Entity Linking via Low-rank Subspaces

Akhil Arora, Alberto García-Durán, and Bob West SMLD

November 13, 2019

"Michael Jordan is one of the leading figures in machine learning, and in 2016 Science reported him as the world's most influential computer scientist."

"Michael Jordan is one of the leading figures in machine learning, and in 2016 <u>Science</u> reported him as the world's most influential computer scientist."

"Michael Jordan is one of the leading figures in machine learning, and in 2016 <u>Science</u> reported him as the world's most influential computer scientist."

"Michael Jordan is one of the leading figures in machine learning, and in 2016 <u>Science</u> reported him as the world's most influential computer scientist."

en.wikipedia.org/wiki/Michael_I._Jordan

<u>"Michael Jordan</u> is one of the leading figures in machine learning, and in 2016 <u>Science</u> reported him as the world's most influential computer scientist."

en.wikipedia.org/wiki/Science_(journal)

• Use Dictionaries/Alias-tables/Probability-Maps

• Use Dictionaries/Alias-tables/Probability-Maps

Candidate Entity	Prior P(e m)
Michael_Jordan	0.997521
Michael_IJordan	0.000826
Michael_Jordan_statue	0.000826
Michael_Jordan_(footballer)	0.000826

• Use Dictionaries/Alias-tables/Probability-Maps

Candidate Entity		Pri	or P(e m)	
Michael_Jordan		0	.997521	
Michael <u></u>	Candidate Enti	ty	Prior P(e	m)
Michael_Jo	Science		0.73795	5
Michael_Jord	Science_(journa	al)	0.20715	1
	Science_Chann	el	0.00503	6
	"S	cie	nce"	

- Use Dictionaries/Alias-tables/Probability-Maps
 - High quality candidate generation
 - Prior information: a strong feature

Candidate Entity		Pri	or P(e m)	
Michael_Jordan		0	.997521	
Michael _.	Candidate Enti	ty	Prior P(e	m)
Michael_Jo	Science		0.73795	5
Michael_Jord	Science_(journa	al)	0.20715	1
	Science_Chann	el	0.00503	6
	"S	cie	nce"	

- Use Dictionaries/Alias-tables/Probability-Maps
 - High quality candidate generation
 - Prior information: a strong feature
- Other Features:
 - Local/Global context
 - Coherence in disambiguated entities

"Michael	Jordan"

Candidate Entity		Pri	or P(e m)	
Michael_Jordan		0	.997521	
Michael _.	Candidate Entity		Prior P(e	m)
Michael_Jo	Science		0.73795	5
Michael_Jord	Science_(journal)		0.20715	1
	Science_Channel 0.		0.00503	6
"Science"				

- Use Dictionaries/Alias-tables/Probability-Maps
 - High quality candidate generation
 - Prior information: a strong feature
- Other Features:
 - Local/Global context
 - Coherence in disambiguated entities
- Sophisticated Supervised Models
 - XGBoost
 - Deep Neural Networks

Candidate Entity		Pri	or P(e m)	
Michael_Jordan		0	.997521	
Michael	Candidate Entity		Prior P(e	m)
Michael_Jo	Science		0.73795	5
Michael_Jord	Science_(journa	al)	0.20715	1
	Science_Channel 0.0050		0.00503	6
	"S	cie	nce"	

- Use Dictionaries/Alias-tables/Probability-Maps
 - High quality candidate generation
 - Prior information: a strong feature
- Other Features:
 - Local/Global context
 - Coherence in disambiguated entities
- Sophisticated Supervised Models
 - XGBoost

Sky is the limit 🙂!

Deep Neural Networks

Candidate Entity		Pri	or P(e m)	
Michael_Jordan		0	.997521	
Michael_	Candidate Entity		Prior P(e	m)
Michael_Jo	Science		0.73795	5
Michael_Jord	Science_(journal)		0.20715	1
	Science_Channel 0.005036		6	
"Science"				

- Use Dictionaries/Alias-tables/Probability-Maps
 - High quality candidate generation
 - Prior information: a strong feature
- Other Features:
 - Local/Global context
 - Coherence in disambiguated entities
- Sophisticated Supervised Models
 - XGBoost

- Sky is the limit 🙂!
- Deep Neural Networks

Candidate Entity		Pri	or P(e m)	
Michael_Jordan		0	.997521	
Michael_	Candidate Entity		Prior P(e	m)
Michael_Jo	Science		0.73795	5
Michael_Jord	Science_(journal)		0.20715	1
	Science_Channel 0.005036		6	
"Science"				

• Are dictionaries naturally available across use-cases?

