Super-resolution Radar

Reinhard Heckel

IBM Research (before: ETH Zurich)

March 25, 2015

Joint work with:
V. Morgenshtern (Stanford), and M. Soltanolkotabi (Berkeley)



Motivation: Radar

Goal: determine location and velocities of objects
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Model

Time-varying linear system H:

(t) y(t)
> H >

y(t) = / / sp(mv)zlt — 7)™ dudr

Goal: Determine sy (7,v) from response y(t) to known probing
signal x(t)
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Model

m Spreading function consists of S point scatterers, that
correspond to moving targets:

S
sp(r,v) = Z bid(T —7)0(v — ;)
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Model

m Spreading function consists of S point scatterers, that
correspond to moving targets:

S
sp(r,v) = Z bid(T —7)0(v — ;)

m |/O-relation for point scatters:

S

y(t) = bja(t — y)e?™it

i=1

m Determine the triplets (b;, 75, ;) from 1/O-measurement
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Band and time-limitation

In practice: z(t) bandlimited to [0, B) and y(t) timelimited to [0,7)
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Band and time-limitation

In practice: z(t) bandlimited to [0, B) and y(t) timelimited to [0,T)

sp(T,v) sinc(7B)sinc(vT) * sy (T, v)

band and time-limitation

Resolution achieved by classic Radar via matched filtering is (%, %)' 5/14



Compressed sensing Radar [Herman & Stromer, 2009
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Compressed sensing Radar [Herman & Stromer, 2009

Suppose the (7, ;) lie on a (%, %)—grid
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Compressed sensing Radar [Herman & Stromer, 2009

Suppose the (7, ;) lie on a (%, %)—grid

Recovery via ¢1 minimization provably succeeds provided that
S < ¢(BT)/log"(BT) [Krahmer et al. 2014] 6/14



The super-resolution Radar problem

Sampling leads to the following /O relation:

s _ .
yp =Y bie ™ EIDFT(DFT({w;_p})e*™ 7 ), p=0,..,BT -1
j=1
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The super-resolution Radar problem

Sampling leads to the following /O relation:

s , .
yp =D bje™ 5 IDFT(DFT({z,—,})e*™ %), p=0,..,BT -1
j=1

time-shift of x,_,, by 7;B

Super resolution Radar problem: Determine the continuous
time-frequency shifts 7;,; from the samples y,

This talk: Provably recovery of the (75, ;) via convex optimization
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Special case: Frequency shifts only

If 7; = 0, the problem reduces to a line spectral estimation problem:

S A
Yp = pobjen”pfg, p=0,...,BT -1
j=1
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Special case: Frequency shifts only
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Recovery approaches:
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Special case: Frequency shifts only

If 7; = 0, the problem reduces to a line spectral estimation problem:

s A
Yp = Tp Z bjen”p?g, p=0,...,BT -1
j=1
Recovery approaches:
m Classical: Proney's method

m Modern: Recovery via convex optimization [Candeés,
Fernandez-Granda, 2014]: Recovery is possible provided the
minimum separation condition holds:

Vj v;

B B

2BCT
T 8/ 14

v/B

4
2 BT forall j # i

Y



Do we need minimum separation?

m Compressed sensing: RIP guarantees that the energy of all
sparse signals is preserved
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Do we need minimum separation?

m Compressed sensing: RIP guarantees that the energy of all
sparse signals is preserved

® Super-resolution: Suppose the v; are at equidistant positions,
and S is large

. Vi .
Yp| = ei2TP bj

Energy is only preserved if the distance between the v; is
sufficiently large!
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Recovery results for the super-resolution Radar problem
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Main result

= Random probing signal: x, i.i.d. N (0,1)

m Random signs: sign of b, is i.i.d. uniform on the complex unit
sphere

Theorem

The (7j,v4,b5),5 =1,...,.S, can be recovered by solving a
semidefinite program with probability > 1 — § if

) ) ..
|Tj_7—i| ZE Oerj_Vi|2T7 fora//z;é]

and if

6
S < ¢BTlog™3 <(B ;F) )
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Main result

= Random probing signal: x, i.i.d. N (0,1)

m Random signs: sign of b, is i.i.d. uniform on the complex unit
sphere

Theorem

The (7j,v4,b5),5 =1,...,.S, can be recovered by solving a
semidefinite program with probability > 1 — § if

) ) ..
|Tj_7—i| ZE Oerj_Vi|2T7 fora//z;é]

and if

6
S < ¢BTlog™3 <(B g) )

m Essentially optimal

11/ 14



Comments

m Recovery approach: “A continuous counterpart of
f1-minimization”
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Comments

m Recovery approach: “A continuous counterpart of
f1-minimization”

m Proof based on analyzing the dual: Construction of a dual
certificate (dual polynomial)

m Stable

m Super-resolution Radar on a grid
= Suppose the (7;,v;) lie on a fine grid:

S
Sl

m Our results guarantee success of ¢1-minimization
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Future work

Implementation in hardware:

13 /14



Conclusion

Problem: Estimation of the time-frequency components of a signal
that is S-sparse in the continuous dictionary of time frequency shifts
of a random function
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For more details:
R. Heckel, M. Soltanolkotabi, V. Morgenshtern, “Super-resolution
Radar”, arXiv:1411.6272, 2015.
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Conclusion

Problem: Estimation of the time-frequency components of a signal
that is S-sparse in the continuous dictionary of time frequency shifts
of a random function

Main result: Recovery via convex optimization provably succeeds
provided that:

m Minimum separation condition holds

® Number of measurement linear (up to log-factor) in .S

For more details:
R. Heckel, M. Soltanolkotabi, V. Morgenshtern, “Super-resolution
Radar”, arXiv:1411.6272, 2015.

Thank you!
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