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dversarial vulnerability
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Adversarial vulnerability

+.007 x

; T+
2 Sgn(Vel0,2,9))  ign(,J(6,2,1))
“panda” “nematode” “gibbon”
8.2% confidence 99.3 % confidence

57.7% confidence
Source: Goodfellow et al, “Explaining and Harnessing Adversarial Examples”, 2014

@ Problem: small changes in the input = large changes in the output

@ Topic of active research for neural networks and image recognition,
but what about other domains and other classifiers?
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Motivation: other domains (going beyond images)

hours-

. . . capital- capital- _ hative-
occupation relationship race sex gain loss per country salary
week
NaN Wite White  Female 0 1902 a0 United- _gox
States
Exec- United- .
managerial Not-in-family White Male 10520 0 45 States >=50k
NaN  Unmarried Black Female 0 0 3 United- 5o
States
Prof- Asian-Pac- United- __
specialty Husband Islander Male 0 0 40 States 20K
Other- - United-
S Wife Black Female 0 0 50 States <50k
@ Some input feature values can be incorrect: measurement noise, a

human mistake, an adversarially crafted change, etc.
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States
Prof- Asian-Pac- United- __
specialty Husband Islander Male 0 0 40 States 20K
Other- - United-
S Wife Black Female 0 0 50 States <50k

@ Some input feature values can be incorrect: measurement noise, a
human mistake, an adversarially crafted change, etc.

@ For high-stakes decision making, it's necessary to ensure a
reasonable worst-case error rate under possible noise perturbations

@ The expected perturbation range can be specified by domain experts
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Motivation: other classifiers

@ Our paper: we concentrate on boosted decision stumps and trees

@ They are widely adopted in practice — implementations like XGBoost
or LightGBM are used almost in every Kaggle competition

@ Moreover, boosted trees are interpretable which is also an important
practical aspect. Who wants to deploy a black-box?

@ — it is important to develop boosted trees which are robust, but
first we need to understand the reason of their vulnerability

So why do adversarial examples exist?
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Understanding adversarial vulnerability

@ What goes wrong and how to fix it?
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Understanding adversarial vulnerability

@ What goes wrong and how to fix it?

@ We would like to have a large geometric margin for every point

Plain boosted stumps
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solutions = we need to use a robust objective
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Understanding adversarial vulnerability

@ What goes wrong and how to fix it?

@ We would like to have a large geometric margin for every point

Plain boosted stumps
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Robust boosted stumps

Empirical risk minimization does not distinguish the two types of
solutions = we need to use a robust objective

Let’s formalize the problem!
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Adversarial robustness

o What is an adversarial example? Consider x € R?, y € {—1,1},
classifier f : RY — R, some Lp-norm threshold e:

min yf(x +9)
deRd
6], <e. x+deC
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@ Assume x is correctly classified (yf(x) > 0), then x + ¢* is an
adversarial example if x + ¢* is incorrectly classified (yf(x+0*) < 0)
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Adversarial robustness

o What is an adversarial example? Consider x € R?, y € {—1,1},
classifier f : RY — R, some Lp-norm threshold e:

in yf(x+0
gﬁ{gy(ﬂr)

6], <e. x+deC

@ Assume x is correctly classified (yf(x) > 0), then x + ¢* is an
adversarial example if x + ¢* is incorrectly classified (yf(x+0*) < 0)

@ How to measure robustness? Robust test error (RTE):
1 1

. Y Lyg<o = . Y Lys(rar)<o
i=1 i=1

standard zero-one loss robust zero-one loss

@ Finding §*: non-convex opt. problem for NNs and BTs. Exact
mixed integer formulations exist for ReLU-NNs and BTs (slow).
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Training adversarially robust models

Robust optimization problem wrt the set A(e):

L is a usual margin-based loss function (cross-entropy, exp. loss, etc)

°

@ ¢ =0 = just well-known Empirical Risk Minimization

@ Goal: small loss (= large margin) not only at x;, but for every
xi+9 € A(e)
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Training adversarially robust models

e Robust optimization problem wrt the set A(e):

