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Plan

I Problem formulation and examples

I Analysis of multitask learning

I Comparison to independent task learning

I Analysis of learning to learn

I Multilinear MTL (if time)

I Latent subcategory models (if time)
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Problem Formulation (cont.)

I Fix probability distributions µ1, . . . , µT on Rd × R

I Draw data: (xt1, yt1), . . . , (xtn, ytn) ∼ µt , t = 1,...,T

I Two interesting examples (linear models)

I Regression: yti = 〈ut , xti 〉+ εti

I Binary classification: yti = sign〈ut , xti 〉εti

I Learning method: min
[w1,...,wT ]∈S

1
T

T∑
t=1

1
n

n∑
i=1

`(yti , 〈wt , xti 〉)

I Set S encourages “common structure” among tasks, e.g. the
ball of a matrix norm or other regularizer

I Independent task learning (ITL): S = B × · · · × B︸ ︷︷ ︸
T times
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Problem Formulation (cont.)

min
[w1,...,wT ]∈S

1
T

T∑
t=1

1
n

n∑
i=1

`(yti , 〈wt , xti 〉)

I Want to find weights vectors which have a small average error

1

T

T∑
t=1

E
(x ,y)∼µt

`(y , 〈wt , x〉)

I Typically: many tasks but only few examples per task

I If n < d we don’t have enough data to learn tasks one by one
[Maurer & P., 2008]. If tasks are “related”, learning them jointly
should improve over ITL
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Applications
I User modelling:

� each task is to predict a user’s ratings of products

� the ways different people make decisions about products are
related

I Multiple object detection in scenes:

� detection of each object corresponds to a binary classification
task: yti ∈ {−1, 1}

� learning common features enhances performance

Many more: affective computing, bioinformatics, neuroimaging, NLP,...
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Examples of Regularizers

I Quadratic, e.g.
T∑

t=1

∥∥wt − w̄
∥∥2

2
or

T∑
s,t=1

Ast

∥∥wt − ws

∥∥2

2

I Learning shared representations

I Joint sparsity:
d∑

j=1

√
T∑

t=1
w2
jt

I Low rank: ‖[w1, ...,wT ]‖tr (common low dimensional
representation / subspace)

I Nonlinear extension using RKHS (not discussed in this talk)

[Argyriou et al. 2006, 2008, 2009; Baldassarre et al. 2012; Ben-David and Schuller, 2003; Caponnetto et al. 2008;

Carmeli et al. 2006; Cavallanti et al. 2009; Dinuzzo & Fukumizu, 2012; Evgeniou & P. 2004; Evgeniou et al. 2005;

Jacob et al. 2008; Koltchinskii et al. 2011; Kumar & Daumé III, 2012; Lounici et al., 2009, 2011; Maurer, 2006;

Micchelli & P., 2005; Obozinski et al. 2009; Romera-Paredes et al. 2012; Salakhutdinov et al, 2011,...]
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Learning Sparse Representations
[Maurer, P., Romera-Paredes. ICML 2013]

I Represent wt ’s as sparse combinations of some vectors:

wt = Dγt =
K∑

k=1

Dkγkt : ‖γt‖1 ≤ α

I Set of dictionaries DK :=
{
D ∈ IRd×K :

K
max
k=1
‖Dk‖2 ≤ 1

}

I Learning method: min
D∈DK

1
T

T∑
t=1

min
‖γ‖1≤α

1
n

n∑
i=1

`
(
〈Dγ, xti 〉, yti

)
I Two regularization parameters: K and α

I For fixed D this is Lasso with feature map φ(x) = D>x

See also: [Kumar & Daumé III 2012; Mehta & Gray 2013; Ruvolo and Eaton 2013]
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Connection to Sparse Coding

If `(z , y) = (z − y)2, yti = 〈wt , xti 〉, xti ∼ N (0, I ) and n→∞, we
recover sparse coding [Olshausen and Field 1996]:

min
D∈DK

1

T

T∑
t=1

min
‖γ‖1≤α

‖wt − Dγ‖2
2

May extend to a general set of codevectors C [Maurer and P. 2010], such as:

I K -means clustering: C = {e1, ..., eK}

I Subspace learning: C = {‖γ‖2 ≤ α}

I Union of subspaces: C =
{
γ = (γ(1), ..., γ(L)) ∈ (Rq)L :