- Are dictionaries naturally available across use-cases?
 - Lack of annotated data
 - Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
 - Noisy and rapidly evolving annotated data
 - Web queries

- Are dictionaries naturally available across use-cases?
 - Lack of annotated data
 - Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
 - Noisy and rapidly evolving annotated data
 - Web queries

• Can existing SOTA methods operate at Web Scale?

- Are dictionaries naturally available across use-cases?
 - Lack of annotated data
 - Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
 - Noisy and rapidly evolving annotated data
 - Web queries
- Can existing SOTA methods operate at Web Scale?
 - We can only hope!

- Are dictionaries naturally available across use-cases?
 - Lack of annotated data
 - Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
 - Noisy and rapidly evolving annotated data
 - Web queries
- Can existing SOTA methods operate at Web Scale?

- Are dictionaries naturally available across use-cases?
 - Lack of annotated data
 - Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
 - Noisy and rapidly evolving annotated data
 - Web queries

Can existing SOTA methods operate at Web Scale?

- NAACL'18 SOTA: 9 hours to train using 16 threads on CoNLL benchmark of only 18K entity mentions
 - Some DL methods take more than 1 day

- Are dictionaries naturally available across use-cases?
 - Lack of annotated data
 - Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
 - Noisy and rapidly evolving annotated data
 - Web queries

• Can existing SOTA methods operate at Web Scale?

- NAACL'18 SOTA: 9 hours to train using 16 threads on CoNLL benchmark of only 18K entity mentions
 - Some DL methods take more than 1 day

Scalable EL without Annotated Data

Entity Linking without Annotated Data

• Candidate generator

- Entity embeddings
 - Learn from the underlying graph
 - Learn from textual descriptions of entities
- Collective disambiguation
 - Ensures "topical coherence" among entities in a document

Candidate Generation

• Simple yet practical

- Candidates contain all tokens of the mention
- Example: For mention "Michael Jordan"
 - Michael Jordan (basketball player) and Michael Jordan (computer scientist) are candidates
 - Michael Jackson is not
- Rank candidates using entity degree (relates to popularity)

Candidate Generation

• Simple yet practical

- Candidates contain all tokens of the mention
- Example: For mention "Michael Jordan"
 - Michael Jordan (basketball player) and Michael Jordan (computer scientist) are candidates
 - Michael Jackson is not
- Rank candidates using entity degree (relates to popularity)
- Aliases of entity names to boost recall

Eigenthemes for Entity Disambiguation

Subspace captures the main "theme" of a document

"Science"	"Michael Jordan"
Candidate Entity	Candidate Entity
Science	Michael_Jordan
Science_(journal)	Michael_IJordan
Science_Channel	Michael_Jordan_statue
	Michael_Jordan_(footballer)

Subspace captures the main "theme" of a document

"Science"	"Michael Jordan"
Candidate Entity	Candidate Entity
Science	Michael_Jordan
Science_(journal)	Michael_IJordan
Science_Channel	Michael_Jordan_statue
	Michael Jordan (footballer)

Top-k d-dimensional eigen vectors of the covariance matrix of candidate entity embeddings in a document

Subspace captures the main "theme" of a document

"Science"	"Michael Jordan"
Candidate Entity	Candidate Entity
Science	Michael_Jordan
Science_(journal)	Michael_IJordan
Science_Channel	Michael_Jordan_statue
	Michael Jordan (footballer)

Top-k d-dimensional eigen vectors of the covariance matrix of candidate entity embeddings in a document

Subspace captures the main "theme" of a document

"Science"	"Michael Jordan"
Candidate Entity	Candidate Entity
Science	Michael_Jordan
Science_(journal)	Michael_IJordan
Science_Channel	Michael_Jordan_statue
	Michael Jordan (footballer)

Top-k d-dimensional eigen vectors of the covariance matrix of candidate entity embeddings in a document

External signals to enrich subspace learning

Eigendecomposition of the weighted covariance matrix

Subspace captures the main "theme" of a document

"Science"	"Michael Jordan"
Candidate Entity	Candidate Entity
Science	Michael_Jordan
Science_(journal)	Michael_IJordan
Science_Channel	Michael_Jordan_statue
	Michael Jordan (footballer)

Top-k d-dimensional eigen vectors of the covariance matrix of candidate entity embeddings in a document

External signals to enrich subspace learning

- Eigendecomposition of the weighted covariance matrix
- Entity embeddings with high weights act as "anchor embeddings"
 - Prioritized in subspace learning
- Weighting scheme: Inverse of the rank computed using entity degree information

Setup

- Datasets
 - CoNLL: Most popular benchmark dataset for EL, based on CoNLL 2003 shared task
 - More in the Paper:
 - WNED (Wiki and Clueweb): Benchmarks from English Wikipedia and Clueweb corpora
 - Wikilinks-Random: Tables extracted from English Wikipedia
- Referent KB: Wikidata

