightGBM are used almost in every Kaggle competition
- Moreover, boosted trees are interpretable which is also an important practical aspect. Who wants to deploy a black-box?

- Our paper: we concentrate on boosted decision stumps and trees
- They are widely adopted in practice implementations like XGBoost or LightGBM are used almost in every Kaggle competition
- Moreover, boosted trees are interpretable which is also an important practical aspect. Who wants to deploy a black-box?
- \implies it is important to develop boosted trees which are **robust**, but first we need to understand the reason of their **vulnerability**

- Our paper: we concentrate on boosted decision stumps and trees
- They are widely adopted in practice implementations like XGBoost or LightGBM are used almost in every Kaggle competition
- Moreover, boosted trees are interpretable which is also an important practical aspect. Who wants to deploy a black-box?
- \implies it is important to develop boosted trees which are **robust**, but first we need to understand the reason of their **vulnerability**

So why do adversarial examples exist?

• What goes wrong and how to fix it?

- What goes wrong and how to fix it?
- We would like to have a large geometric margin for every point

- What goes wrong and how to fix it?
- We would like to have a large geometric margin for every point

Empirical risk minimization does not distinguish the two types of solutions ⇒ we need to use a robust objective

- What goes wrong and how to fix it?
- We would like to have a large geometric margin for every point

Empirical risk minimization does not distinguish the two types of solutions ⇒ we need to use a robust objective

Let's formalize the problem!

• What is an adversarial example? Consider $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$, classifier $f : \mathbb{R}^d \to \mathbb{R}$, some L_p -norm threshold ϵ :

$$\min_{\delta \in \mathbb{R}^d} yf(x+\delta)$$
$$\|\delta\|_p \le \epsilon, \quad x+\delta \in C$$

• What is an adversarial example? Consider $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$, classifier $f : \mathbb{R}^d \to \mathbb{R}$, some L_p -norm threshold ϵ :

$$\min_{\delta \in \mathbb{R}^d} yf(x+\delta)$$
$$\|\delta\|_p \le \epsilon, \quad x+\delta \in C$$

• Assume x is correctly classified (yf(x) > 0), then $x + \delta^*$ is an adversarial example if $x + \delta^*$ is incorrectly classified $(yf(x + \delta^*) < 0)$

• What is an adversarial example? Consider $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$, classifier $f : \mathbb{R}^d \to \mathbb{R}$, some L_p -norm threshold ϵ :

$$\min_{\delta \in \mathbb{R}^d} yf(x+\delta)$$
$$\|\delta\|_p \le \epsilon, \quad x+\delta \in C$$

- Assume x is correctly classified (yf(x) > 0), then $x + \delta^*$ is an adversarial example if $x + \delta^*$ is incorrectly classified $(yf(x + \delta^*) < 0)$
- How to measure robustness? Robust test error (RTE):

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{yf(x) < 0}}_{\text{standard zero-one loss}} \rightarrow \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{yf(x+\delta^*) < 0}}_{\text{robust zero-one loss}}$$

• What is an adversarial example? Consider $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$, classifier $f : \mathbb{R}^d \to \mathbb{R}$, some L_p -norm threshold ϵ :

$$\min_{\delta \in \mathbb{R}^d} yf(x+\delta)$$
$$\|\delta\|_{p} \le \epsilon, \quad x+\delta \in C$$

- Assume x is correctly classified (yf(x) > 0), then $x + \delta^*$ is an adversarial example if $x + \delta^*$ is incorrectly classified $(yf(x + \delta^*) < 0)$
- How to measure robustness? Robust test error (RTE):

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{yf(x) < 0}}_{\text{standard zero-one loss}} \rightarrow \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{yf(x+\delta^*) < 0}}_{\text{robust zero-one loss}}$$

• Finding δ^* : non-convex opt. problem for NNs and BTs. Exact mixed integer formulations exist for ReLU-NNs and BTs (slow).

$$\min_{\theta} \sum_{i=1}^{n} \max_{\delta \in \Delta(\epsilon)} L(f(x_i + \delta; \theta), y_i)$$

• **Robust optimization** problem wrt the set $\Delta(\epsilon)$:

$$\min_{\theta} \sum_{i=1}^{n} \max_{\delta \in \Delta(\epsilon)} L(f(x_i + \delta; \theta), y_i)$$