L∑̀
=1

‖γ(`)‖2 ≤ α
}

8 / 35



Experiment

Learn a dictionary for image reconstruction from few pixel values
(input space is the set of possible pixels indices, output space represents

the gray level)
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Found dictionary (top) vs. dictionary by standard SC (bottom):
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MTL Analysis

Goal is to bound the excess error

1

T

T∑
t=1

E
(x ,y)∼µt

`(〈D̂γ̂t , x〉, y)− min
D∈DK

1

T

T∑
t=1

min
‖γt‖1≤α

E
(x ,y)∼µt

`(〈Dγt , x〉, y)

Assumptions: `(y , ·) is L-Lipschitz and ‖xti‖ ≤ 1 a.s.
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Bound for MTL

Theorem 1. Let Ŝp := 1
T

T∑
t=1
‖Σ̂t‖p, p ≥ 1. With prob. ≥ 1− δ

the excess error is upper bounded by

Lα

√
8Ŝ∞ log(2K )

n
+ Lα

√
2Ŝ1(K + 12)

nT
+

√
8 log 4

δ

nT

I If T grows, bound is comparable to Lasso with best a-priori
known dictionary! [Kakade et al. 2012]

I If input distribution is uniform on the unit sphere then Ŝ1 = 1
and Ŝ∞ ≈ 1

n (assuming n < d)
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Proof Idea

Bound the Rademacher average

R =
1

nT
Eσ sup

D,γ

T∑
t=1

n∑
i=1

σti 〈Dγt , xti 〉

Lemma. If Fγ(σ) = sup
D

T∑
t=1

n∑
i=1

σti 〈Dγt , xti 〉 then

Pr (Fγ ≥ EFγ + ε) ≤ exp

(
−ε2

8nT Ŝ∞

)
Follows from a generalization of McDiarmid’s inequality [Boucheron et al.,

2013]
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Proof Idea (cont)

Step 1: a direct computation gives EFγ ≤
√

nTKŜ1 := c

Step 2: observe that

nTR = E max
γ∈CT

Fγ = E max
γ∈ext(C)T

Fγ

=

∫ ∞
0

Pr

(
max

γ∈ext(C)T
Fγ > s

)
ds

≤ c + δ +
∑

γ∈ext(C)T

∫ ∞
δ+c

Pr

(
Fγ > s

)
ds

≤ c + δ + (2K )T
∫ ∞
δ

Pr

(
Fγ > EFγ + s

)
ds

Step 3: use above lemma and optimize over δ, then use standard
bound on uniform deviation between empirical and true error
[Koltchinskii & Panchenko, 2002; Bartlett & Mendelson, 2002]
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Subspace Learning

Same as before but now use L2 norm on the code vectors

min
D∈DK

1

T

T∑
t=1

min
‖γ‖2≤α

1

n

n∑
i=1

`
(
〈Dγ, xti 〉, yti

)

Excess error:

1

T

T∑
t=1

E
(x ,y)∼µt

`(〈D̂γ̂t , x〉, y)− min
D∈DK

1

T

T∑
t=1

min
‖γt‖2≤α

E
(x ,y)∼µt

`(〈Dγt , x〉, y)
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Subspace Learning

Theorem Let Ĉ = 1
nT

∑
t,i

xti ⊗ xti . With probability ≥ 1− δ the

excess error is upper bounded by

2L

(√
K‖Ĉ‖∞

n
+

√
2K (ln (nT ) + 1)

nT

)
+

√
8 ln (4/δ)

nT

I Leading term O
(√

K
n

)
vs. O

(√
log K
n

)
for sparse coding, but

possibly smaller minimum

I Based on bound for trace norm regularization [Maurer & P, 2013]

I Larger constant involving the total covariance
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Binary Classification (Halfspace Learning)

Consider the following simple experiment (binary classification on
the sphere with no noise): a unit weight vector w in IRd is chosen
from a low dimensional subspace (or union of few subspaces) of
dimension K � d . A random set on input vectors xi ∼ σ, are
labeled by u: yi = sign(〈u, xi 〉). Let z =

(
(x1, y1), ..., (xn, yn)

)
The experiment is repeated T times, so we have weight vectors
u1, ..., uT and corresponding datasets z1, ...., zT
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Halfspace Learning (cont.)

