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Supervised learning and inverse problems

Running example:

b A x\ w

n × p

Applications: Machine learning, signal processing, theoretical computer science...

A difficult estimation challenge when n < p:

Nullspace (null) of A: x\ + δ → b, ∀δ ∈ null(A)
I Needle in a haystack: We need additional
information on x\!

b = Ax
x1

x2

x3
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Sparsity to the rescue!

b Ã y\

I b ∈ Rn , Ã ∈ Rn×p, and n < p

Impact: Support restricted columns of A leads to an overcomplete system.
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b Ã x\ 

I b ∈ Rn , Ã ∈ Rn×p, and n < p
I Ψ ∈ Rp×p, x\ ∈ Σs, and s < n < p

Impact: Support restricted columns of A leads to an overcomplete system.
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Sparsity to the rescue!

b A x\

n × 1 n × s s × 1

I b ∈ Rn , A ∈ Rn×p, x\ ∈ Σs, and s < n < p

Impact: Support restricted columns of A leads to an overcomplete system.
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Beyond sparsity towards model-based or structured sparsity

I The following signals can look the same from a sparsity perspective!

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

sorted index s p

|x\|(i)
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Beyond sparsity towards model-based or structured sparsity

I The following signals can look the same from a sparsity perspective!

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

I In reality, these signals have additional structures beyond the simple sparsity

�

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image
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Beyond sparsity towards model-based or structured sparsity

Sparsity model: Union of all s-dimensional
canonical subspaces.

Structured sparsity model: A particular
union of ms s-dimensional canonical
subspaces.

Rp✓
p

s

◆

Rp

ms

Three upshots of structured sparsity:

1. Reduced sample complexity
2. Better noise robustness
3. better interpretability
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A simple template for linear inverse problems

Find the “sparsest” x subject to structure and data.

I Sparsity
We can generalize this desideratum to other notions of simplicity

I Structure
We only allow certain sparsity patterns

I Data fidelity
We have many choices of convex constraints & losses to represent data; e.g.,

‖b−Ax‖2 ≤ κ
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Simple sparsity

A combinatorial approach for estimating x\ from b = Ax\ + w

x? ∈ arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ ‖w‖2

}
(P0)

where ‖x‖0 := 1T s, s = 1supp(x), supp(x) = {i|xi , 0}

P0 has the following characteristics:
I sample complexity: O(s)
I computational effort: NP-Hard
I stability: No

Convex relaxation:
Convex envelope is the largest convex
lower bound.

A technicality: Restrict x\ ∈ [−1, 1]p.
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The role of convexity: Tractable & stable recovery

A combinatorial approach for estimating x\ from b = Ax\ + w

x? ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ ‖w‖2 , ‖x‖∞ ≤ 1

}
(BP)

where ‖x‖1 := 1T |x|

BP has the following characteristics [13]:

I sample complexity: O(s log( p
s ))

I computational effort: Tractable;
O(n2p1.5 log( 1

ε
)) via IPM (for w = 0)

I stability: Robust to noise

A technicality: Restrict x\ ∈ [−1, 1]p.
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Convex relaxations in general ?

We encode the structure over the support by g(x) = F(supp(x))
I supp(x) = {i|xi , 0}
I F(s) : {0, 1}p → R ∪ {+∞}

How to compute the convex relaxation of g in general ?
1. Case by case heuristics
2. Biconjugation (≡ convex envelope): Fenchel conjugate of Fenchel conjugate.

Recall Fenchel conjugate: g∗(y) := supx:dom(g) xT y− g(x)

Proposition (Hardness of conjugation)
The Fenchel conjugate of g results in the following combinatorial problem

g∗(y) = sup
s∈{0,1}p

|y|T s − F(s).

which is NP-Hard in general.
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Tractable convex relaxation

Prior work:

1. Monotone submodular penalties [1]
I Tractable biconjugation via Lovász extension
I Limited to certain structures

2. `q-regularized combinatorial functions [11] (µF(supp(x)) + ν‖x‖q)
I Tractable biconjugation even for some non-submodular functions
I Not always tractable
I May loose structure

Our work: New framework for tractable convex relaxations

I Easy to design
I Tractable biconjugation via linear programming (LP)
I Applicable to various submodular and non-submodular structures
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Template for TU structures

Sparsity and structure together [5]
Given some weights d ∈ Rd , e ∈ Rp and an integeral vector c ∈ Zl , we define

gTU (x) := min
ω
{dTω + eT s : M

[
ω
s

]
≤ c,1supp(x) = s,ω ∈ {0, 1}d}

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

Total unimodular (TU): M ∈ Rl×m is TU iff the determinant of every square
submatrix of M is 0, or ±1.

Relaxation of ILP to LP [10]
When M is TU and c is integeral, then the LP

max
β∈Rm

{θTβ : Mβ ≤ c,β ≥ 0}

has integer optimal solutions (i.e., ILP ≡ LP).

