On the Relationship Between Self-Attention and Convolutional Layers

Jean-Baptiste Cordonnier

with Andreas Loukas and Martin Jaggi

Swiss Machine Learning Days November 13th, 2019

Conclusion

On the Relationship between Self-Attention and Convolutional Layers jbcordonnier.com

A Multi-Head Self-Attention Layer can express any Convolutional Layer.

Building block of state of the art NLP models

Transformers GPT2 (Vaswani et al. 2017) (Radford et al. 2018)

BERT (Devlin et al. 2019)

are competitive with CNNs.

applied to vision task, achieve same performance, at same computation cost.

(Bello et al. 2019) (Ramachandran et al. 2019)

Compute new representation for each query token

Attention probabilities

Same performance as ResNet on ImageNet (Ramachandran, 2019)

Attention probabilities

Same performance as ResNet on ImageNet (Ramachandran, 2019)

Attention probabilities

Same performance as ResNet on ImageNet (Ramachandran, 2019)

Attention probabilities

What if attention probabilities could look like this?

What if attention probabilities could look like this?

Then the multi-head self-attention could express any 3x3 convolution

Theorem 1. A multi-head self-attention layer with N_h heads of dimension D_h , output dimension D_{out} and a relative positional encoding of dimension $D_p \geq 3$ can express any convolutional layer of kernel size $\sqrt{N_h} \times \sqrt{N_h}$ and $\min(D_h, D_{out})$ output channels.

What if attention probabilities could look like this?

Then the multi-head self-attention could express any 3x3 convolution

Theorem 1. A multi-head self-attention layer with N_h heads of dimension D_h , output dimension D_{out} and a relative positional encoding of dimension $D_p \geq 3$ can express any convolutional layer of kernel size $\sqrt{N_h} \times \sqrt{N_h}$ and $\min(D_h, D_{out})$ output channels.

What if attention probabilities could look like this?

Then the multi-head self-attention could express any 3x3 convolution

Theorem 1. A multi-head self-attention layer with N_h heads of dimension D_h , output dimension D_{out} and a relative positional encoding of dimension $D_p \geq 3$ can express any convolutional layer of kernel size $\sqrt{N_h} \times \sqrt{N_h}$ and $\min(D_h, D_{out})$ output channels.

Conclusion

On the Relationship between Self-Attention and Convolutional Layers jbcordonnier.com

A Multi-Head Self-Attention Layer can express any Convolutional Layer.

Building block of state of the art NLP models

Transformers GPT2 (Vaswani et al. 2017) (Radford et al. 2018)

BERT (Devlin et al. 2019)

are competitive with CNNs.

applied to vision task, achieve same performance, at same computation cost.

(Bello et al. 2019) (Ramachandran et al. 2019)