Compare MTL to ITL with orthogonal equivariant algorithm (OEA)

Lower bound for ITL [Maurer & P. 2008] For any OEA and n < d

Pr

{
err ≥ 1

π

√
d − n

d
− η

}
≥ 1− e−d(πη)2

green area: MTL is better, gray area: ITL may be better
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Proof of the Lower Bound

Assume inputs are uniformly sampled on the unit sphere in IRd

Step 1: the classification error of weight w relative to true vector u is

error(w) = σ{x : sign(〈w , x〉) 6= sign(〈u, x〉)} =
angle(u,w)

π
≥ d(u,w)

π

which implies

Prx∼σn{error(u,w) < t} ≤ Prx∼σn{d(u,w) <
t

π
}

Step 2: symmetry of the algorithm ⇒ w ∈ [x] := span(x1, ..., xn). This
gives a further bound

Prx∼σn{d(u, [x]) <
t

π
}

Step 3: use the symmetry of σ to bound the above by

sup
dim(M)≤n

Prw∼σ{d(w ,M) <
t

π
}

Step 4: use the fact that Prw∼σ{d(w ,M) <
√

d−n
d − t} ≤ e−dt

2

, which

in turn follows from a result by [Dasgupta and Gupta, 2003]
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Analysis of Transfer Learning

General setting involving distinct sets of training and target tasks
sampled i.i.d. from a meta-distribution E (aka learning to learn

[Baxter, 2000])

I sample µ1, . . . , µT ∼ E
I sample zt ∼ (µt)

n, t = 1, . . . ,T

I apply the method to learn a representation (dictionary) on the
training task

I goal is to bound the transfer error

R(D) = Eµ∼EEz∼(µ)n E
(x ,y)∼µ

`(〈Dγ(D, z), x〉, y)

where γ(D, z) = argmin
‖γ‖1≤α

∑n
i=1 `(〈Dγ, xi 〉, yi )

I relative to Ropt := min
D∈DK

E
µ∼E

min
‖γ‖1≤α

E
(x ,y)∼µ

`(〈Dγ, x〉, y)
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Analysis of Transfer Learning (cont.)

Theorem 2. Let S∞(E) := E
µ∼E

E
(x,y)∼µn

‖Σ(x)‖∞. With pr. ≥ 1− δ

R(D̂)−Ropt ≤ 4Lα

√
S∞(E) (2 + lnK )

n
+ LαK

√
2πŜ1

T
+

√
8 ln 4

δ

T

Choosing µt(x , y) = p(x)δ(〈wt , x〉 − y) and taking n→∞, we recover a
previous bound for sparse coding [Maurer and P. 2010]

E
w∼ρ

[
g(w ; D̂)

]
− min

D∈DK

E
w∼ρ

[
g(w ;D)

]
≤ 2α(1 + α)K

√
2π

T
+

√
8 ln 4

δ

T

where g(w ;D) := min
‖γ‖1≤α

‖w − Dγ‖2
2
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Nonlinear Extension

I Let x ,Dk be elements of a Hilbert space H

f (x) = 〈Dγ, x〉 =
K∑

k=1

γk〈dk , x〉 =
K∑

k=1

γk fk(x)

look for fk to be in some RKHS

I Multilinear neural networks with share internal weights

ft(x) = 〈γt , h(Dqh(Dq−1) · · · h(D1x) · · · ))〉

where h is an “activation” function, e.g. sigmoid
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Conclusions

I Presented a method to learn a dictionary which allows for
sparse representations of a set of linear predictors

I Learning bounds in both the context of MTL and LTL and
quantified advantage over ITL

I Learning method matches performance of Lasso with best a
priori-known dictionary when T →∞ and standard sparse
coding when n→∞

I Future directions: faster rates under stronger conditions?
nonlinear extensions? efficient algorithms?
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Bonus 1: Multilinear MTL

I Problem formulation

I Modelling low rank tensors

I Convex relaxation

[B. Romera-Paredes and M. Pontil. A new convex relaxation for
tensor completion. NIPS 2013]

[B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, M. Pontil.
Multilinear multitask learning. ICML 2013]
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Multilinear Models

I Example: predict rating given to different aspects of a
restaurant by different critics

I Tensor completion from few entries

I MTL: tasks’ regression vectors are “vertical” fibers of the
tensor
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Low Rank Tensors

I Tensor W ∈ IRp1×···×pN , with entries W i ,j ,k,...