• L is a usual margin-based loss function (cross-entropy, exp. loss, etc)

$$\min_{\theta} \sum_{i=1}^{n} \max_{\delta \in \Delta(\epsilon)} L(f(x_i + \delta; \theta), y_i)$$

- L is a usual margin-based loss function (cross-entropy, exp. loss, etc)
- $\epsilon = 0 \implies$ just well-known **Empirical Risk Minimization**

$$\min_{\theta} \sum_{i=1}^{n} \max_{\delta \in \Delta(\epsilon)} L(f(x_i + \delta; \theta), y_i)$$

- L is a usual margin-based loss function (cross-entropy, exp. loss, etc)
- ullet $\epsilon=0$ \Longrightarrow just well-known **Empirical Risk Minimization**
- **Goal**: small loss (\Rightarrow large margin) not only at x_i , but for every $x_i + \delta \in \Delta(\epsilon)$

$$\min_{\theta} \sum_{i=1}^{n} \max_{\delta \in \Delta(\epsilon)} L(f(x_i + \delta; \theta), y_i)$$

- L is a usual margin-based loss function (cross-entropy, exp. loss, etc)
- $\epsilon = 0 \implies$ just well-known **Empirical Risk Minimization**
- **Goal**: small loss (\Rightarrow large margin) not only at x_i , but for every $x_i + \delta \in \Delta(\epsilon)$
- Adversarial training: approximately solve the robust loss
 minimization of a lower bound on the objective

$$\min_{\theta} \sum_{i=1}^{n} \max_{\delta \in \Delta(\epsilon)} L(f(x_i + \delta; \theta), y_i)$$

- L is a usual margin-based loss function (cross-entropy, exp. loss, etc)
- $\epsilon = 0 \implies$ just well-known **Empirical Risk Minimization**
- **Goal**: small loss (\Rightarrow large margin) not only at x_i , but for every $x_i + \delta \in \Delta(\epsilon)$
- Adversarial training: approximately solve the robust loss
 minimization of a lower bound on the objective
- Provable defenses: upper bound the robust loss
 minimization of an upper bound on the objective

Robustness Certification and Robust Optimization for Boosted Trees

• The exact certification is NP-hard [Kantchelian et al, ICML 2016]

- The exact certification is NP-hard [Kantchelian et al, ICML 2016]
- But we can derive a tractable **lower bound** $\tilde{G}(x,y)$ on G(x,y) for an ensemble of trees:

$$\min_{\|\delta\|_{\infty} \leq \epsilon} y F(x+\delta) = \min_{\|\delta\|_{\infty} \leq \epsilon} \sum_{t=1}^{T} y u_{q_t(x+\delta)}^{(t)} \geq \sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} y u_{q_t(x+\delta)}^{(t)} := \tilde{G}(x,y)$$

- The exact certification is NP-hard [Kantchelian et al, ICML 2016]
- But we can derive a tractable **lower bound** $\tilde{G}(x,y)$ on G(x,y) for an ensemble of trees:

$$\min_{\|\delta\|_{\infty} \leq \epsilon} yF(x+\delta) = \min_{\|\delta\|_{\infty} \leq \epsilon} \sum_{t=1}^{T} yu_{q_t(x+\delta)}^{(t)} \geq \sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} yu_{q_t(x+\delta)}^{(t)} := \tilde{G}(x,y)$$

• $\tilde{G}(x,y) \ge 0 \implies G(x,y) \ge 0$, i.e. x is provably robust.

- The exact certification is NP-hard [Kantchelian et al, ICML 2016]
- But we can derive a tractable **lower bound** $\tilde{G}(x,y)$ on G(x,y) for an ensemble of trees:

$$\min_{\|\delta\|_{\infty} \leq \epsilon} yF(x+\delta) = \min_{\|\delta\|_{\infty} \leq \epsilon} \sum_{t=1}^{I} yu_{q_t(x+\delta)}^{(t)} \geq \sum_{t=1}^{I} \min_{\|\delta\|_{\infty} \leq \epsilon} yu_{q_t(x+\delta)}^{(t)} := \tilde{G}(x,y)$$

- $\tilde{G}(x,y) \ge 0 \implies G(x,y) \ge 0$, i.e. x is provably robust.
- $\tilde{G}(x,y) < 0 \implies x$ is either robust or non-robust.