L is a usual margin-based loss function (cross-entropy, exp. loss, etc)

€ =0 = just well-known Empirical Risk Minimization

Goal: small loss (= large margin) not only at x;, but for every
xi+9 € A(e)

Adversarial training: approximately solve the robust loss

= minimization of a lower bound on the objective

Provable defenses: upper bound the robust loss
= minimization of an upper bound on the objective
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Robustness Certification and Robust
Optimization for Boosted Trees
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Tree ensemble: robustness certification

@ The exact certification is NP-hard [Kantchelian et al, ICML 2016]
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@ The exact certification is NP-hard [Kantchelian et al, ICML 2016]

@ But we can derive a tractable lower bound G(x,y) on G(x,y) for an
ensemble of trees:

min yF(x 4+ 0) = min "ol > min vu®
i Yo = iy el d) = L e

x+6) = é(Xay)
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min yF(x+J) = min () min tz

( A
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@ But we can derive a tractable lower bound G(x,y) on G(x,y) for an
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Tree ensemble: robustness certification

@ The exact certification is NP-hard [Kantchelian et al, ICML 2016]
@ But we can derive a tractable lower bound G(x,y) on G(x,y) for an
ensemble of trees:
T T
sy = GOx)

min yF(x+0)= min ul) > min  yu'
oY 0) Jolloze 2 aletd) = 25 e

o G(x,y) >0 = G(x,y) >0, i.e. xis provably robust.
o G(x,y) <0 = x is either robust or non-robust.
@ We get an upper bound on the number of non-robust points, which

yields an upper bound on the robust test error.
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Tree ensemble: robustness certification

@ The exact certification is NP-hard [Kantchelian et al, ICML 2016]

@ But we can derive a tractable lower bound G(x,y) on G(x,y) for an
ensemble of trees:

T T

min yF(x+J) = min () min tz

( ~
u 2 u = G(x
16/, <e T tily aclrd) = 2 AN Vllg (ko) (x,¥)

G(x,y) >0 = G(x,y) >0, i.e. xis provably robust.

°
e G(x,y) <0 = x is either robust or non-robust.

@ We get an upper bound on the number of non-robust points, which

yields an upper bound on the robust test error.

.. . t
@ For a decision tree: mm||5||oo§€yu¢(7tzx+6) can be found exactly by

checking all leafs which are reachable in B(x,€) (O(/) time)
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Tree ensemble: from certification to robust optimization

@ Now we know how to lower bound the certification problem:

min yF(x+ 9
161 oo <€ ( )
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Tree ensemble: from certification to robust optimization

@ Now we know how to lower bound the certification problem:

”(srlllrun yF(x +6)

@ Does it help to solve the min-max problem?

n

min max L(f(x;+6;0),y;
0 = I8l <e (A )vi)

@ Yes! For monotonically decreasing L (e.g. exp. loss):

”gllax Ly F(x+9¢)) = L<”r‘r‘1n yF(x+5))
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@ Now we know how to lower bound the certification problem:

min yF(x+ 9
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@ Does it help to solve the min-max problem?
n

min max L(f(x;+6;0),y;
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@ Yes! For monotonically decreasing L (e.g. exp. loss):
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Tree ensemble: from certification to robust optimization

@ Now we know how to lower bound the certification problem:

min yF(x+ 9
161 oo <€ ( )

Does it help to solve the min-max problem?

n

min max L(f(x;+6;0),y;
0 o Idlloc=e (7 ) ¥i)

Yes! For monotonically decreasing L (e.g. exp. loss):

max L(y F(x+9)) =L min yF(x+9)),
ll6]] oo <€ b F( ) <||5\ gey( ))

loo

@ — we can calculate an upper bound on the robust loss.

