A convex Solution to Disparity Estimation from Light Fields via the Primal-Dual Method

Mahdad Hosseini Kamal, Paolo Favaro, and Pierre Vandergheynst

> * Ecole Fédérale Polytechnique de Lausanne (EPFL) ** University of Bern

- Definition:
 - The amount of light traveling in every direction through every point in space

- Definition:
 - The amount of light traveling in every direction through every point in space

- Definition:
 - The amount of light traveling in every direction through every point in space
- Applications:
 - Generating a new view¹

- Definition:
 - The amount of light traveling in every direction through every point in space
- Applications:
 - Generating a new view¹
 - Digital refocusing²

- Definition:
 - The amount of light traveling in every direction through every point in space
- Applications:
 - Generating a new view¹
 - Digital refocusing²
 - Disparity estimation³

- Definition:
 - The amount of light traveling in every direction through every point in space
- Applications:
 - Generating a new view¹
 - Digital refocusing²
 - Disparity estimation³

Leverage low-dimensional structures in high-dimensional data

Multi-views and Light Fields

• Light field views are related by *disparity* $\rho: \Omega \mapsto [0, +\infty)$

$$L_{i,j}(x,y) = L_{p,q}(x - \rho \Delta_x(p-i), y - \rho \Delta_y(q-j))$$

Disparity

Displacement

Center view: $L_{i,j}$

Angular distance

Multi-views and Light Fields

- Disparity estimation follows
 - Convex formulation in discrete domain ______ no initial estimate
 - High-dimensional representation

$$\min_{\rho} \sum_{\substack{i,j,p>i\\q>j,x,y}} \Phi(L_{i,j}(x,y) - L_{p,q}(x - \rho(p-i)\Delta_x, y - \rho(q-j)\Delta_y)) + \Gamma(\rho)$$

Robust penalty term Prior knowledge

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

View 2

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

View 1

View 2

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

- Extracting patches from each light field
- Collect all patches in a matrix
- True disparity — > columns of the patch matrix are identical

• Most of the time Lambertian approximation holds (low-rank property of light field)

6

- Most of the time Lambertian approximation holds (low-rank property of light field)

6

- Most of the time Lambertian approximation holds (low-rank property of light field)

- Group members — weights for each disparity hypothesis
- Group Lasso \longrightarrow non-zero entries in patch weights $\mathbf{c}_{x,y}$

- Group members — weights for each disparity hypothesis
- Group Lasso \longrightarrow non-zero entries in patch weights $\mathbf{c}_{x,y}$

7

- Group members — weights for each disparity hypothesis
- Group Lasso \longrightarrow non-zero entries in patch weights $\mathbf{c}_{x,y}$

- Group members — weights for each disparity hypothesis
- Group Lasso \longrightarrow non-zero entries in patch weights $\mathbf{c}_{x,y}$

$$||\mathbf{c}||_{2,1} = \sum_{x,y} \sum_{k=1,\dots,D} ||\mathbf{c}_{x,y}^{\rho_k}||_2$$

- Neighbor disparity patches are smooth
- Vector-valued isotropic total variation for smooth disparity

$$\|\nabla \mathbf{c}\|_{2,1} \doteq \sum_{x,y} \sqrt{\|\mathbf{c}_{x,y} - \mathbf{c}_{x+1,y}\|_2^2 + \|\mathbf{c}_{x,y} - \mathbf{c}_{x,y+1}\|_2^2}$$

- Neighbor disparity patches are smooth
- Vector-valued isotropic total variation for smooth disparity

$$\|\nabla \mathbf{c}\|_{2,1} \doteq \sum_{x,y} \sqrt{\|\mathbf{c}_{x,y} - \mathbf{c}_{x+1,y}\|_2^2 + \|\mathbf{c}_{x,y} - \mathbf{c}_{x,y+1}\|_2^2}$$

- Neighbor disparity patches are smooth
- Vector-valued isotropic total variation for smooth disparity

$$\|\nabla \mathbf{c}\|_{2,1} \doteq \sum_{x,y} \sqrt{\|\mathbf{c}_{x,y} - \mathbf{c}_{x+1,y}\|_2^2 + \|\mathbf{c}_{x,y} - \mathbf{c}_{x,y+1}\|_2^2}$$

- Neighbor disparity patches are smooth
- Vector-valued isotropic total variation for smooth disparity

• Disparity estimation reads

- Disparity of each patch:
 - Estimate the patch unknown weights: $\mathbf{c}_{x,y}$
 - Disparity hypothesis with the highest norm

$$\hat{\rho} = \operatorname{argmin}_{\rho \in \{\rho_1, \dots, \rho_D\}} ||\mathbf{c}_{x,y}||_2$$

- Combining all unknowns ${\bf c}\,$ and ${\bf e}\,$ into a single variable ${\bf x}\,$

$$F_1(\mathbf{A}\mathbf{x} - \mathbf{y}) \doteq \frac{1}{2} \|\mathbf{y} - \mathbf{Q}\mathbf{c} - \mathbf{e}\|_2^2$$
$$F_2(\Pi_{\mathbf{e}}\mathbf{x}) \doteq \|\mathbf{e}\|_1$$
$$F_3(\mathbf{B}\mathbf{x}) \doteq \|\nabla \mathbf{c}\|_{2,1} + \frac{\gamma}{\lambda} \|\mathbf{c}\|_{2,1}$$

