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Motivation: Radar

Goal: determine location and velocities of objects
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Model

Time-varying linear system H:

H
x(t) y(t)

y(t) =

∫∫
sH(τ, ν)x(t− τ)ei2πνtdνdτ

Goal: Determine sH(τ, ν) from response y(t) to known probing
signal x(t)
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Model

Spreading function consists of S point scatterers, that
correspond to moving targets:

sH(τ, ν) =

S∑
j=1

bjδ(τ − τj)δ(ν − νj)

I/O-relation for point scatters:

y(t) =

S∑
j=1

bjx(t− τj)ei2πνjt

Determine the triplets (bj , τj , νj) from I/O-measurement
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Band and time-limitation

In practice: x(t) bandlimited to [0, B) and y(t) timelimited to [0, T )

sH(τ, ν) sinc(τB)sinc(νT ) ∗ sH(τ, ν)

1
T

1
B

1
T

1
B

1
T

1
B

band and time-limitation

Resolution achieved by classic Radar via matched filtering is
(
1
B ,

1
T

)
!
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Compressed sensing Radar [Herman & Stromer, 2009]

Suppose the (τj , νj) lie on a
(
1
B ,

1
T

)
-grid

τ

ν

1
B

1
T

Recovery is a sparse signal recovery problem:

=y xp−te
i2π fp

BT bBT

(BT )2

Recovery via `1 minimization provably succeeds provided that
S ≤ c(BT )/ log4(BT ) [Krahmer et al. 2014]
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The super-resolution Radar problem

Sampling leads to the following I/O relation:

yp =

S∑
j=1

bje
i2πp

νj
B IDFT(DFT({x`−p})ei2πk

τj
T ), p = 0, ..., BT − 1

Super resolution Radar problem: Determine the continuous
time-frequency shifts τj , νj from the samples yp

This talk: Provably recovery of the (τj , νj) via convex optimization
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Special case: Frequency shifts only

If τj = 0, the problem reduces to a line spectral estimation problem:

yp = xp

S∑
j=1

bje
i2πp

νj
B , p = 0, ..., BT − 1

Recovery approaches:

Classical: Proney’s method

Modern: Recovery via convex optimization [Candès,
Fernandez-Granda, 2014]: Recovery is possible provided the
minimum separation condition holds:∣∣∣νj

B
− νi
B

∣∣∣ ≥ 4

BT
, for all j 6= i

ν/B

≥ c
BT
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Do we need minimum separation?

Compressed sensing: RIP guarantees that the energy of all
sparse signals is preserved

Super-resolution: Suppose the νj are at equidistant positions,
and S is large

=yp ei2πp
νj
B

bj

Energy is only preserved if the distance between the νj is
sufficiently large!
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Recovery results for the super-resolution Radar problem
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Main result

Random probing signal: x` i.i.d. N (0, 1)

Random signs: sign of bn is i.i.d. uniform on the complex unit
sphere

Theorem

The (τj , νj , bj), j = 1, ..., S, can be recovered by solving a
semidefinite program with probability ≥ 1− δ if

|τj − τi| ≥
5

B
or |νj − νi| ≥

5

T
, for all i 6= j

and if

S ≤ cBT log−3

(
(BT )6

δ

)

Essentially optimal
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Comments

Recovery approach: “A continuous counterpart of
`1-minimization”

Proof based on analyzing the dual: Construction of a dual
certificate (dual polynomial)

Stable

Super-resolution Radar on a grid
Suppose the (τj , νj) lie on a fine grid:

τ

ν

1
B

1
T

Our results guarantee success of `1-minimization
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Future work

Implementation in hardware:
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Conclusion

Problem: Estimation of the time-frequency components of a signal
that is S-sparse in the continuous dictionary of time frequency shifts
of a random function

Main result: Recovery via convex optimization provably succeeds
provided that:

Minimum separation condition holds

Number of measurement linear (up to log-factor) in S

For more details:
R. Heckel, M. Soltanolkotabi, V. Morgenshtern, “Super-resolution
Radar”, arXiv:1411.6272, 2015.

Thank you!
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