- The exact certification is NP-hard [Kantchelian et al, ICML 2016]
- But we can derive a tractable **lower bound** $\tilde{G}(x,y)$ on G(x,y) for an ensemble of trees:

$$\min_{\|\delta\|_{\infty} \leq \epsilon} yF(x+\delta) = \min_{\|\delta\|_{\infty} \leq \epsilon} \sum_{t=1}^{T} yu_{q_t(x+\delta)}^{(t)} \geq \sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} yu_{q_t(x+\delta)}^{(t)} := \tilde{G}(x,y)$$

- $\tilde{G}(x,y) \ge 0 \implies G(x,y) \ge 0$, i.e. x is provably robust.
- $\tilde{G}(x,y) < 0 \implies x$ is either robust or non-robust.
- We get an *upper bound* on the number of non-robust points, which yields an *upper bound* on the robust test error.

- The exact certification is NP-hard [Kantchelian et al, ICML 2016]
- But we can derive a tractable **lower bound** $\tilde{G}(x,y)$ on G(x,y) for an ensemble of trees:

$$\min_{\|\delta\|_{\infty} \leq \epsilon} yF(x+\delta) = \min_{\|\delta\|_{\infty} \leq \epsilon} \sum_{t=1}^{T} yu_{q_t(x+\delta)}^{(t)} \geq \sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} yu_{q_t(x+\delta)}^{(t)} := \tilde{G}(x,y)$$

- $\tilde{G}(x,y) \ge 0 \implies G(x,y) \ge 0$, i.e. x is provably robust.
- $\tilde{G}(x,y) < 0 \implies x$ is either robust or non-robust.
- We get an *upper bound* on the number of non-robust points, which yields an *upper bound* on the robust test error.
- For a decision tree: $\min_{\|\delta\|_{\infty} \leq \epsilon} y u_{q_t(x+\delta)}^{(t)}$ can be found **exactly** by checking all leafs which are reachable in $B_{\infty}(x,\epsilon)$ (O(I) time)

Tree ensemble: from certification to robust optimization

• Now we know how to lower bound the certification problem:

$$\min_{\|\delta\|_{\infty} \le \epsilon} y F(x + \delta)$$

Tree ensemble: from certification to robust optimization

• Now we know how to lower bound the certification problem:

$$\min_{\|\delta\|_{\infty} \le \epsilon} yF(x+\delta)$$

• Does it help to solve the min-max problem?

$$\min_{\theta} \sum_{i=1}^{n} \max_{\|\delta\|_{\infty} \leq \epsilon} L(f(x_i + \delta; \theta), y_i)$$

• Yes! For monotonically decreasing *L* (e.g. exp. loss):

$$\max_{\|\delta\|_{\infty} \leq \epsilon} L(y F(x + \delta)) = L\Big(\min_{\|\delta\|_{\infty} \leq \epsilon} yF(x + \delta)\Big),$$

Tree ensemble: from certification to robust optimization

• Now we know how to lower bound the certification problem:

$$\min_{\|\delta\|_{\infty} \le \epsilon} yF(x+\delta)$$

• Does it help to solve the min-max problem?

$$\min_{\theta} \sum_{i=1}^{n} \max_{\|\delta\|_{\infty} \leq \epsilon} L(f(x_i + \delta; \theta), y_i)$$

• Yes! For monotonically decreasing L (e.g. exp. loss):

$$\max_{\|\delta\|_{\infty} \le \epsilon} L(y F(x + \delta)) = L\Big(\min_{\|\delta\|_{\infty} \le \epsilon} yF(x + \delta)\Big),$$

ullet we can calculate an upper bound on the **robust loss**.