I “Exact convex relaxation” of: g∗(y) = sups∈{0,1}p |y|T s − F(s).
I Same idea behind the tractable biconjugation of submodular functions
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Convexification of TU structures

TU convex relaxation given by LP

g∗∗TU (x) := min
ω
{dTω + eT s : M

[
ω
s

]
≤ c, |x| ≤ s,ω ∈ {0, 1}d}

for all feasible x, ∞ otherwise.

I Special cases:
I Rederive the convex envelope of several submodular models
I Establish the tightness of some convex regularizers for non-submodular models

I Beyond linear objectives, some quadratic objectives can also be handled
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Group cover sparsity: Minimal group cover [2, 12, 8]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

0

0

0

1

0

group “support”
indicator vector

Ê

group sparse

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

Structure: We seek the signal covered by a minimal number of groups.

Objective: dTω

Linear description: For each non-zero coefficient, at least one group containing it is
selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.
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Group cover sparsity: Minimal group cover [2, 12, 8]

G = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.

Objective: dTω

Linear description: For each non-zero coefficient, at least one group containing it is
selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Biconjugate: g∗∗TU (x) = minω∈[0,1]M {dTω : Bω ≥ |x|} for x ∈ [−1, 1]p,∞ otherwise

?= minvi∈Rp{
∑M

i=1 di‖vi‖∞ : x =
∑M

i=1 vi , ∀supp(vi) ⊆ Gi},
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Group intersection sparsity [9, 14, 1]

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the signal intersecting with minimal number of groups.

Objective: dTω (submodular: F(S) =
∑
Gi∈G,S∩Gi,∅

di)

Linear description: All groups containing a non-zero coefficient are selected

H ks ≤ ω, ∀k ∈ {0, · · · , p}

where H k(i, j) =
{

1 if j = k, j ∈ Gi

0 otherwise
, which is TU.
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Group intersection sparsity [9, 14, 1]

G = {{1, 2}, {2, 3}}, unit group weights d = 1

Structure: We seek the signal intersecting with minimal number of groups.

Objective: dTω (submodular: F(S) =
∑
Gi∈G,S∩Gi,∅

di)

Linear description: All groups containing a non-zero coefficient are selected

H ks ≤ ω, ∀k ∈ {0, · · · , p}

where H k(i, j) =
{

1 if j = k, j ∈ Gi

0 otherwise
, which is TU.

Biconjugate: g∗∗TU (x) = minω∈[0,1]M {dTω : H k |x| ≤ ω,∀k ∈ P}

?=
∑
G∈G ‖xG‖∞

for x ∈ [−1, 1]p,∞ otherwise.

A TU view of structured sparsity | Marwa El Halabi, marwa.elhalabi@epfl.ch Slide 14/ 20



Group intersection sparsity [9, 14, 1]

G = {{1, 2}, {2, 3}}, unit group weights d = 1

Structure: We seek the signal intersecting with minimal number of groups.

Objective: dTω (submodular: F(S) =
∑
Gi∈G,S∩Gi,∅

di)

Linear description: All groups containing a non-zero coefficient are selected

H ks ≤ ω, ∀k ∈ {0, · · · , p}

where H k(i, j) =
{

1 if j = k, j ∈ Gi

0 otherwise
, which is TU.

Biconjugate: g∗∗TU (x) = minω∈[0,1]M {dTω : H k |x| ≤ ω,∀k ∈ P}
?=
∑
G∈G ‖xG‖∞

for x ∈ [−1, 1]p,∞ otherwise.

A TU view of structured sparsity | Marwa El Halabi, marwa.elhalabi@epfl.ch Slide 14/ 20



Group knapsack sparsity [15, 7, 6]

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the sparsest signal with group allocation constraints.

Objective: 1T s

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
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Group knapsack sparsity [15, 7, 6]

�

BT =


1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 1 0 · · · 0

.
.

.

0 · · · 0 0 1 1 · · · 1 1


(p−∆+1)×p

Structure: We seek the sparsest signal with group allocation constraints.

Objective: 1T s

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.

Biconjugate: g∗∗TU (x) =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu ,
∞ otherwise

For the neuronal spike example, we have cu = 1.
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Group knapsack sparsity [15, 7, 6]

(left) g∗∗TU (x) ≤ 1 (middle) g∗∗TU (x) ≤ 1.5 (right) g∗∗TU (x) ≤ 2 for G = {{1, 2}, {2, 3}}
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Group knapsack sparsity example: A stylized spike train

I Basis pursuit (BP): ‖x‖1
I TU-relax (TU):

g∗∗TU (x) =
{
‖x‖1 if x ∈ [−1, 1]p, BT |x| ≤ cu ,
∞ otherwise
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Figure: Recovery for n = 0.18p.
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Conclusions

Our work: TU modeling framework
I Complement previous approaches
I Convex programs (not necessarily norms)
I Tight convexifications, non-submodular examples
I Easy to design and “usually” efficient via an LP
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