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What is Entity Linking?

en.wikipedia.org/wiki/Michael I. Jordan

“Michael Jordan is one of the leading:gurs in
machine learning, and in 2016 Science reported him
as the world’s most influential corjwputer scientist.”

en.wikipedia.org/wiki/Science (journal)
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e Use Dictionaries/Alias-tables/Probability-Maps

“Michael Jordan”

Candidate Entity Prior P(e| m)

Michael Jordan
Michael_I. Jordan
Michael Jordan_statue

Michael Jordan_(footballer)

0.997521
0.000826
0.000826
0.000826
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e Use Dictionaries/Alias-tables/Probability-Maps
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— High quality candidate generation

— Prior information: a strong feature Michael_Jordan 0.997521
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e Sophisticated Supervised Models

— XGBoost Sky is the limit ©!

— Deep Neural Networks
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e Are dictionaries naturally available across use-cases?

— Lack of annotated data

e Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora

— Noisy and rapidly evolving annotated data

e Web queries

e Can existing SOTA methods operate at Web Scale?

— We can only hope!
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e Specialized Domains: Medical, Scientific, Legal, Enterprise specific corpora
— Noisy and rapidly evolving annotated data

e Web queries

* Can eX|st|ng SOTA methods operate at Web Scale?

B o i « NAACL'18 SOTA: 9 hours to train using 16
=4 = :;;:‘:{2;:;";!:;;“‘ threads on CoNLL benchmark of only 18K

. entity mentions
| e Some DL methods take more than 1 day
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Entity Linking without Annotated Data

e Candidate generator

e Entity embeddings
— Learn from the underlying graph

— Learn from textual descriptions of entities

e Collective disambiguation

— Ensures “topical coherence” among entities in a document
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e Simple yet practical

— Candidates contain all tokens of the mention

— Example: For mention “Michael Jordan”

e Michael Jordan (basketball player) and Michael Jordan
(computer scientist) are candidates

e Michael Jackson is not

— Rank candidates using entity degree (relates to
popularity)
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Candidate Generation

e Simple yet practical
08|
— Candidates contain all tokens of the mention S
. . TV H ” CDO.GA '
— Example: For mention “Michael Jordan o 4%
e Michael Jordan (basketball player) and Michael Jordan %0_4 '
(computer scientist) are candidates CC)E
e Michael Jackson is not 0.2 Alias —2— |
— Rank candidates using entity degree (relates to 0 _ W/O Alias ‘
: 1 10 100 1000 10000
popularity) #Candidates per Mention

e Aliases of entity names to boost recall
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Eigenthemes for Entity Disambiguation
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Subspace captures the main “theme” of

a document
“Science” “Michael Jordan”
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Subspace Learning: Intuition

Subspace captures the main “theme” of Top-k d-dimensional eigen vectors of the
a document covariance matrix of candidate entity
“Science” “Michael Jordan” embeddings in a document
Candidate Entity Candidate Entity A Gold entities
® Other entity candidates
Science MichaeI_Jordan # Average of all entities
B Subspace with 3 components
Science_(journal) Michael [._Jordan - ®
Science_Channel Michael Jordan_statue . ° ., '-‘l' ¥ :. . ‘ . ®e
Michael Jordan_(footballer) ©oe

External signals to enrich subspace learning
— Eigendecomposition of the weighted covariance matrix

— Entity embeddings with high weights act as “anchor embeddings”
e Prioritized in subspace learning

— Weighting scheme: Inverse of the rank computed using entity degree information
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e Datasets

— CoNLL: Most popular benchmark dataset for EL, based on CoNLL 2003 shared task

— More in the Paper:
e WNED (Wiki and Clueweb): Benchmarks from English Wikipedia and Clueweb corpora
e Wikilinks-Random: Tables extracted from English Wikipedia

e Referent KB: Wikidata
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Setup

e Datasets

— CoNLL: Most popular benchmark dataset for EL, based on CoNLL 2003 shared task

— More in the Paper:
e WNED (Wiki and Clueweb): Benchmarks from English Wikipedia and Clueweb corpora
e Wikilinks-Random: Tables extracted from English Wikipedia

e Referent KB: Wikidata

e Embeddings:

— Words: Pre-trained Word2vec
— Entity embeddings:
e Deepwalk trained on Wikidata
e Average of Word2vec vectors of entity description words
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Tuning on CoNLL-Val