Tree ensemble: from certification to robust optimization

• Now we know how to lower bound the certification problem:

$$\min_{\|\delta\|_{\infty} \le \epsilon} yF(x+\delta)$$

• Does it help to solve the min-max problem?

$$\min_{\theta} \sum_{i=1}^{n} \max_{\|\delta\|_{\infty} \leq \epsilon} L(f(x_i + \delta; \theta), y_i)$$

• Yes! For monotonically decreasing *L* (e.g. exp. loss):

$$\max_{\|\delta\|_{\infty} \le \epsilon} L(y F(x + \delta)) = L\Big(\min_{\|\delta\|_{\infty} \le \epsilon} yF(x + \delta)\Big),$$

- \implies we can calculate an upper bound on the **robust loss**.
- Now: come up with a proper update for a new weak learner.

• The robust loss for a tree ensemble can be upper bounded as

$$\max_{\|\delta\|_{\infty} \leq \epsilon} L\Big(y_i F(x_i + \delta) + y_i f(x_i + \delta)\Big) = L\Big(\min_{\|\delta\|_{\infty} \leq \epsilon} \Big[\sum_{t=1}^{T} y_i f_t(x_i + \delta) + y_i f(x_i + \delta)\Big]\Big)
\leq L\Big(\sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f_t(x_i + \delta) + \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f(x_i + \delta)\Big) = L\Big(\tilde{G}(x_i, y_i) + \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f(x_i + \delta)\Big)$$

• The robust loss for a tree ensemble can be upper bounded as

$$\max_{\|\delta\|_{\infty} \leq \epsilon} L\left(y_i F(x_i + \delta) + y_i f(x_i + \delta)\right) = L\left(\min_{\|\delta\|_{\infty} \leq \epsilon} \left[\sum_{t=1}^{T} y_i f_t(x_i + \delta) + y_i f(x_i + \delta)\right]\right)$$

$$\leq L\left(\sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f_t(x_i + \delta) + \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f(x_i + \delta)\right) = L\left(\tilde{G}(x_i, y_i) + \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f(x_i + \delta)\right)$$

 For a particular node during the tree construction process, the robust objective is (1: set of points reachable for the current leaf):

$$\min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + \min_{|\delta_j| \le \epsilon} y_i w_r \mathbb{1}_{x_{ij} + \delta_j \ge b}\right)$$

• The robust loss for a tree ensemble can be upper bounded as

$$\max_{\|\delta\|_{\infty} \leq \epsilon} L\left(y_i F(x_i + \delta) + y_i f(x_i + \delta)\right) = L\left(\min_{\|\delta\|_{\infty} \leq \epsilon} \left[\sum_{t=1}^{T} y_i f_t(x_i + \delta) + y_i f(x_i + \delta)\right]\right)$$

$$\leq L\left(\sum_{t=1}^{T} \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f_t(x_i + \delta) + \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f(x_i + \delta)\right) = L\left(\tilde{G}(x_i, y_i) + \min_{\|\delta\|_{\infty} \leq \epsilon} y_i f(x_i + \delta)\right)$$

 For a particular node during the tree construction process, the robust objective is (1: set of points reachable for the current leaf):

$$\min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + \min_{|\delta_j| \le \epsilon} y_i w_r \mathbb{1}_{x_{ij} + \delta_j \ge b} \right)$$

• How to solve the **minimization problem**? Just a case distinction:

$$\min_{|\delta_j| \le \epsilon} y_i w_r \mathbb{1}_{x_{ij} + \delta_j \ge b} = y_i w_r \cdot \begin{cases} 1 & \text{if } b - x_{ij} < -\epsilon \text{ or } (|b - x_{ij}| \le \epsilon \text{ and } y_i w_r < 0) \\ 0 & \text{if } b - x_{ij} > \epsilon \text{ or } (|b - x_{ij}| \le \epsilon \text{ and } y_i w_r \ge 0) \end{cases}$$

• Denoting the case distinction as $\mathbb{1}(x_i, y_i; w_r)$, our final robust objective is:

$$L^*(j,b) = \min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + y_i w_r \mathbb{1}(x_i, y_i; w_r)\right)$$

• Denoting the case distinction as $\mathbb{1}(x_i, y_i; w_r)$, our final robust objective is:

$$L^*(j,b) = \min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + y_i w_r \mathbb{1}(x_i, y_i; w_r)\right)$$

• The minimization wrt w_l , w_r can be done using **coordinate descent** (the objective is **convex** in w_l , w_r)

