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Supervised learning and inverse problems

Running example:

b A %t

nxXp

Applications: Machine learning, signal processing, theoretical computer science...
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Supervised learning and inverse problems

Running example:

[
5"
+

A difficult estimation challenge when n < p:

Nullspace (null) of A:  x! 4+ — b, Vdcnull(A)

> Needle in a haystack: We need additional
information on x'!
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Sparsity to the rescue!

b

»beR”, AcR"™P and n < p

. |
PNl A TU view of structured sparsity | Marwa El Halabi, marwa.clhalabi@epfl.ch Siide 3/20 HEAWR




Sparsity to the rescue!
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>b€R",AGR"X1’,andn<p
> ‘IIGRPXp,thES,ands<n<p
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Sparsity to the rescue!

x_ﬂ_

b
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»beR", AcR™?, xl €3, ands<n<p
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Sparsity to the rescue!

b A X"
— E -
n X1 n X s sx1

»beR", AcR"™P xi e, ands<n<p

Impact: Support restricted columns of A leads to an overcomplete system.
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Beyond sparsity towards model-based or structured sparsity

> The following signals can look the same from a sparsity perspective!

#' .
§ %

nis

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image
%% 2)

S sorted index p
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Beyond sparsity towards model-based or structured sparsity

> The following signals can look the same from a sparsity perspective!

| I

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

> In reality, these signals have additional structures beyond the simple sparsity

.. af |
| .

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

-
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Beyond sparsity towards model-based or structured sparsity

Sparsity model: Union of all s-dimensional
canonical subspaces.

Structured sparsity model: A particular
union of ms s-dimensional canonical
subspaces.

Three upshots of structured sparsity:

1. Reduced sample complexity
2. Better noise robustness

3. better interpretability
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A simple template for linear inverse problems

Find the “sparsest” x subject to structure and data.

> Sparsity
We can generalize this desideratum to other notions of simplicity

> Structure

We only allow certain sparsity patterns

> Data fidelity
We have many choices of convex constraints & losses to represent data; e.g.,

[b—Ax|l;, <r

-
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Simple sparsity

A combinatorial approach for estimating x” from b = Ax! + w

x* € arg min 1 ||x[|, : [[b — Ax], < ||w P
g min { I/l « I lly < llwlly } (Po)

where ||x|jo :=1Ts,5 = ]lsupp(x),supp(x) = {i|z; # 0}

. )
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Simple sparsity

A combinatorial approach for estimating x% from b = Ax" + w

x* € arg min { x|, : [b— Ax|, < [[wl, } (Po)

where ||x|jo :=1Ts,5 = ]lsupp(x),supp(x) = {i|z; # 0}

|||y over the unit £-ball

Po has the following characteristics:
» sample complexity: O(s) lIxllo
» computational effort: NP-Hard :
> stability: No
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Simple sparsity

A combinatorial approach for estimating x% from b = Ax" + w

x* € arg min { x|, : [b— Ax|, < [[wl, } (Po)

where ||x|jo :=1Ts,5 = ]lsupp(x),supp(x) = {i|z; # 0}

|||y over the unit £-ball

Po has the following characteristics:
» sample complexity: O(s) lIxllo
» computational effort: NP-Hard :
> stability: No

Convex relaxation:
Convex envelope is the largest convex
lower bound.

A technicality: Restrict x € [—1,1]7.
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Simple sparsity

A combinatorial approach for estimating x” from b = Ax% + w

x* € arg min 1 ||x||, : [|[b — Ax|[, < ||w P
g min { g ¢ b~ Axl; < wll } (Po)

where ||x|jo :=1Ts,5 = ﬂsupp(x),supp(x) = {i|z # 0}

Ix||; is the convex envelope of ||x||,

Po has the following characteristics:
» sample complexity: O(s)
» computational effort: NP-Hard
> stability: No

Convex relaxation:

Convex envelope is the largest convex -
lower bound. o ixlh

A technicality: Restrict x! € [—1,1]P.
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The role of convexity: Tractable & stable recovery

A combinatorial approach for estimating x’ from b = Ax% + w

x* € arg min { x|, : b= Axll, < [wlly, lIxlloc <1} (BP)

where ||x||1 := 17 x|

. )
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The role of convexity: Tractable & stable recovery

A combinatorial approach for estimating x” from b = Ax% + w

* i tb— Al < <1 BP
x* € arg min { x|, : b= Axll, < [wlly, lIxlloc <1} (BP)

where ||x||1 := 17 x|
[|x||; is the convex envelope of ||x||,

BP has the following characteristics [13]:

lIxllo
» sample complexity: O(slog(Z))

> computational effort: Tractable;
O(n?ptlog(L)) via IPM (for w = 0)

> stability: Robust to noise

[Ix[lx

A technicality: Restrict x% € [—1,1]7.
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Convex relaxations in general ?

