
Look at Who’s Talking: Voice Activity Detection
by Automated Gesture Analysis

Marco Cristani1,2, Anna Pesarin1, Alessandro Vinciarelli3,4, Marco Crocco2,
and Vittorio Murino1,2

1 Dipartimento di Informatica, University of Verona,Italy
2 Istituto Italiano di Tecnologia, Italy

3 University of Glasgow, UK
4 Idiap Research Institute, Switzerland

marco.cristani@univr.it anna.pesarin@univr.it

Alessandro.Vinciarelli@glasgow.ac.uk marco.crocco@iit.it

vittorio.murino@iit.it

Abstract. This paper proposes an approach for Voice Activity Detec-
tion (VAD) based on the automatic measurement of gesturing. The main
motivation of the work is that gestures have been shown to be tightly cor-
related with speech, hence they can be considered a reliable evidence that
a person is talking. The use of gestures rather than speech for performing
VAD can be helpful in many situation (e.g., surveillance and monitoring
in public spaces) where speech cannot be obtained for technical, legal
or ethical issues. The results show that the gesturing measurement ap-
proach proposed in this work achieves, on a frame-by-frame basis, an
accuracy of 71 percent in distinguishing between speech and non-speech.

1 Introduction

It is common experience to observe that people accompany speech with gestures,
the “[...] range of visible bodily actions that are, more or less, generally regarded
as part of a person‘s willing expression [...]” [10]. Far from being independent
phenomena, speech and gestures are so tightly intertwined that every important
investigation of language has taken gestures into account, from De Oratore by
Cicero (1st Century BC) to the latest studies in cognitive sciences [9, 11, 14]
showing that the two modalities are “[...] components of a single overall plan
[...]” [10].

Hence, this paper proposes the detection of gesturing as a means to perform
Voice Activity Detection (VAD), i.e. to automatically recognize whether a person
is speaking or not. The main rationale is that audio, the most natural and
reliable channel when it comes to VAD, might be unavailable for technical, legal,
or privacy related issues. A condition that applies in particular to surveillance
scenarios where people are monitored in public spaces and are not necessarily
aware of being recorded.

Several approaches have exploited the relationship between speech and other
cues to accomplish different technological tasks. The synchronization between
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pitch and gestures has been used to make artificial agents more realistic [13].
Multimodal speaker diarization techniques (detection of who speaks when) based
on the joint modeling of speech, facial and bodily cues (e.g., mouth movement,
fidgeting, body pose, etc.) have been proposed in [1, 6, 8, 15–18]. To the best of
our knowledge, the only work where diarization has been tried with solely visual
cues is in [7], where the experiments showed that the performance decrease when
the audio is absent.

This paper aims at performing VAD with solely visual cues, but it considers
a scenario more challenging than the one proposed in [7] for diarization. While
the experiments of the latter work are performed in a smart meeting room set-
ting (multiple cameras capturing each person individually at close distance), the
results of this paper have been obtained in a surveillance scenario where there
is only one camera positioned 7 meters above the scene (see Figure 2 for an
example). In particular, the experiments focus on people involved in standing
conversations, with a tracker that follows each individual. (see in [5] how groups
of interacting people are detected). The VAD approach is based on a local video
descriptor that extracts the body optical flow, encoding its energy and “com-
plexity” using an entropy-like measure. This allows one to discriminate between
body oscillations or noise introduced by the tracker, where the optical flow is low
and homogeneous, and genuine gestures, where the movement of head, arms and
trunk produces a local flow field which is diverse in both intensity and direction.
The descriptor extracted for each participant produces a signal that can be used
for VAD.

The proposed approach is interesting under three main respects. The first is
that the relationship between speech and gestures has been widely documented
and studied, but relatively few quantitative investigations of the phenomenon
have been made. The second is that approaches like the one proposed here might
help to infer information about privacy protected data (speech in this case) from
publicly accessible data (gestures in this case). This is important to establish
whether the simple absence of a certain channel is sufficient to protect the privacy
of people and how much. The third is that inferring missing data from available
ones can make techniques dealing with challenging scenarios more effective and
reliable.
The rest of the paper is organised as follows. In Sect. 2, the VAD methods is
described, detailing the entropy-like measure utilised. Section 3 illustrates the
experimental trial on a publicly available video dataset and, finally, conclusive
remarks and future activities are summarised in Section 4.

2 Gesturing Activity Measurement

This section describes the technique adopted to measure the gesturing activity
in videos like those shown in Figure 2. Once a group of interacting individuals
has been detected (see [5] for the technique applied), each person is tracked
individually and a square Region of Interest (ROI) is defined around her. The
size of the ROI is set automatically to include all gestures of the individual. Areas
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Fig. 1. Qualitative analysis of our descriptor: in the sequence above, an high tonality
of red means great gesture activity.

where multiple ROIs overlap have been ignored to avoid possible confusions
between neighboring people.