• Denoting the case distinction as $\mathbb{1}(x_i, y_i; w_r)$, our final robust objective is:

$$L^*(j,b) = \min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + y_i w_r \mathbb{1}(x_i, y_i; w_r)\right)$$

- The minimization wrt w_l , w_r can be done using **coordinate descent** (the objective is **convex** in w_l , w_r)
- Important: we are guaranteed to decrease the robust loss after every weak learner

• Denoting the case distinction as $\mathbb{1}(x_i, y_i; w_r)$, our final robust objective is:

$$L^*(j,b) = \min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + y_i w_r \mathbb{1}(x_i, y_i; w_r)\right)$$

- The minimization wrt w_l , w_r can be done using **coordinate descent** (the objective is **convex** in w_l , w_r)
- Important: we are guaranteed to decrease the robust loss after every weak learner
- Complexity: $O(n^2)$, while XGBoost has $O(n \log n)$

• Denoting the case distinction as $\mathbb{1}(x_i, y_i; w_r)$, our final robust objective is:

$$L^*(j,b) = \min_{w_l, w_r \in \mathbb{R}} \sum_{i \in I} L\left(\tilde{G}(x_i, y_i) + y_i w_l + y_i w_r \mathbb{1}(x_i, y_i; w_r)\right)$$

- The minimization wrt w_l , w_r can be done using **coordinate descent** (the objective is **convex** in w_l , w_r)
- Important: we are guaranteed to decrease the robust loss after every weak learner
- Complexity: $O(n^2)$, while XGBoost has $O(n \log n)$

That's it for boosted trees

Now what is so special about boosted stumps (one-level trees)?

• The certification problem can be solved exactly!

$$\min_{\|\delta\|_{\infty} \le \epsilon} yF(x+\delta)$$

The certification problem can be solved exactly!

$$\min_{\|\delta\|_{\infty} \le \epsilon} y F(x + \delta)$$

• **Proof idea**: the objective is separable over each dimension \implies just solve d simple one-dimensional optimization problems

The certification problem can be solved exactly!

$$\min_{\|\delta\|_{\infty} \le \epsilon} y F(x + \delta)$$

- **Proof idea**: the objective is separable over each dimension \implies just solve d simple one-dimensional optimization problems
- As a result, the robust loss can be also calculated exactly

$$\max_{\delta \in \Delta_{\infty}(\epsilon)} L(y F(x + \delta)) = L\Big(\min_{\delta \in \Delta_{\infty}(\epsilon)} yF(x + \delta)\Big),$$

• The certification problem can be solved exactly!

$$\min_{\|\delta\|_{\infty} \le \epsilon} yF(x+\delta)$$

- **Proof idea**: the objective is separable over each dimension \implies just solve d simple one-dimensional optimization problems
- As a result, the robust loss can be also calculated exactly

$$\max_{\delta \in \Delta_{\infty}(\epsilon)} L(y F(x + \delta)) = L\Big(\min_{\delta \in \Delta_{\infty}(\epsilon)} yF(x + \delta)\Big),$$

Moreover, we also derive an efficient update of the ensemble.

• The certification problem can be solved exactly!

$$\min_{\|\delta\|_{\infty} \le \epsilon} yF(x+\delta)$$

- **Proof idea**: the objective is separable over each dimension \implies just solve d simple one-dimensional optimization problems
- As a result, the robust loss can be also calculated exactly

$$\max_{\delta \in \Delta_{\infty}(\epsilon)} L(y F(x + \delta)) = L\Big(\min_{\delta \in \Delta_{\infty}(\epsilon)} yF(x + \delta)\Big),$$

- Moreover, we also derive an efficient update of the ensemble.
- interesting result since previously exact certification and robust optimization was known only for linear classifiers

Experiments

Experiments

Dataset	# classes	# features	# train	# test	Reference
breast-cancer	2	10	546	137	Dua and Graff (2017)
diabetes	2	8	614	154	Smith et al. (1988)
$\operatorname{cod-rna}$	2	8	59535	271617	Uzilov et al. (2006)
MNIST 1-5	2	784	12163	2027	LeCun (1998)
MNIST 2-6	2	784	11876	1990	LeCun (1998)
FMNIST shoes	2	784	12000	2000	Xiao et al. (2017)
GTS 100-rw	2	3072	4200	1380	Stallkamp et al. (2012)
GTS 30-70	2	3072	2940	930	Stallkamp et al. (2012)
MNIST	10	784	60000	10000	LeCun (1998)
FMNIST	10	784	60000	10000	Xiao et al. (2017)
CIFAR-10	10	3072	50000	10000	Krizhevsky (2009)

• We test our methods on various datasets, including some image classification datasets (to compare to the literature).

