Perceptual Modeling Through an Auditory-Inspired Sparse Representation

EPFL-Idiap-ETH Sparsity Workshop 2015

Raphael Ullmann^{1,2} and Hervé Bourlard^{1,2} ¹Idiap Research Institute and ²EPFL

Prediction of Perceived Noise Intrusiveness

Prediction of Perceived Noise Intrusiveness

Prediction of Perceived Noise Intrusiveness

Why Sparsity?

- Traditional approach
 - Combine acoustic features (noise level, variance, spectral composition)
- Our study: Focus on low-level sensory coding principles
 - Efficient Coding Hypothesis:

"(...) our perceptions are caused by the activity of a rather small number of neurons selected from a very large population (...)" — [Barlow, 1972]

- Redundancy reduction to help make sense of sensory inputs [Olshausen & Field, 1996]
- Barlow H. B. (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception.

• Olshausen B. A., Field D. J. (1996) Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Neural Computation.

Efficient Auditory Coding — Model

• Generative waveform model [Lewicki & Sejnowski,1999]:

$$\hat{x}(t) = \sum_{m=1}^{M} \sum_{i=1}^{I_m} \alpha_m^i \phi_m \left(t - \tau_m^i \right)$$

- Shiftable kernels $\{\phi_1(t), \ldots, \phi_m(t), \ldots, \phi_M(t)\}$, can have different lengths
- Use Matching Pursuit to approximate $\hat{\mathbf{x}} = \Phi \alpha$, includes translation of kernels
- May think of each kernel instance as a population of spiking auditory neurons → "Spike Coding"
- Lewicki M. S., Sejnowski T. J. (1999) Coding time-varying signals using sparse, shift-invariant representations. Adv. NIPS 11.

Efficient Auditory Coding — Dictionary

- How to choose the dictionary $\Phi = \{\phi_1(t), \dots, \phi_m(t), \dots, \phi_M(t)\}$?
- →Learn a dictionary from natural environmental noises [Smith & Lewicki, 2006]

• Smith E. C., Lewicki M. S. (2006) Efficient Auditory Coding. Nature.

Perceptual Model — Dictionary

- Use a dictionary of analytically defined auditory filter shapes ("gammatones")
- We use 32 gammatones sampled at 16 kHz, generated with Slaney's toolbox

• Slaney M. (1998) Auditory Toolbox — Version 2. Technical Report. Interval Research Corp.

Perceptual Model — Noise Signal Analysis

Kernel instances $\phi_{j(k)}(t)$ are localized in time and frequency

Kernel instances are called atoms or **"spikes"**

Perceptual Model — Noise Signal Analysis

Kernel instances $\phi_{j(k)}(t)$ are localized in time and frequency

Kernel instances are called atoms or **"spikes"**

7

Compute number of spikes (i.e., 20 norm)

Perceptual Model — Noise Signal Analysis

Kernel instances $\phi_{j(k)}(t)$ are localized in time and frequency

Kernel instances are called atoms or **"spikes"**

Perceptual Model — Evaluation

5th percentile of "spikes" over time highly correlates with subjective scores of noise intrusiveness

Why Does It Work? — Because of Greedy Pursuit

- Decrease of spike energies (black line) depends on signal type
 - White noise is a kind of "worst case", i.e., it does not correlate well with any kernel in the dictionary
- Logarithmic changes in sound energy produce *linear* changes in spike counts
- Greedy decomposition captures highenergy sounds first

10^{3} of Spikes / Residual 10^{1} 10^{-1} 10^{-3} 10^{-5} Energy 10^{-7} 15 30 ()

White Noise

MP Iteration (in thousands)

Why Does It Work? — Because of the Dictionary

Some tests with narrowband noises

Why Does It Work? — Because of the Dictionary

Some tests with narrowband noises

• ERB-wide noise at varying center frequencies (CF)

→Spike count similar to noise weighting curves

Why Does It Work? — Because of the Dictionary

Some tests with narrowband noises

- ERB-wide noise at varying center frequencies (CF)
- →Spike count similar to noise weighting curves
- Fixed center frequency, increasing noise bandwidth
- →Spike count increases above auditory bandwidth (dotted line)

Results – Comparison to Other Measures

- Comparison to widely used acoustic indicators
 - Noise level in decibels with "A" frequency weighting, denoted "dB(A)"
 - Loudness (a psychoacoustic model of perceived sound intensity)
- →Significantly lower prediction error (p < 0.01) on 2 datasets

Measure	Prediction Error	ower values are better)	
	Set 1	Set 2	Set 3
Weighted Level [dB(A) SPL]	0.230	0.277	0.234
Mean Loudness [sone]	0.257	0.206	0.197
5 th Percentile Loudness [sone]	0.191	0.234	0.270
5 th Percentile Density [spikes/s]	0.087**	0.117**	0.231

Results – (In)sensitivity to Parameters

• Robust to changes in dictionary design

Conclusion

- We are doing audio processing, not speech processing
- Number of "spikes" reflects the level and type of noise
- Sparsity of noise over time highly correlates with perceived intrusiveness
- Efficient coding hypothesis offers a different interpretation of intrusiveness:
 - Complexity of the input stream to the auditory system
 - Activations of nerve spike populations in response to noise

Thank You for Your Attention

Thanks to

- Laboratory of Electromagnetics and Acoustics (LEMA), EPFL
- SwissQual AG
- Dr. Marc Ferras and Dr. Mathew Magimai-Doss for useful discussions