The measurement technique is applied to each ROI individually and it is
expected to accomplish two goals: the first is to discriminate between gestures
and postural oscillations typically observed when people stand. The second is
to normalize the tracking errors that cause abrupt and spurious shifts of the
ROI. The body parts most commonly involved in gesturing are hands, arms,
head, and trunk. Their individual movements tend to be very different during
gesturing and the measurement values associated to a given ROI try to capture
such an aspect:

v(t) = maxint({f(t)})× Sint({f(t)})× Sori({f(t)}) (1)

where {f(t)} is the set of motion flow vectors associated to each pixel of the
ROI at time t, Sint({f(t)}) is the entropy of the motion flow intensities, and
Sori({f(t)}) is the entropy of the orientation values, both calculated over {f(t)}5.
The maximum over the flow intensities values maxint({f(t)}) encodes the “en-
ergy” associated to the movement, while the two entropic terms serve to highlight
those motion flow values which exhibit higher variability in intensity and ori-
entation. In this way, postural oscillations and shifts due to unprecise tracking
receive a low score because they cause a global, homogeneous set of intensities
and orientations, corresponding to low entropy values. Alternative expressions of
v(t) have been considered that use mean and median rather than maximum, or
do not include one of the entropy terms. In all cases, the resulting performance
is lower than the one obtained with the expression above. A graphical idea of the
measurement is given in Figure 1 where colours shift towards red when gesturing
activity is higher.

5 The optical flow has been obtained with the package available at the following URL:
http://server.cs.ucf.edu/~vision/source.html.



4 M. Cristani et al.

Seq. 2Seq. 1 Seq. 3 Seq. 4

Fig. 2. Some frames of the video sequences used.

3 Experiments

The goal of the experiments is twofold: first, to provide a quantitative measure
of the correlation between gestures and speech; second, to measure the effective-
ness of the function v(t) (see Section 2) in a VAD task. Both tasks have been
accomplished over TalkingHeads, a new dataset publicly available upon request6

(see some frames in Figure 2).

The dataset contains four conversations lasting, on average, 6 minutes. The
data was recorded in a 3.5× 2.5 meters wide outdoor area, during a cloudy day
in summer. The total number of subjects is 15 (1 female and 14 males), with
4 different participants per conversation (only one subject participated in two
conversations). The subjects include 4 academics, 5 undergraduate students, 2
MSc students, 3 postdoctoral researchers, and 1 PhD student. The ages range
between 20 and 40 years and the subjects were unaware of the actual goals of
the experiments.

Data were captured at 25 frames per second with a camera positioned 7 me-
ters above the floor and facing downward. The subjects were asked to wear differ-
ently colored shirts, in order to make the tracking/localization easier. Tracking
has been performed by simple template association. The motion flow has been
computed by considering one frame every 4, reducing the video sampling pe-
riod to 160 ms. The audio was recorded at 44100 Hz with 4 wireless headset
microphones, each transmitting to its own receiver.

Each audio recording has been segmented into speech and non-speech seg-
ments using a robust VAD algorithm based on pitch [12]. This latter was ex-
tracted at regular time steps of 10 ms with Praat [3], a package including the
pitch extraction technique described in [2]. The motivation behind this choice
is not only that silence segments are characterized by frequencies way higher
than those observed in speech, but also that the pitch tends to be correlated
with the “beat” gesture typically accompanying syllables where the intonation is
stressed [4, 20]. Then, in order to synchronize audio and video data, audio was
resampled according to the video frame rate, averaging the pitch values occur-

6 http://profs.sci.univr.it/~cristanm/datasets/TalkingHeads/
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ring in each time period. The averaged pitch values constituted the samples of
the audio signal that will be analyzed in the following.

3.1 Pitch-Gesturing Correlation Analysis

This section shows how the correlation between the pitch (as extracted with
Praat), and the gesturing activity (as measured with the approach proposed in
Section 2) has been measured.

After the application of the techniques described in the previous sections,
each sequences results into two signals per person, showing the value of pitch
and v(t) at regular time steps of 160 ms. Plots (a) and (b) of Figure 3 provide an
example of such signals. The simple visual inspection shows that the two signals
tend to change according to one another. However, v(t) appears to be more noisy
of the pitch because of the sensibility of the optical flow. Hence, both signals
have been smoothed with an average filter applied to 8 s long windows. Figure 3
(c) shows the smoothed version of v(t), while the smoothed audio and video
signals of a complete conversation, normalized with respect to their maximum
value, are compared in Fig. 4.

Table 1 reports the Pearson correlation coefficients between v(t) and pitch.
Off-diagonal values account for correlations between signals extracted from dif-
ferent individuals. In this way, it is possible to better assess how strong is the
correlation between speech and gestures for a given individual.

A sub.1 A sub.2 A sub.3 A sub.4

V sub.1 0.7310 0.1338 0.2490 0.0670
V sub.2 0.1900 0.6454 0.4460 0.0254
V sub.3 0.1867 0.1966 0.4838 -0.0356
V sub.4 -0.2592 0.0472 0.0389 0.4204

Table 1. Quantitative measures: correlation coefficients matrix for Seq. 1 . The ma-
trix rows and columns corresponds respectively to the four subsampled video signals
(Vsub) and the four subsampled audio signals (Asub) (the non-significant coefficients
(p-value≥ 0.05) are underlined in red.