Experiments

Dataset	# classes	# features	# train	# test	Reference
breast-cancer	2	10	546	137	Dua and Graff (2017)
diabetes	2	8	614	154	Smith et al. (1988)
$\operatorname{cod-rna}$	2	8	59535	271617	Uzilov et al. (2006)
MNIST 1-5	2	784	12163	2027	LeCun (1998)
MNIST 2-6	2	784	11876	1990	LeCun (1998)
FMNIST shoes	2	784	12000	2000	Xiao et al. (2017)
GTS 100-rw	2	3072	4200	1380	Stallkamp et al. (2012)
GTS 30-70	2	3072	2940	930	Stallkamp et al. (2012)
MNIST	10	784	60000	10000	LeCun (1998)
FMNIST	10	784	60000	10000	Xiao et al. (2017)
CIFAR-10	10	3072	50000	10000	Krizhevsky (2009)

- We test our methods on various datasets, including some image classification datasets (to compare to the literature).
- However, our methods are primarily suitable for tabular data

Dataset	$l_{\infty} \epsilon$	Normal trees (standard training) TE RTE URTE	Adv. trained trees (with cube attack) TE RTE URTE	Robust trees Chen et al. [9] TE RTE	Our robust trees (robust loss bound) TE RTE URTE
breast-cancer	0.3	0.7 81.0 81.8	0.0 27.0 27.0	0.7 13.1	0.7 6.6 6.6
diabetes	0.05	22.7 55.2 61.7	26.6 46.8 46.8	22.1 40.3	27.3 35.7 35.7
cod-rna	0.025	3.4 37.6 47.1	10.9 24.8 24.8	10.2 24.2	6.9 21.3 21.4
MNIST 1-5	0.3	0.1 90.7 96.0	1.3 9.0 9.5	0.3 2.9	0.2 1.3 1.4
MNIST 2-6	0.3	0.4 89.6 100	2.3 15.1 15.9	0.5 6.9	0.7 3.8 4.1
FMNIST shoe	s 0.1	1.7 99.8 99.9	5.5 14.1 14.2	3.1 13.2	3.6 8.0 8.1
GTS 100-rw	8/255	0.9 6.0 6.1	1.0 8.4 8.4	1.5 9.7	2.6 4.7 4.7
GTS 30-70	8/255	14.2 31.4 32.6	16.2 26.7 26.8	11.5 28.8	13.8 20.9 21.4

• Main metric: RTE (obtained via a mixed-integer solver)

Dataset	$l_{\infty} \epsilon$	Normal trees (standard training) TE RTE URTE	Adv. trained trees (with cube attack) TE RTE URTE	Robust trees Chen et al. [9] TE RTE	Our robust trees (robust loss bound) TE RTE URTE
breast-cancer diabetes cod-rna MNIST 1-5 MNIST 2-6	0.3 0.05 0.025 0.3 0.3	0.7 81.0 81.8 22.7 55.2 61.7 3.4 37.6 47.1 0.1 90.7 96.0 0.4 89.6 100	0.0 27.0 27.0 26.6 46.8 46.8 10.9 24.8 24.8 1.3 9.0 9.5 2.3 15.1 15.9	0.7 13.1 22.1 40.3 10.2 24.2 0.3 2.9 0.5 6.9	0.7 6.6 6.6 27.3 35.7 35.7 6.9 21.3 21.4 0.2 1.3 1.4 0.7 3.8 4.1
FMNIST shoe GTS 100-rw GTS 30-70		0.4 89.6 100 1.7 99.8 99.9 0.9 6.0 6.1 14.2 31.4 32.6	5.5 14.1 14.2 1.0 8.4 8.4 16.2 26.7 26.8	3.1 13.2 1.5 9.7 11.5 28.8	0.7 3.8 4.1 3.6 8.0 8.1 2.6 4.7 4.7 13.8 20.9 21.4