Tuning #components Impact of entity embedding technique on EL

—h

‘ ‘ ‘ ‘ 1 ‘ ‘
Deepwalk —F— Deepwalk
Word2vec | Word2vec E—

o
o
o
o

Precision@1
o
N
q
Precision@1
o
N

o

o))
o
o))

o

N
o
N

o

o

5 10 15 20 25 30
AVG EIGEN
#Components Method

10



dlab =l
Baselines

¢ NameMatch:

— Retrieves all entities whose names match exactly with the mention string
— Ties are broken using entity degree

11



dlab =l
Baselines

e NameMatch:
— Retrieves all entities whose names match exactly with the mention string
— Ties are broken using entity degree
e Degree:
— Candidates are ranked based on entity degree
— Highest degree candidate entity is the prediction for a given mention
e Avg and WAuvg:

— (Weighted)Avg of candidate embeddings in a document as its representation
— Most similar candidate (Cosine Sim) with the doc representation is the prediction

11



dlab =l
Baselines

e NameMatch:
— Retrieves all entities whose names match exactly with the mention string
— Ties are broken using entity degree
e Degree:
— Candidates are ranked based on entity degree
— Highest degree candidate entity is the prediction for a given mention
e Avg and WAuvg:

— (Weighted)Avg of candidate embeddings in a document as its representation
— Most similar candidate (Cosine Sim) with the doc representation is the prediction

e Le and Titov: Uses weak supervision or distant learning

— Candidate entities of a mention (which might miss the ‘true’ entity) are scored
higher than a number of randomly sampled entities

— Rank based on similarity between candidates and the mention context 1
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Is Eigenthemes Effective?

Precision@1
NameEMATCH | AvG | EIGEN | WAvVG | DEGREE | WEIGEN | Ceiling
CoNLL-Test 0.412 0.394 | 0.473 0.488 0.571 0.617 0.824

Dataset

12



digb

Is Eigenthemes Effective?

Dataset Precision@1
NameEMATCH | AvG | EIGEN | WAvVG | DEGREE | WEIGEN | Ceiling
CoNLL-Test 0.412 0.394 | 0.473 0.488 0.571 0.617 0.824

Ll > ] -
[ Pl' L
Easy Mentions: Degree ranks
gold entity at the top

Ceiling = = =
~0.8
@;) _ _
506 ~
(2}
004
o
Qo2
0
~ 0)
%/77 409 é>9(9/7 %eg @9/'@ Q\g@
c?/% ”
1 =
Ceiling = = =
~0.8
2
506 i
2 _
'©0.4
o
Q0.2 |_| H
O |
/1/07 %, % %}

9/'@& 9@0

4
Hard Mentions: Gold entity

not at the top using degree
12



adlab

Is Eigenthemes Effective?

Dataset Precision@1
NameEMATCH | AvG | EIGEN | WAvVG | DEGREE | WEIGEN | Ceiling
CoNLL-Test 0.412 0.394 | 0473 0.488 0.571 0.617 0.824
Precision@1 in Le and Titov’s CONLL Test Dataset
Technique NameEMAaTcH | tMIL-ND Freebase DEGREE
Prominence
Le and Titov’s implementation[21] 0.150 0.389 3 3
Our Implementation 0.299 NA 0.326 0.399

cP

Easy Mentions: Degree ranks
gold entity at the top

1 =
Ceiling = = =
~0.8
@;) _ _
506 ~
(2}
'©0.4
o
Q0.2
0
Yo N b,
O &
& X 409 e %,
%
1 =
Ceiling = = =
~0.8
2
506
= _ _
'©0.4
o
Q0.2 |_| H
O |
Yo é)' Pk 4,
/77 4 9/-@(9 6}9@0

Hard Mentlons. Gold entity
not at the top using degree

12



adlab

Is Eigenthemes Effective?

Dataset Precision@1
NameEMATCH | AvG | EIGEN | WAvVG | DEGREE | WEIGEN | Ceiling
CoNLL-Test 0.412 0.394 | 0473 0.488 0.571 0.617 0.824
Precision@1 in Le and Titov’s CONLL Test Dataset
Technique NameEMAaTcH | tMIL-ND Freebase DEGREE
Prominence
Le and Titov’s implementation[21] 0.150 0.389 3 3
Our Implementation 0.299 NA 0.326 0.399

Using Eigenthemes score as a feature for Supervised models portrays
significant performance improvements
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Takeaways

A single hyperparameter (#components) — ease of tuning for unannotated data
Light-weight and scalable
— < 10 min for CoNLL, approx. 20 times faster than existing SOTA

Language independence
Ability to incorporate external signals as weights

Early work that just scratches the surface
— Candidate generation too simplistic
— Quality of entity embeddings can be improved
— Other tricks to boost performance ...

13
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THANK YOU

Questions?