Now: come up with a proper update for a new weak learner.
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Tree ensemble: robust optimization

@ The robust loss for a tree ensemble can be upper bounded as
T
Hgﬁli}éell@m(wi +0) + i f (i + 5)> = L( Hg‘l‘ﬂinge [;yift(xi +0) +yif(zi + 5)])

T
< L(Z min y; fi(z; +0) + min vy, f(z; + 5)) = L(é(mi,yi) + min y;f(z; + 5))

i1 Iollo<e I8l <e 16]loo <
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Tree ensemble: robust optimization

@ The robust loss for a tree ensemble can be upper bounded as
T
Hgﬁli}éell@"’F(mi +0) + i f (i + 5)) = L< Hg‘l‘ﬂinge [;yift(wi +0) +yif(zi + 5)])

T
< L(Z min y; fi(z; +0) + min vy, f(z; + 5)) = L(G(mi,yi) + min y;f(z; + 5))

i1 Iollo<e I8l <e 16]loo <

@ For a particular node during the tree construction process, the
robust objective is (/: set of points reachable for the current leaf):

min L{ G(xi,yi) + yiw + min yiwe 1y, 45,50
wy,wrER el [0;]<e
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Tree ensemble: robust optimization

@ The robust loss for a tree ensemble can be upper bounded as
T
[Zyift(l’qi +0) +yif(z + o)])

max L<yiF($i+5)+yif(x1:+5)> :L<\|51\]\mn<e
o= o)

16l oo <€

T
< L(Z min y; fi(v; +0) + Hllin yif(xi +0)

lI6]l o <e I8l <e

) = L(G(xi,yz‘) + H(sl‘ningeiﬁf(% + 5))

t=1
@ For a particular node during the tree construction process, the
robust objective is (/: set of points reachable for the current leaf):

min L (C?‘(xl Yi) + yiw + gnig yiwrﬂmuw‘—ﬁjzb)
| <€

wy,wrER

el

@ How to solve the minimization problem? Just a case distinction:
{1 if b—a;; < —€ or (|b— ;5| < e and y;w, < 0)

min yinlIij+5)2b = YiWr -

|95]<e or (|b — x| < e and y;w, > 0)

0 ifb—l’l'j>€

Maksym Andriushchenko (EPFL) 11



Tree ensemble: robust optimization

@ Denoting the case distinction as 1(x;, yi; w;), our final robust
objective is:

L*(j,b) = min L (é(fﬂz’, yi) + yiw + yowe (g, yis wr))
wlawreR el
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@ Denoting the case distinction as 1(x;, yi; w;), our final robust
objective is:
L*(j,b) = min L (é(fﬂz’, yi) + yiwy + yiwe 1z, ys; wr))
wlawreR el

@ The minimization wrt w;, w, can be done using coordinate descent
(the objective is convex in w;, w;)

o Important: we are guaranteed to decrease the robust loss after every
weak learner

e Complexity: O(n?), while XGBoost has O(n log n)
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Tree ensemble: robust optimization

@ Denoting the case distinction as 1(x;, yi; w;), our final robust
objective is:
L*(j,b) = min L (é(fﬂz’, yi) + yiwy + yiwe 1z, ys; wr))
wlawreR el

@ The minimization wrt w;, w, can be done using coordinate descent
(the objective is convex in w;, w;)

o Important: we are guaranteed to decrease the robust loss after every
weak learner

e Complexity: O(n?), while XGBoost has O(n log n)

That’s it for boosted trees
Now what is so special about boosted stumps (one-level trees)?

Maksym Andriushchenko (EPFL) 12



Results for boosted stumps

@ The certification problem can be solved exactly!

min yF(x+§
16]]oo <€ ( )

Maksym Andriushchenko (EPFL) 13



Results for boosted stumps

@ The certification problem can be solved exactly!

min yF(x+§
16]]oo <€ ( )

@ Proof idea: the objective is separable over each dimension = just
solve d simple one-dimensional optimization problems

Maksym Andriushchenko (EPFL) 13



Results for boosted stumps

@ The certification problem can be solved exactly!

min yF(x+§
16]]oo <€ ( )

@ Proof idea: the objective is separable over each dimension = just
solve d simple one-dimensional optimization problems

@ As a result, the robust loss can be also calculated exactly

(3 H PO 0 = i 9P 8)

Maksym Andriushchenko (EPFL) 13



Results for boosted stumps

The certification problem can be solved exactly!

min yF(x+§
16]]oo <€ ( )

@ Proof idea: the objective is separable over each dimension = just
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Results for boosted stumps

The certification problem can be solved exactly!

min yF(x+§
16]]oo <€ ( )

@ Proof idea: the objective is separable over each dimension = just
solve d simple one-dimensional optimization problems

@ As a result, the robust loss can be also calculated exactly

(3 H PO 0 = i 9P 8)

Moreover, we also derive an efficient update of the ensemble.