- Main metric: **RTE** (obtained via a mixed-integer solver)
- Better RTE on 8/8 datasets compared to adversarial training (baseline) and Chen et al. (ICML'19)

Dataset	$l_{\infty} \epsilon$	Normal trees (standard training) TE RTE URTE	Adv. trained trees (with cube attack) TE RTE URTE	Robust trees Chen et al. [9] TE RTE	Our robust trees (robust loss bound) TE RTE URTE
breast-cancer diabetes cod-rna MNIST 1-5 MNIST 2-6	0.3 0.05 0.025 0.3 0.3	0.7 81.0 81.8 22.7 55.2 61.7 3.4 37.6 47.1 0.1 90.7 96.0 0.4 89.6 100	0.0 27.0 27.0 26.6 46.8 46.8 10.9 24.8 24.8 1.3 9.0 9.5 2.3 15.1 15.9	0.7 13.1 22.1 40.3 10.2 24.2 0.3 2.9 0.5 6.9	0.7 6.6 6.6 27.3 35.7 35.7 6.9 21.3 21.4 0.2 1.3 1.4 0.7 3.8 4.1
FMNIST shoe GTS 100-rw GTS 30-70		0.4 89.6 100 1.7 99.8 99.9 0.9 6.0 6.1 14.2 31.4 32.6	5.5 14.1 14.2 1.0 8.4 8.4 16.2 26.7 26.8	3.1 13.2 1.5 9.7 11.5 28.8	0.7 3.8 4.1 3.6 8.0 8.1 2.6 4.7 4.7 13.8 20.9 21.4

- Main metric: RTE (obtained via a mixed-integer solver)
- Better RTE on 8/8 datasets compared to adversarial training (baseline) and Chen et al. (ICML'19)
- Adversarial training doesn't work well for boosted trees (the conclusion is different from the neural networks literature)

Dataset $l_{\infty} \epsilon$	Normal trees (standard training) TE RTE URTE	Adv. trained trees (with cube attack) TE RTE URTE	Robust trees Chen et al. [9] TE RTE	Our robust trees (robust loss bound) TE RTE URTE
breast-cancer 0.3	0.7 81.0 81.8	0.0 27.0 27.0 26.6 46.8 46.8 10.9 24.8 24.8 1.3 9.0 9.5 2.3 15.1 15.9 5.5 14.1 14.2 1.0 8.4 8.4 16.2 26.7 26.8	0.7 13.1	0.7 6.6 6.6
diabetes 0.05	22.7 55.2 61.7		22.1 40.3	27.3 35.7 35.7
cod-rna 0.025	3.4 37.6 47.1		10.2 24.2	6.9 21.3 21.4
MNIST 1-5 0.3	0.1 90.7 96.0		0.3 2.9	0.2 1.3 1.4
MNIST 2-6 0.3	0.4 89.6 100		0.5 6.9	0.7 3.8 4.1
FMNIST shoes 0.1	1.7 99.8 99.9		3.1 13.2	3.6 8.0 8.1
GTS 100-rw 8/255	0.9 6.0 6.1		1.5 9.7	2.6 4.7 4.7
GTS 30-70 8/255	14.2 31.4 32.6		11.5 28.8	13.8 20.9 21.4

- Main metric: RTE (obtained via a mixed-integer solver)
- Better RTE on 8/8 datasets compared to adversarial training (baseline) and Chen et al. (ICML'19)
- Adversarial training doesn't work well for boosted trees (the conclusion is different from the neural networks literature)
- The heuristic robust training of **Chen et al.** works better, but not as good as our approach