We encode the structure over the support by g(x) = F(supp(x))
> supp(x) = {i|z; # 0}
> F(s):{0,1}? 5> RU {+o0}
How to compute the convex relaxation of g in general ?
1. Case by case heuristics
2. Biconjugation (= convex envelope): Fenchel conjugate of Fenchel conjugate.

Recall Fenchel conjugate: g*(y) := SuPyx.dom(q) xTy — g(x)
Proposition (Hardness of conjugation)
The Fenchel conjugate of g results in the following combinatorial problem

g' )= sup_|y|"s—F(s).
s€{0,1}P

which is NP-Hard in general.
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Tractable convex relaxation

Prior work:

1. Monotone submodular penalties [1]
> Tractable biconjugation via Lovasz extension
> Limited to certain structures

2. £4-regularized combinatorial functions [11] (uF(supp(x)) + v||x||q)
> Tractable biconjugation even for some non-submodular functions

> Not always tractable

> May loose structure

Our work: New framework for tractable convex relaxations

> Easy to design
> Tractable biconjugation via linear programming (LP)
> Applicable to various submodular and non-submodular structures

Siide 10/ 20  EGHE
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Template for TU structures

Sparsity and structure together [5]
Given some weights d € R%, e € R? and an integeral vector ¢ € Z!, we define

gry(x) ;= min{dTw + eTs: M {L‘:] < ¢, Tgupp(x) = 8w € {0, 139}
w

for all feasible x, co otherwise. The parameter w is useful for latent modeling.

Total unimodular (TU): M € R™ is TU iff the determinant of every square
submatrix of M is 0, or 1.

Relaxation of ILP to LP [10]
When M is TU and c is integeral, then the LP

max{BTB :MpB < ¢ pB>0}
BER™
has integer optimal solutions (i.e., ILP = LP).

» “Exact convex relaxation” of: ¢*(y) = sup,eqo,1}» ly|Ts — F(s).

» Same idea behind the tractable biconjugation of submodular functions

. )
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Convexification of TU structures

TU convex relaxation given by LP

9?*U(x) = min{dTw + els: M |:‘:i| <eg, |X| < swE {07 1}!1}
w
for all feasible x, oo otherwise.
» Special cases:

> Rederive the convex envelope of several submodular models
> Establish the tightness of some convex regularizers for non-submodular models

> Beyond linear objectives, some quadratic objectives can also be handled
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Group cover sparsity: Minimal group cover [2, 12, 8]

sparse group sparse
1

supp(x)

group “support
indicator veetor

Structure: We seek the signal covered by a minimal number of groups.
Objective: dTw

Linear description: For each non-zero coefficient, at least one group containing it is
selected

Bw

where B is the biadjacency matrix of ®, i.e., By = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.
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Group cover sparsity: Minimal group cover [2, 12, 8]

6 = {{1,2},{2,3}}, unit group weights d = 1.
Structure: We seek the signal covered by a minimal number of groups.
Objective: dTw

Linear description: For each non-zero coefficient, at least one group containing it is

selected

where B is the biadjacency matrix of ©, i.e., By = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.

Biconjugate: g}, (x) = minwe[o,l]M{dTw : Bw > |x|} for x € [—1,1]7, 00 otherwise
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Group cover sparsity: Minimal group cover [2, 12, 8]

6 = {{1,2},{2,3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: dTw

Linear description: For each non-zero coefficient, at least one group containing it is

selected

where B is the biadjacency matrix of ©, i.e., By = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.
Biconjugate: g}, (x) = minwe[o,l]M{dTw : Bw > |x|} for x € [—1,1]7, 00 otherwise

