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Prediction of Perceived Noise Intrusiveness
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• 10 real-world noise types with 
signal-to-noise ratios (SNR) at 
3–40 decibels

• 3 datasets (500+ recordings)

• Noise intrusiveness ratings from 
listeners, scored on a 5-point scale
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Why Sparsity?

• Traditional approach

• Combine acoustic features (noise level, variance, spectral composition)

• Our study: Focus on low-level sensory coding principles

• Efficient Coding Hypothesis:
“(...) our perceptions are caused by the activity of a rather small number of 
neurons selected from a very large population (...)” — [Barlow, 1972]

• Redundancy reduction to help make sense of sensory inputs
[Olshausen & Field, 1996]
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•Barlow H. B. (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception.
•Olshausen B. A., Field D. J. (1996) Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? 
Neural Computation.

mailto:Raphael.Ullmann@idiap.ch
mailto:Raphael.Ullmann@idiap.ch


Perceptual Modeling Through an Auditory-Inspired Sparse Representation — Raphael.Ullmann@idiap.ch

Efficient Auditory Coding — Model

• Generative waveform model [Lewicki & Sejnowski,1999]:

• Shiftable kernels                                               , can have different lengths

• Use Matching Pursuit to approximate              , includes translation of kernels

• May think of each kernel instance as a population of spiking auditory neurons
➔“Spike Coding”

•Lewicki M. S., Sejnowski T. J. (1999) Coding time-varying signals using sparse, shift-invariant representations. 
Adv. NIPS 11.
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Efficient Auditory Coding — Dictionary

• How to choose the dictionary                                                        ?

➔Learn a dictionary from natural environmental noises [Smith & Lewicki, 2006]

� = {�1(t), . . . ,�m(t), . . . ,�M (t)}

•Smith E. C., Lewicki M. S. (2006) Efficient Auditory Coding. Nature.

© 2006 Nature Publishing Group 

 

of optimizing the efficiency of the representation: if the coefficients
smi are assumed to be continuous in time and then optimized to
represent the signal efficiently, only a discrete set of temporally sparse
coefficients emerges8–10,14.
Figure 1 illustrates the spike code model and its efficiency in

representing speech. The spoken word ‘canteen’ was encoded with a
set of spikes with the use of a fixed set of kernel functions (because the
kernels can have arbitrary shape, for illustration purposes here we
have chosen gammatones, mathematical approximations of cochlear
filters). A brief segment from the input speech signal (Fig. 1, input)
consists of three glottal pulses in the /a/ vowel. The resulting spike
code is shown above it. The coloured arrows and curves indicate
the relationship between the spikes (grey ovals) and the acoustic
components they represent. The figure shows that a small set of
spikes (for comparison, the sound segment contains about 400

samples) is sufficient to produce a very accurate reconstruction of
the sound (Fig. 1, reconstruction and residual).
The spike-coding algorithm provides a way to encode signals given

a set of kernel functions, but the actual efficiency of this code depends
on howwell the kernel functions capture the acoustic structure of the
sound ensemble. To optimize the kernel functions we derived a
gradient-based algorithm for adapting each kernel in shape and
length to improve the fidelity of the representation (Supplementary
Methods). Information theory states that there is a fundamental
relationship between the efficiency of a code and the degree to which
it captures the statistical structure of the signals being encoded. Thus,
one of the primary tenets of efficient coding theory is that sensory
codes should be adapted to the statistics of the relevant sensory
environment. To make predictions, it is necessary to optimize the
code to an ensemble of sounds to which the auditory system is
thought to be adapted. However, this poses a problem because the
precise composition of the natural acoustic environment is
unknown, and many common sounds, such wind noise, may have
much less behavioural relevance than other sounds.
To address this issue, we made the generic assumption that the

auditory system is adapted to an unknown mixture of three broad
categories of natural sounds. The kernel functions were optimized
to an ensemble of natural sounds that consisted of mammalian
vocalizations15 and two subclasses of environmental sounds (Sup-
plementary Methods). These sound classes represent a wide range of
acoustic structure. Vocalizations tend to be harmonic and more
steady-state, whereas environmental sounds have little or no har-
monic structure and are more transient. Furthermore, to obtain an
ensemble composition that yielded a goodmatch to the physiological
data (described below), we found it necessary to divide environmen-
tal sounds into two subclasses, namely transient environmental
sounds, such as cracking twigs and crunching leaves, and ambient
environmental sounds, such as rain and rustling sounds. This
approach has the added advantage that we can investigate how the
theoretically ideal code changes as a function of the sound ensemble
composition.
Figure 2a shows the learned kernel functions (red curves) for the

natural sounds ensemble. All kernels are time-localized, have a
narrow spectral bandwidth and show a strong temporal asymmetry
not predicted by previous theoretical models. The sharp attack and