Dataset	$l_{\infty} \epsilon$	(star		trees raining) URTE		h cube	ed trees attack) URTE		st trees et al. [9] RTE	(rob		st trees s bound) URTE
breast-cancer	0.3	0.7	81.0	81.8	0.0	27.0	27.0	0.7	13.1	0.7	6.6	6.6
diabetes	0.05	22.7	55.2	61.7	26.6	46.8	46.8	22.1	40.3	27.3	35.7	35.7
cod-rna	0.025	3.4	37.6	47.1	10.9	24.8	24.8	10.2	24.2	6.9	21.3	21.4
MNIST 1-5	0.3	0.1	90.7	96.0	1.3	9.0	9.5	0.3	2.9	0.2	1.3	1.4
MNIST 2-6	0.3	0.4	89.6	100	2.3	15.1	15.9	0.5	6.9	0.7	3.8	4.1
FMNIST shoes	0.1	1.7	99.8	99.9	5.5	14.1	14.2	3.1	13.2	3.6	8.0	8.1
GTS 100-rw	8/255	0.9	6.0	6.1	1.0	8.4	8.4	1.5	9.7	2.6	4.7	4.7
GTS 30-70	8/255	14.2	31.4	32.6	16.2	26.7	26.8	11.5	28.8	13.8	20.9	21.4

- Main metric: RTE (obtained via a mixed-integer solver)
- Better RTE on 8/8 datasets compared to adversarial training (baseline) and Chen et al. (ICML'19)
- Adversarial training doesn't work well for boosted trees (the conclusion is different from the neural networks literature)
- The heuristic robust training of Chen et al. works better, but not as good as our approach
- Note: upper bounds (URTE) are remarkably close to RTE!

Multi-class comparison to provable defenses for CNNs

Dataset	$l_{\infty} \epsilon$	Approach	TE	LRTE	URTE
		Wong et al. [73]*	13.52%	26.16%	26.92%
MNIST	0.3	Xiao et al. [75]	2.67%	7.95%	19.32%
MINIST	0.3	Our robust trees, depth 30	2.68%	12.46%	12.46%
		Gowal et al. [25]	1.66%	6.12%	8.05%
FMNIST	0.1	Wong and Kolter [72]	21.73%	31.63%	34.53%
LMIMIST	0.1	Croce et al. [13]	14.50%	26.60%	30.70%
		Our robust trees, depth 30	14.15%	23.17%	23.17%
		Xiao et al. [75]	59.55%	73.22%	79.73%
		Wong et al. [73]	71.33%	_	78.22%
CIFAR-10	8/255	Our robust trees, depth 4	58.46%	74.69%	74.69%
		Dvijotham et al. [16]	59.38%	67.68%	70.79%
		Gowal et al. [25]	50.51%	65.23%	67.96%

We outperform almost all provable defenses for CNNs, except one recent method (Gowal et al, 2018)!

Distribution of splitting thresholds

Robust training changes the threshold distribution dramatically!

Distribution of splitting thresholds

- Robust training changes the threshold distribution dramatically!
- Adversarial training also changes it, but still has non-robust splits

Adversarial examples for boosted trees

• Models: normal, adversarially trained, our robust boosted trees.

Adversarial examples for boosted trees

- Models: normal, adversarially trained, our robust boosted trees.
- Adversarial training leads to examples with $\|\delta\|_{\infty} < 0.3$
- Our method consistently leads to $\|\delta\|_{\infty} \geq 0.3$

Conclusions and outlook

Our results put the provable defenses for CNNs into a perspective
 so far they have achieved only limited success

- Our results put the provable defenses for CNNs into a perspective
 so far they have achieved only limited success
- Shallow models (i.e. no layer-wise structure) are easy to certify!

- Our results put the provable defenses for CNNs into a perspective
 so far they have achieved only limited success
- Shallow models (i.e. no layer-wise structure) are easy to certify!
- L_p-robustness for image data no applications so far

- Our results put the provable defenses for CNNs into a perspective
 so far they have achieved only limited success
- Shallow models (i.e. no layer-wise structure) are easy to certify!
- L_p-robustness for image data no applications so far
- **Tabular data** matters and it is ubiquitous. Real applications of L_p -robustness are rather there.

- Our results put the provable defenses for CNNs into a perspective
 so far they have achieved only limited success
- Shallow models (i.e. no layer-wise structure) are easy to certify!
- L_p-robustness for image data no applications so far
- **Tabular data** matters and it is ubiquitous. Real applications of L_p -robustness are rather there.
- Robust and interpretable models are needed!

Thanks for your attention! Questions?