I Penalize average rank of the matricizations of W :

R(W) :=
∑
n

Rank(W(n))

W(n): n-th matricization of the tensor, for example:
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0-Shot Transfer Learning

Learning tasks for which no training instances are provided
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Convex Relaxation

I Standard convex proxy for average rank:

‖W‖tr =
∑
n

‖W(n)‖tr

I Convex lower bound on the set G∞ =
{

max
n
‖W(n)‖∞ ≤ 1

}
I Relaxation is not tight! Can we do better?

I Yes, relax on unit ball G2 = {‖W‖2 ≤ 1}

Ωα(W) =
∑
n

ωα(W(n))

ωα : convex envelope of matrix rank on L2 unit ball of radius
α

Theorem. There exists W ∈ G∞ such that Ωα(W) > ‖W‖tr for
α =

√
min
n

pn. In addition, if ‖W‖2 ≤ 1 then Ω1(W) ≥ ‖W‖tr
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Tensor Completion Experiments

Video compression (Left) and RC Dataset (Right):
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Bonus 2: Sharing across Latent Subcategories

I Problem formulation

I Learning subcategories

I Multitask learning formulation

I Experiments

[D. Stamos, S. Martelli. M. Nabi, A. McDonald, V. Murino, M. Pontil.

Learning with dataset bias in latent subcategory models. CVPR 2015]
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Latent subcategory models

I In computer vision, an object class (e.g. pedestrian) often is a
mixture of subcategories which provide ”fine granularity” (e.g.
”frontal”, ”side”, ”thin”, ”fat”, etc.)

I Each latent subcategory k is associated with a weight vector,
wk ∈ IRd , inducing a subclassifier. We separate the object
class from the background class by the classification rule

K
max
k=1
〈wk , x〉

I The positive class is a union of half-spaces: if at least one
subclassifier give a positive classification we output a positive
classification (note classifiers are not mutually exclusive, e.g.
”frontal” and ”thin” class)
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Latent subcategory models (cont.)

We find the weight vectors {wk} by minimizing

n∑
i=1

`(yi
K

max
k=1
〈wk , xi 〉) + λ

K∑
k=1

‖wk‖2

Nonconvex problem, attempt to solve it by alternate minimization

Initialization heuristic: cluster positive points with K -means. Let
Pk be set of positive point in cluster k . Then solve convex problem

n∑
i=1

∑
i∈Pk

`(〈wk , xi 〉) +
∑
i∈N

`(−max
k
〈wk , xi 〉) + λ

K∑
k=1

‖wk‖2

If the clusters have a small variance and are well separated the
heuristic gives a good suboptimal solution (see paper for details)
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Sharing across Latent Subcategories

I Dataset bias problem in vision [Ponce et al. 2006; Torralba and Efros

2011]: it may be harmful to train on the concatenation of all
datasets!

I Multitask learning formulation, based on extension of [Evgeniou and P.

2004; Khosla et al. ECCV 2012]

T∑
t=1

n∑
i=1

`(yti
K

max
k=1
〈wk

0 + vk
t , xti 〉) + λ1

K∑
k=1

‖wk
0 ‖2 + λ2

T∑
t=1

K∑
k=1

‖vk
t ‖2

I In practice it is useful add a term controlling the error of
“compound model” (no theoretical explanation)

T∑
t=1

n∑
i=1

`(yi
K

max
k=1
〈wk

0 , xti 〉)
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Sharing across Latent Subcategories (cont.)

Parameter sharing across datasets can help to train a better subcategory
model of the visual world. Here we have two datasets of a class, each of
which is divided into three subcategories. The red and blue classifiers are
trained on their respective datasets. Our method, in black, both learns
the subcategories and undoes the bias inherent in each dataset.
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Experiment
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Relative improvement of undoing dataset bias LSM vs. the baseline LSM trained on all
datasets at once (top) and vs. undoing bias SVM [Khosla2012 et al. 2012] (bottom)
on all datasets at once (P: PASCAL, L: LabelMe, C: Caltech101, S: SUN: M: mean)
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Experiment

Left and center: top scoring images for subclassifiers w1
0 and w2

0 using our method.
Right: top scoring image for single category classifier w0 from [Khosla et al. 2012]
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