. M M
= mlnvfﬂ‘l"{ijz1 dil|villoo : x = 21:1 vi, Vsupp(vq) C Gi},
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Group intersection sparsity [9, 14, 1]

sparse group sparse

Laupp(x) w

Structure: We seek the signal intersecting with minimal number of groups.
H iver AT .
Objective: d*w (submodular: F(S) = Zgie(ﬁ,smg#@ d;)

Linear description: All groups containing a non-zero coefficient are selected

’ Hys <w,Vke {0, - ,p} \

1 ifj=k,jeg;

. , which is TU.
0 otherwise

where H(i,j) = {
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Group intersection sparsity [9, 14, 1]

6 = {{1, 2}, {2,3}}, unit group weights d = 1

Structure: We seek the signal intersecting with minimal number of groups.
: iver AT .
Objective: d* w  (submodular: F(S) = Zgietﬁ,smgiﬁ) d;)

Linear description: All groups containing a non-zero coefficient are selected

‘ Hys < w,Vke {0, ,p} ‘

1 ifj=kjegG;

X , which is TU.
0 otherwise

where H(i,j) = {

Biconjugate: g7 (x) = mil’lwe[oyl]]\l{dT(d s Hy|x| < w,Vk € B}
for x € [—1,1]?, co otherwise.
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Group intersection sparsity [9, 14, 1]

6 = {{1, 2}, {2,3}}, unit group weights d = 1

Structure: We seek the signal intersecting with minimal number of groups.
: iver AT .
Objective: d* w  (submodular: F(S) = Zgietﬁ,smgiﬁ) d;)

Linear description: All groups containing a non-zero coefficient are selected

‘ Hys < w,Vke {0, ,p} ‘

1 ifj=kjegG;

X , which is TU.
0 otherwise

where H(i,j) = {

Biconjugate: g%, (x) = minwe[oyl]M{dTw D Hylx| < w,Vk e BI= dem l|zg || co
for x € [—1,1]?, co otherwise.
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Group knapsack sparsity [15, 7, 6]

sparse
1

supp(x)

Structure: We seek the sparsest signal with group allocation constraints.
Objective: 17s
Linear description: A valid support obeys budget constraints over ®

where B is the biadjacency matrix of ©, i.e., By = 1 iff i-th coefficient is in G;.

When B is an interval matrix or ® has a loopless group intersection graph, it is TU.
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Group knapsack sparsity [15, 7, 6]

1 1 1 1 0 O 0
0 1 1 11 0 0
BT =
= ‘ 0 --- 0 0 1 1 --- 1 1 (p—A-I—l)Xp
| \

Structure: We seek the sparsest signal with group allocation constraints.
Objective: 17's

Linear description: A valid support obeys budget constraints over &

where B is the biadjacency matrix of ®, i.e., Bj; = 1 iff i-th coefficient is in G;.

When B is an interval matrix or ® has a loopless group intersection graph, it is TU.

. . x|l ifxe[=1,1]", BT|x| < cu,
Biconjugate: g% (x) = {oo otherw[ise ] i “

For the neuronal spike example, we have ¢, = 1.
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Group knapsack sparsity [15, 7, 6]

c o8

(left) g7 (x) < 1 (middle) g7, (x) < 1.5 (right) g7 (x) < 2 for & = {{1,2},{2,3}}

Structure: We seek the sparsest signal with group allocation constraints.
Objective: 17's

Linear description: A valid support obeys budget constraints over ®

where B is the biadjacency matrix of ®, i.e., By = 1 iff i-th coefficient is in G;.
When B is an interval matrix or ® has a loopless group intersection graph, it is TU.
lx[lr if x € [=1,1]7, BT|x| < e,

00 otherwise

0k

Biconjugate: g7 (x) = {

For the neuronal spike example, we have ¢, = 1.
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Group knapsack sparsity example: A stylized spike train

> Basis pursuit (BP): ||x]1
> TU-relax (TU):

Ix|li if x € [=1,1]7, BT|x| < ¢, 5 04

* %k
gTu(x) = .
otherwise 02
0.1 0.2 03 0.4
n/p
Figure: Recovery for n = 0.18p.
od od od
og o og
04 04 0d
07 07 07
1.
T T o T i 0 COa
xH h xgp solution . sy solution
relative errors: @ = .200 w = .067
[ES P 15112
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Conclusions

Our work: TU modeling framework
» Complement previous approaches
» Convex programs (not necessarily norms)
> Tight convexifications, non-submodular examples

> Easy to design and “usually” efficient via an LP
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