= interesting result since previously exact certification and
robust optimization was known only for linear classifiers
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Experiments
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Dataset | # classes # features # train = # test Reference
breast-cancer 2 10 546 137 Dua and Graff (2017)
diabetes 2 8 614 154 Smith et al. (1988)
cod-rna 2 8 59535 271617 Uzilov et al. (2006)
MNIST 1-5 2 784 12163 2027 LeCun (1998)
MNIST 2-6 2 784 11876 1990 LeCun (1998)
FMNIST shoes 2 784 12000 2000 Xiao et al. (2017)
GTS 100-rw 2 3072 4200 1380  Stallkamp et al. (2012)
GTS 30-70 2 3072 2940 930 Stallkamp et al. (2012)
MNIST 10 784 60000 10000 LeCun (1998)
FMNIST 10 784 60000 10000 Xiao et al. (2017)
CIFAR-10 10 3072 50000 10000 Krizhevsky (2009)

@ We test our methods on various datasets, including some image
classification datasets (to compare to the literature).
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Dataset | # classes # features # train = # test Reference
breast-cancer 2 10 546 137 Dua and Graff (2017)
diabetes 2 8 614 154 Smith et al. (1988)
cod-rna 2 8 59535 271617 Uzilov et al. (2006)
MNIST 1-5 2 784 12163 2027 LeCun (1998)
MNIST 2-6 2 784 11876 1990 LeCun (1998)
FMNIST shoes 2 784 12000 2000 Xiao et al. (2017)
GTS 100-rw 2 3072 4200 1380  Stallkamp et al. (2012)
GTS 30-70 2 3072 2940 930 Stallkamp et al. (2012)
MNIST 10 784 60000 10000 LeCun (1998)
FMNIST 10 784 60000 10000 Xiao et al. (2017)
CIFAR-10 10 3072 50000 10000 Krizhevsky (2009)

@ We test our methods on various datasets, including some image
classification datasets (to compare to the literature).

@ However, our methods are primarily suitable for tabular data
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Boosted trees: results

Normal trees
(standard training)

Adv. trained trees
(with cube attack)

Robust trees
Chen et al. [9]

Our robust trees
(robust loss bound)

Dataset loo € TE RTE URTE TE RTE URTE TE RTE TE RTE URTE
breast-cancer 0.3 0.7 81.0 81.8 0.0 27.0 27.0 0.7 13.1 0.7 66 6.6
diabetes 0.05 227 552 61.7 26.6 46.8 46.8 221 403 273 35.7 35.7
cod-rna 0.025 34 376 47.1 10.9 24.8 248 102 242 69 21.3 214
MNIST 1-5 0.3 0.1 90.7 96.0 1.3 90 95 0.3 29 02 13 1.4
MNIST 2-6 0.3 04 89.6 100 23 151 159 0.5 6.9 0.7 38 41
FMNIST shoes 0.1 1.7 998 999 55 141 142 3.1 132 36 80 8.1
GTS 100-rw  8/255 09 60 6.1 1.0 84 84 1.5 9.7 26 47 47
GTS 30-70 8/255 | 142 314 326 16.2 26.7 26.8 11.5 2838 13.8 209 214

@ Main metric: RTE (obtained via a mixed-integer solver)

Maksym Andriushchenko (EPFL)
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Boosted trees: results

Normal trees Adv. trained trees Robust trees Our robust trees
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Boosted trees: results

Normal trees
(standard training)

Adv. trained trees
(with cube attack)

Robust trees
Chen et al. [9]