Figure 1 | Representing a natural sound with the use of spikes. A brief
segment of the word ‘canteen’ (input) is represented as a spike code (top).
Each spike (oval) represents the temporal position and centre frequency of
an underlying kernel function, with oval size and grey value indicating
kernel amplitude. The coloured arrows illustrate the correspondence
between the spikes and the underlying acoustic structure represented by the
kernel functions. Alignment of the spikes with respect to the kernels is
arbitrary and is an issue only for plotting. We choose the kernel centre of
mass, which for a delta-function input yields aligned spikes across the kernel
population. A reconstruction of the speech from only the 60 spikes shown is
accurate with little residual error (reconstruction and residual).

Figure 2 | Efficient codes for natural sounds predict revcor filter shapes and
population characteristics. a, When optimized to encode an ensemble of
natural sounds, kernel functions become asymmetric sinusoids (smooth
curves in red, with padding removed) with sharp attacks and gradual decays.
They also adapt in temporal extent, with longer and shorter functions
emerging from the same initial length (grey scale bars, 5ms). Each kernel

function is overlaid on a revcor function obtained from cat auditory nerve
fibres (noisy curves in blue). b, The bandwidth–centre-frequency
distribution of learned kernel functions (red squares) is plotted together
with cat physiological data (small blue dots) and with kernel functions
trained on environmental sounds alone (black circles) or animal
vocalizations alone (green triangles).
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Perceptual Model — Dictionary

• Use a dictionary of analytically defined auditory filter shapes (“gammatones”)

• We use 32 gammatones sampled at 16 kHz, generated with Slaney’s toolbox

•Slaney M. (1998) Auditory Toolbox — Version 2. Technical Report. Interval Research Corp.
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Perceptual Model — Noise Signal Analysis
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Perceptual Model — Noise Signal Analysis
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Perceptual Model — Noise Signal Analysis
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Perceptual Model — Evaluation

5th percentile of “spikes” over time highly correlates with subjective scores of 
noise intrusiveness

0 2’000 4’000
1

2

3

4

5

S
u
b
je

ct
iv

e 
N

o
is

e 
In

tr
u
si

v
en

es
s Set 1

0 2’000 4’000
1

2

3

4

5
Set 2

0 2’000 4’000
1

2

3

4

5
Set 3

5
th

 Percentile Count of Kernel Instances ["spikes"/s]

8

mailto:Raphael.Ullmann@idiap.ch
mailto:Raphael.Ullmann@idiap.ch


Perceptual Modeling Through an Auditory-Inspired Sparse Representation — Raphael.Ullmann@idiap.ch

Why Does It Work? — Because of Greedy Pursuit

• Decrease of spike energies (black line) 
depends on signal type

• White noise is a kind of “worst 
case”, i.e., it does not correlate 
well with any kernel in the 
dictionary

• Logarithmic changes in sound energy 
produce linear changes in spike counts

• Greedy decomposition captures high-
energy sounds first
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Why Does It Work? — Because of the Dictionary

Some tests with narrowband noises
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Why Does It Work? — Because of the Dictionary

Some tests with narrowband noises

• ERB-wide noise at varying 
center frequencies (CF)

➔Spike count similar to noise 
weighting curves
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Why Does It Work? — Because of the Dictionary

Some tests with narrowband noises

• ERB-wide noise at varying 
center frequencies (CF)

➔Spike count similar to noise 
weighting curves

• Fixed center frequency, 
increasing noise bandwidth

➔Spike count increases 
above auditory bandwidth 
(dotted line)
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Results — Comparison to Other Measures

• Comparison to widely used acoustic indicators

• Noise level in decibels with “A” frequency weighting, denoted “dB(A)”
• Loudness (a psychoacoustic model of perceived sound intensity)

➔Significantly lower prediction error (              ) on 2 datasets

Measure Prediction Error (lower values are better)

Set 1 Set 2 Set 3

Weighted Level [dB(A) SPL] 0.230 0.277 0.234

Mean Loudness [sone] 0.257 0.206 0.197
5

th

Percentile Loudness [sone] 0.191 0.234 0.270

5

th

Percentile Density [spikes/s] 0.087** 0.117** 0.231

p < 0.01
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Results — (In)sensitivity to Parameters

• Robust to changes in dictionary design
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Conclusion

• We are doing audio processing, not speech processing

• Number of “spikes” reflects the level and type of noise

• Sparsity of noise over time highly correlates with perceived intrusiveness

• Efficient coding hypothesis offers a different interpretation of intrusiveness:

• Complexity of the input stream to the auditory system

• Activations of nerve spike populations in response to noise
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Thanks to
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