We performed a similar analysis on the other conversations, with the same
parameters, obtaining in total four correlation matrices. Mediating over all the
entries in the main diagonal (they were all statistically significant), we obtained
a mean correlation score of 0.53, while considering the statistically significant
off-diagonals entries we get 0.19. This suggests that v(t) might be a reliable
indicator of voice activity. Hence, in the following section, we show how the
video signal can be employed to perform VAD.
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Fig. 3. Examples of signals employed in the analysis. (a) Audio input signal. (b) Video
signal produced by our descriptor of a subject involved in the Seq.1. (c) The video signal
was smoothed for evaluating the crossmodal correlation (Sec. 3.1). (d) The video signal
was thresholded for the audio classification (Sec. 3.2).

3.2 Voice Activity Detection

The VAD task proposed in this section consists of labeling each frame as speech
or non − speech. As an approximation, each person is treated independently
of the others even though the exchange of turns (the opportunity of speaking)
tends to follow regularities that might be helpful in improving the performance.
The original pitch signal, which has non-zero entries only when the subjects talk,
is used as groundtruth.

As a video signal to be used to infer speech, we considered the smoothed
signal described above for the correlation analysis. In this way, high frequency
components of the original signal have been filtered. The discrimination be-
tween speech and non-speech samples has been performed with a thresholding
technique. Essentially, as suggested by Fig. 3 and Fig. 4, the video signal has
a continuous component caused by small values of optical flow that are always
present in the analysis. For this reason, we subtracted the mean to the signal,
and we keep the intensities above zero, setting them at 1’s. Smoothing and sub-
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Fig. 4. Visual analysis of the audio and video smoothed data: each plot depicts the
smoothed audio (solid blue) and the smoothed video (dashed red) signals for each
participant to the dialog. The thumbnails give the feeling of the gesturing activity
carried out in a particular instant.
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Precision=0.82
Recall=0.26
Accuracy=0.77
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Recall=0.42
Accuracy=0.75
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Recall=0.66
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Fig. 5. Audio classification by video analysis. Each plot portrays the audio (solid blue)
and the video (dashed red) signals for each participant to the dialog. For the sake of
clarity, we report the (normalized) continuous signals, and not their binary versions
(that we used). Precision, recall and accuracy scores related to each individual are also
indicated.

traction of the mean represent a thresholding operation that does not need the
tuning of any parameter.

At this point, we can compare the two signals, and the detailed analysis of
Seq. 1 is shown in Fig. 5.

For the sake of clarity, we report in the figure the (normalized) continuous
signals, and not their binary versions which were actually used. As visible, many
of the speech samples are correctly captured by the video signal. The figure also
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reports the precision, recall and accuracy values. In this sequence, the classifier
tends to have low recall and high precision (assuming the speech as positive
values). Considering all the subjects employed, we reach an average accuracy of
71%, average precision of 67%, and average recall of 40%.

4 Conclusions

This work has proposed a gesturing-based approach for performing VAD, the
automatic detection of people that speak. The reason for using gestures in VAD,
typically performed using speech recordings, is that the use of microphones is
difficult or illegal in many scenarios of potential interest, including surveillance
of public spaces, monitoring of potentially dangerous plants, etc. The core idea
behind the approach is that cognitive sciences have demonstrated that speech
and gestures, far from being independent expression modalities, are two faces of
the same phenomenon. Therefore, gestures can be considered a reliable evidence
of speech taking place at the same time.

The preliminary results presented in this paper provide a quantitative con-
firmation of the finding above and, most importantly, show that the detection
of gesturing activity helps to predict whether a person is speaking or not with
an accuracy of 71 percent (on a frame-by-frame basis). While not being conclu-
sive about the possibility of reconstructing the actual turns and of performing
diarization, the results are certainly promising in the direction of reconstructing
conversational dynamics in absence of audio. This appears particularly impor-
tant as turn-organization has been widely shown to be fundamental in inferring
socially important information such as roles, dominance, personality, etc [19].

Besides, this work shows that it is possible to infer information about miss-
ing data (speech in this case) from available evidence (videos in this case). In a
surveillance setup like the one of the experiments, this opens two conflicting per-
spectives: on one hand, surveillance approaches can be significantly improved by
predicting phenomena considered so far non-accessible with the sensors at dispo-
sition. On the other hand, privacy protection measures applied so far (i.e., legal
limitation on the use of microphones in public spaces) might become obsolete
and uneffective. In this respect, experiments of the type presented in this work
might change the notion of privacy and of its protection.

Future work can take two major directions: the first is to move from VAD
to full diarization. This requires the application of probabilistic sequential mod-
els taking into account temporal constraints between neighboring frames and
a larger amount of data. The second is to try automatic conversation analysis
based on gestures and to verify whether (and to what extent) it is possible to
perform tasks like role recognition, conflict detection, etc., typically performed
using turn-organization and other conversational cues.
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