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How to perform Entity Linking?

• Use Dictionaries/Alias-tables/Probability-Maps
– High quality candidate generation
– Prior information: a strong feature

• Other Features:
– Local/Global context
– Coherence in disambiguated entities

• Sophisticated Supervised Models
– XGBoost
– Deep Neural Networks

Candidate Entity Prior P(e|m)

Michael_Jordan 0.997521

Michael_I._Jordan 0.000826

Michael_Jordan_statue 0.000826

Michael_Jordan_(footballer) 0.000826

“Michael Jordan”

Candidate Entity Prior P(e|m)

Science 0.737955

Science_(journal) 0.207151

Science_Channel 0.005036

“Science”

“NLP Progress: Entity Linking”, http://nlpprogress.com/english/entity_linking.html

Sky is the limit J!

[NAACL’18] SOTA P@1 = 95.9

http://nlpprogress.com/english/entity_linking.html
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“Unaddressed” Research Questions
• Are dictionaries naturally available across use-cases?

– Lack of annotated data
• Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora

– Noisy and rapidly evolving annotated data
• Web queries

• Can existing SOTA methods operate at Web Scale?
– We can only hope! • NAACL’18 SOTA: 9 hours to train using 16 

threads on CoNLL benchmark of only 18K 
entity mentions

• Some DL methods take more than 1 day

Scalable EL without Annotated Data
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Entity Linking without Annotated Data

• Candidate generator

• Entity embeddings
– Learn from the underlying graph
– Learn from textual descriptions of entities

• Collective disambiguation
– Ensures “topical coherence” among entities in a document
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• Simple yet practical
– Candidates contain all tokens of the mention
– Example: For mention “Michael Jordan”

• Michael Jordan (basketball player) and Michael Jordan 
(computer scientist) are candidates

• Michael Jackson is not 

– Rank candidates using entity degree (relates to 
popularity)

• Aliases of entity names to boost recall
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Eigenthemes for Entity Disambiguation

  Similarity
  Function

    Subspace
     Learning

 Mention-Wise
     Ranking

Collection of Documents
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Subspace Learning: Intuition

Candidate Entity

Michael_Jordan

Michael_I._Jordan

Michael_Jordan_statue

Michael_Jordan_(footballer)

“Michael Jordan”
Candidate Entity

Science

Science_(journal)

Science_Channel

“Science”

Subspace captures the main “theme” of 
a document

Top-k d-dimensional eigen vectors of the 
covariance matrix of candidate entity 

embeddings in a document

External signals to enrich subspace learning
– Eigendecomposition of the weighted covariance matrix
– Entity embeddings with high weights act as “anchor embeddings”

• Prioritized in subspace learning
– Weighting scheme: Inverse of the rank computed using entity degree information
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• Datasets
– CoNLL: Most popular benchmark dataset for EL, based on CoNLL 2003 shared task
– More in the Paper:

• WNED (Wiki and Clueweb): Benchmarks from English Wikipedia and Clueweb corpora
• Wikilinks-Random: Tables extracted from English Wikipedia

• Referent KB: Wikidata

• Embeddings:
– Words: Pre-trained Word2vec
– Entity embeddings:

• Deepwalk trained on Wikidata
• Average of Word2vec vectors of entity description words
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Impact of entity embedding technique on EL
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• NameMatch:

– Retrieves all entities whose names match exactly with the mention string
– Ties are broken using entity degree

• Degree:
– Candidates are ranked based on entity degree
– Highest degree candidate entity is the prediction for a given mention

• Avg and WAvg:
– (Weighted)Avg of candidate embeddings in a document as its representation
– Most similar candidate (Cosine Sim) with the doc representation is the prediction

• Le and Titov: Uses weak supervision or distant learning
– Candidate entities of a mention (which might miss the ‘true’ entity) are scored 

higher than a number of randomly sampled entities
– Rank based on similarity between candidates and the mention context
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