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Adversarial vulnerability

Source: Goodfellow et al, “Explaining and Harnessing Adversarial Examples”, 2014

Problem: small changes in the input ⇒ large changes in the output

Topic of active research for neural networks and image recognition,
but what about other domains and other classifiers?
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Motivation: other domains (going beyond images)

Some input feature values can be incorrect: measurement noise, a
human mistake, an adversarially crafted change, etc.

For high-stakes decision making, it’s necessary to ensure a
reasonable worst-case error rate under possible noise perturbations

The expected perturbation range can be specified by domain experts
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Motivation: other classifiers

Our paper: we concentrate on boosted decision stumps and trees

They are widely adopted in practice – implementations like XGBoost
or LightGBM are used almost in every Kaggle competition

Moreover, boosted trees are interpretable which is also an important
practical aspect. Who wants to deploy a black-box?

=⇒ it is important to develop boosted trees which are robust, but
first we need to understand the reason of their vulnerability

So why do adversarial examples exist?
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Understanding adversarial vulnerability

What goes wrong and how to fix it?

We would like to have a large geometric margin for every point
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Empirical risk minimization does not distinguish the two types of
solutions ⇒ we need to use a robust objective

Let’s formalize the problem!
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Adversarial robustness

What is an adversarial example? Consider x ∈ Rd , y ∈ {−1, 1},
classifier f : Rd → R, some Lp-norm threshold ε:

min
δ∈Rd

yf (x + δ)

‖δ‖p ≤ ε, x + δ ∈ C

Assume x is correctly classified (yf (x) > 0), then x + δ∗ is an
adversarial example if x + δ∗ is incorrectly classified (yf (x + δ∗) < 0)

How to measure robustness? Robust test error (RTE):

1

n

n∑
i=1

1yf (x)<0︸ ︷︷ ︸
standard zero-one loss

→ 1

n

n∑
i=1

1yf (x+δ∗)<0︸ ︷︷ ︸
robust zero-one loss

Finding δ∗: non-convex opt. problem for NNs and BTs. Exact
mixed integer formulations exist for ReLU-NNs and BTs (slow).
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Training adversarially robust models

Robust optimization problem wrt the set ∆(ε):

min
θ

n∑
i=1

max
δ∈∆(ε)

L(f (xi + δ; θ), yi )

L is a usual margin-based loss function (cross-entropy, exp. loss, etc)

ε = 0 =⇒ just well-known Empirical Risk Minimization

Goal: small loss (⇒ large margin) not only at xi , but for every
xi + δ ∈ ∆(ε)

Adversarial training: approximately solve the robust loss
=⇒ minimization of a lower bound on the objective

Provable defenses: upper bound the robust loss
=⇒ minimization of an upper bound on the objective
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Robustness Certification and Robust
Optimization for Boosted Trees
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Tree ensemble: robustness certification

The exact certification is NP-hard [Kantchelian et al, ICML 2016]

But we can derive a tractable lower bound G̃ (x , y) on G (x , y) for an
ensemble of trees:

min
‖δ‖∞≤ε

yF (x + δ) = min
‖δ‖∞≤ε

T∑
t=1

yu
(t)
qt(x+δ) ≥

T∑
t=1

min
‖δ‖∞≤ε

yu
(t)
qt(x+δ) := G̃ (x , y)

G̃ (x , y) ≥ 0 =⇒ G (x , y) ≥ 0, i.e. x is provably robust.

G̃ (x , y) < 0 =⇒ x is either robust or non-robust.

We get an upper bound on the number of non-robust points, which
yields an upper bound on the robust test error.

For a decision tree: min‖δ‖∞≤εyu
(t)
qt(x+δ) can be found exactly by

checking all leafs which are reachable in B∞(x , ε) (O(l) time)
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Tree ensemble: from certification to robust optimization

Now we know how to lower bound the certification problem:

min
‖δ‖∞≤ε

yF (x + δ)

Does it help to solve the min-max problem?

min
θ

n∑
i=1

max
‖δ‖∞≤ε

L(f (xi + δ; θ), yi )

Yes! For monotonically decreasing L (e.g. exp. loss):

max
‖δ‖∞≤ε

L(y F (x + δ)) = L
(

min
‖δ‖∞≤ε

yF (x + δ)
)
,

=⇒ we can calculate an upper bound on the robust loss.

Now: come up with a proper update for a new weak learner.
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Tree ensemble: robust optimization

The robust loss for a tree ensemble can be upper bounded as

For a particular node during the tree construction process, the
robust objective is (I : set of points reachable for the current leaf):

How to solve the minimization problem? Just a case distinction:
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Tree ensemble: robust optimization

Denoting the case distinction as 1(xi , yi ;wr ), our final robust
objective is:

The minimization wrt wl , wr can be done using coordinate descent
(the objective is convex in wl , wr )

Important: we are guaranteed to decrease the robust loss after every
weak learner

Complexity: O(n2), while XGBoost has O(n log n)

That’s it for boosted trees
Now what is so special about boosted stumps (one-level trees)?
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Results for boosted stumps

The certification problem can be solved exactly!

min
‖δ‖∞≤ε

yF (x + δ)

Proof idea: the objective is separable over each dimension =⇒ just
solve d simple one-dimensional optimization problems

As a result, the robust loss can be also calculated exactly

max
δ∈∆∞(ε)

L(y F (x + δ)) = L
(

min
δ∈∆∞(ε)

yF (x + δ)
)
,

Moreover, we also derive an efficient update of the ensemble.

=⇒ interesting result since previously exact certification and
robust optimization was known only for linear classifiers
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Experiments

We test our methods on various datasets, including some image
classification datasets (to compare to the literature).

However, our methods are primarily suitable for tabular data
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Boosted trees: results

Main metric: RTE (obtained via a mixed-integer solver)

Better RTE on 8/8 datasets compared to adversarial training
(baseline) and Chen et al. (ICML’19)

Adversarial training doesn’t work well for boosted trees (the
conclusion is different from the neural networks literature)

The heuristic robust training of Chen et al. works better, but not as
good as our approach

Note: upper bounds (URTE) are remarkably close to RTE!
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Multi-class comparison to provable defenses for CNNs

We outperform almost all provable defenses for CNNs,
except one recent method (Gowal et al, 2018)!

Maksym Andriushchenko (EPFL) 17



Distribution of splitting thresholds

Robust training changes the threshold distribution dramatically!

Adversarial training also changes it, but still has non-robust splits
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Adversarial examples for boosted trees

Models: normal, adversarially trained, our robust boosted trees.

Adversarial training leads to examples with ‖δ‖∞ < 0.3

Our method consistently leads to ‖δ‖∞ ≥ 0.3
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Conclusions and outlook
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Outlook

Our results put the provable defenses for CNNs into a perspective
=⇒ so far they have achieved only limited success

Shallow models (i.e. no layer-wise structure) are easy to certify!

Lp-robustness for image data – no applications so far

Tabular data matters and it is ubiquitous. Real applications of
Lp-robustness are rather there.

Robust and interpretable models are needed!
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Thanks for your attention! Questions?
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