Setup

- Datasets
 - CoNLL: Most popular benchmark dataset for EL, based on CoNLL 2003 shared task
 - More in the Paper:
 - WNED (Wiki and Clueweb): Benchmarks from English Wikipedia and Clueweb corpora
 - Wikilinks-Random: Tables extracted from English Wikipedia
- Referent KB: Wikidata
- Embeddings:
 - Words: Pre-trained Word2vec
 - Entity embeddings:
 - Deepwalk trained on Wikidata
 - Average of Word2vec vectors of entity description words

Tuning on CoNLL-Val

Baselines

• NameMatch:

- Retrieves all entities whose names match exactly with the mention string
- Ties are broken using entity degree

Baselines

• NameMatch:

- Retrieves all entities whose names match exactly with the mention string
- Ties are broken using entity degree
- Degree:
 - Candidates are ranked based on entity degree
 - Highest degree candidate entity is the prediction for a given mention

• Avg and WAvg:

- (Weighted)Avg of candidate embeddings in a document as its representation
- Most similar candidate (Cosine Sim) with the doc representation is the prediction

Baselines

• NameMatch:

- Retrieves all entities whose names match exactly with the mention string
- Ties are broken using entity degree
- Degree:
 - Candidates are ranked based on entity degree
 - Highest degree candidate entity is the prediction for a given mention
- Avg and WAvg:
 - (Weighted)Avg of candidate embeddings in a document as its representation
 - Most similar candidate (Cosine Sim) with the doc representation is the prediction
- Le and Titov: Uses weak supervision or distant learning
 - Candidate entities of a mention (which might miss the 'true' entity) are scored higher than a number of randomly sampled entities
 - Rank based on similarity between candidates and the mention context

Is Eigenthemes Effective?

Datacat	Precision@1						
Dataset	NAMEMATCH	Avg	Eigen	WAVG	Degree	WEigen	Ceiling
CoNLL-Test	0.412	0.394	0.473	0.488	0.571	0.617	0.824

dlab

Is Eigenthemes Effective?

Easy Mentions: Degree ranks gold entity at the top

Dataset		recision@	ecision@1				
Dataset	NAMEMATCH	Avg	Eigen	WAvg	Degree	WEIGEN	Ceiling
CoNLL-Test	0.412	0.394	0.473	0.488	0.571	0.617	0.824

dlab

Is Eigenthemes Effective?

Easy Mentions: Degree ranks gold entity at the top

Datasat	Precision@1						
Dataset	NAMEMATCH	Avg	Eigen	WAvg	Degree	WEigen	Ceiling
CoNLL-Test	0.412	0.394	0.473	0.488	0.571	0.617	0.824

Precision@1 in Le and Titov's CoNLL Test Dataset

Technique	NAMEMATCH	τMIL-ND	Freebase Prominence	Degree
Le and Titov's implementation[21]	0.150	0.389	-	-
Our Implementation	0.299	NA	0.326	0.399

not at the top using degree

dlab

Is Eigenthemes Effective?

Easy Mentions: Degree ranks gold entity at the top

Datasat Precision@1							
Dataset	NAMEMATCH	Avg	Eigen	WAvg	Degree	WEigen	Ceiling
CoNLL-Test	0.412	0.394	0.473	0.488	0.571	0.617	0.824

Precision@1 in Le and Titov's CoNLL Test Dataset

Technique	NAMEMATCH	τMIL-ND	Freebase Prominence	Degree
Le and Titov's implementation[21]	0.150	0.389	-	-
Our Implementation	0.299	NA	0.326	0.399

Using Eigenthemes score as a feature for Supervised models portrays significant performance improvements

not at the top using degree

Takeaways

A single hyperparameter (#components) – ease of tuning for unannotated data

- Light-weight and scalable
 - < 10 min for CoNLL, approx. 20 times faster than existing SOTA</p>
- Language independence

Ability to incorporate external signals as weights

Takeaways

- Light-weight and scalable
 - < 10 min for CoNLL, approx. 20 times faster than existing SOTA</p>
- Language independence

Ability to incorporate external signals as weights

Early work that just scratches the surface

Takeaways

A single hyperparameter (#components) – ease of tuning for unannotated data

- Light-weight and scalable
 - < 10 min for CoNLL, approx. 20 times faster than existing SOTA</p>
- Language independence

Ability to incorporate external signals as weights

- Early work that just scratches the surface
 - Candidate generation too simplistic
 - Quality of entity embeddings can be improved
 - Other tricks to boost performance ...

THANK YOU

Questions?