Our robust trees
(robust loss bound)

Dataset lec | TE RTE URTE | TE RTE URTE | TE RTE | TE RTE URTE
breast-cancer 0.3 07 810 818 | 00 270 270 | 07 131 | 07 66 66
diabetes 005 | 227552 617 | 266468 468 | 221 403 | 27.3 357 357
cod-rna 0.025 | 34 376 47.1 | 109248 248 | 102 242 | 69 213 214
MNIST 15 0.3 0.1 907 960 | 13 90 95 | 03 29 02 13 14
MNIST2-6 0.3 04 896 100 | 23 151 159 | 05 69 0.7 38 41
FMNIST shoes 0.1 17 98 999 | 55 141 142 | 3.1 132 | 36 80 8.
GTS 100-rw  8/255 | 0.9 60 6.1 10 84 84 15 97 26 47 47
GTS30-70  8/255 | 142314 326 | 162267 268 | 115 288 | 138209 214

@ Main metric: RTE (obtained via a mixed-integer solver)

@ Better RTE on 8/8 datasets compared to adversarial training

(baseline) and Chen et al. (ICML'19)

@ Adversarial training doesn't work well for boosted trees (the
conclusion is different from the neural networks literature)

good as our approach

Maksym Andriushchenko (EPFL)
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@ Main metric: RTE (obtained via a mixed-integer solver)

@ Better RTE on 8/8 datasets compared to adversarial training

(baseline) and Chen et al. (ICML'19)

@ Adversarial training doesn't work well for boosted trees (the
conclusion is different from the neural networks literature)

good as our approach

Maksym Andriushchenko (EPFL)

The heuristic robust training of Chen et al. works better, but not as

Note: upper bounds (URTE) are remarkably close to RTE!
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Multi-class comparison to provable defenses for CNNs

Dataset lo €  Approach TE LRTE URTE
Wong et al. [73]" 13.52% 26.16%  26.92%
Xiao et al. [75] 2.67% 795%  19.32%
MNIST 0.3 Our robust trees, depth 30  2.68%  12.46%  12.46%
Gowal et al. [25] 1.66% 6.12% 8.05%
Wong and Kolter [72] 21.73% 31.63% 34.53%
FMNIST 0.1 Croce et al. [13] 14.50% 26.60%  30.70%
Our robust trees, depth 30  14.15% 23.17% 23.17%
Xiao et al. [75] 59.55% 7322%  79.73%
Wong et al. [73] 71.33% - 78.22%
CIFAR-10  8/255 Our robust trees, depth 4 58.46% 74.69%  74.69%
Dvijotham et al. [16] 59.38% 67.68%  70.79%
Gowal et al. [25] 50.51% 6523% 67.96%

We outperform almost all provable defenses for CNNs,
except one recent method (Gowal et al, 2018)!
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Distribution of splitting thresholds

MNIST 2-6: plain trees MNIST 2-6: adv. trained trees MNIST 2-6: robust trees
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@ Robust training changes the threshold distribution dramatically!
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@ Robust training changes the threshold distribution dramatically!

@ Adversarial training also changes it, but still has non-robust splits
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Adversarial examples for boosted trees
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@ Models: normal, adversarially trained, our robust boosted trees.
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[16]-=0.020 116]|-=0.297 1161].=0.303
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@ Models: normal, adversarially trained, our robust boosted trees.

o Adversarial training leads to examples with ||0]| < 0.3

e Our method consistently leads to ||6]|,, > 0.3

Maksym Andriushchenko (EPFL)
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Conclusions and outlook
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@ Our results put the provable defenses for CNNs into a perspective
=—> so far they have achieved only limited success
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Our results put the provable defenses for CNNs into a perspective
=—> so far they have achieved only limited success

Shallow models (i.e. no layer-wise structure) are easy to certify!

(]

L,-robustness for image data — no applications so far

Tabular data matters and it is ubiquitous. Real applications of
L,-robustness are rather there.

Robust and interpretable models are needed!
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Thanks for your attention! Questions?

Maksym Andriushchenko (EPFL)
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