- \mathbf{I}_d : Identity matrix
- $\bullet \mathbf{A} \doteq [\mathbf{Q} \ \mathbf{I}_d]$
- $\Pi_{\mathbf{e}} \mathbf{x} \doteq \mathbf{e}$
- $\mathbf{B} \doteq [\nabla^\top \ \frac{\gamma}{\lambda} \mathbf{I}_d]^\top \Pi_{\mathbf{c}}$ $\Pi_{\mathbf{c}} \mathbf{x} \doteq \mathbf{c}$

$$\min_{\mathbf{x}} F_1(\mathbf{A}\mathbf{x} - \mathbf{y}) + \mu F_2(\Pi_{\mathbf{e}}\mathbf{x}) + \lambda F_3(\mathbf{B}\mathbf{x})$$

• The gradient of the cost function requires dealing with $\mathbf{A}^{\top}\mathbf{A}$

$$\frac{\partial}{\partial \mathbf{x}} F_1(\mathbf{A}\mathbf{x} - \mathbf{y}) = \mathbf{A}^\top \mathbf{A}\mathbf{x} - \mathbf{A}^\top \mathbf{y}$$

- **B** is not tight
- The conjugate functions are simple \longrightarrow Primal-dual formulation

$$\min_{\mathbf{x}} \max_{\mathbf{z}} < K\mathbf{x}, \mathbf{z} > -\hat{F}(\mathbf{z})$$

 $\mathbf{z} \doteq [\mathbf{z}_{1}^{\top} \ \mathbf{z}_{2}^{\top} \ \mathbf{z}_{3}^{\top}]^{\top}$ $\mathbf{K} \doteq [\mathbf{A}^{\top} \ \mu \Pi_{\mathbf{e}}^{\top} \ \lambda \mathbf{B}^{\top}]^{\top}$ $\hat{F}(\mathbf{z}) \doteq F_{1}^{*}(\mathbf{z}_{1}) + \mu F_{2}^{*}(\mathbf{z}_{2}) + \lambda F_{3}^{*}(\mathbf{z}_{3})$

• Parallel steps and simple calculation per patch

$$\begin{aligned} \mathbf{z}_{1}^{n+1} &= \operatorname{prox}_{\sigma F_{1}^{*}} \left(\mathbf{z}_{1}^{n} + \sigma (\mathbf{A} \bar{\mathbf{x}}^{n} - \mathbf{y}) \right) & \left(\mathbf{z}_{1}^{n} + \sigma (\mathbf{A} \bar{\mathbf{x}}^{n} - \mathbf{y}) \right) / (\sigma + 1) \\ \mathbf{z}_{2}^{n+1} &= \operatorname{prox}_{\sigma \mu F_{2}^{*}} \left(\mathbf{z}_{2}^{n} + \sigma \mu \Pi_{\mathbf{e}} \bar{\mathbf{x}}^{n} \right) & \mathcal{H}_{\sigma \mu} \left(\left\{ \mathbf{z}_{2}^{n} / (\sigma \mu) + \Pi_{\mathbf{e}} \bar{\mathbf{x}}^{n} \right\}_{s} \right) \\ \mathbf{z}_{3}^{n+1} &= \operatorname{prox}_{\sigma \lambda F_{3}^{*}} \left(\mathbf{z}^{n} + \sigma \lambda \mathbf{B} \bar{\mathbf{x}}^{n} \right) & \left\{ \mathbf{z}_{3}^{n} + \sigma \lambda \mathbf{B} \bar{\mathbf{x}}^{n} \right\}_{b} \left(1 - \max \left\{ 0, 1 - \frac{1}{\| \{ \mathbf{z}_{3}^{n} + \sigma \lambda \mathbf{B} \bar{\mathbf{x}}^{n} \}_{b} \|_{2}} \right\} \right) \\ \mathbf{x}^{n+1} &= \mathbf{x}^{n} - \tau \mathbf{K}^{\top} \mathbf{z}^{n+1} \\ \bar{\mathbf{x}}^{n+1} &= \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^{n}) \end{aligned}$$

• Parallel steps and simple calculation per patch

$$\mathbf{z}_{1}^{n+1} = \operatorname{prox}_{\sigma F_{1}^{*}} \left(\mathbf{z}_{1}^{n} + \sigma (\mathbf{A} \bar{\mathbf{x}}^{n} - \mathbf{y}) \right) \longrightarrow \left(\mathbf{z}_{1}^{n} + \sigma (\mathbf{A} \bar{\mathbf{x}}^{n} - \mathbf{y}) \right) / (\sigma + 1)$$

$$\mathbf{z}_{2}^{n+1} = \operatorname{prox}_{\sigma \mu F_{2}^{*}} \left(\mathbf{z}_{2}^{n} + \sigma \mu \Pi_{\mathbf{e}} \bar{\mathbf{x}}^{n} \right) \longrightarrow \mathcal{H}_{\sigma \mu} \left(\left\{ \mathbf{z}_{2}^{n} / (\sigma \mu) + \Pi_{\mathbf{e}} \bar{\mathbf{x}}^{n} \right\}_{s} \right)$$

$$\mathbf{z}_{3}^{n+1} = \operatorname{prox}_{\sigma \lambda F_{3}^{*}} \left(\mathbf{z}^{n} + \sigma \lambda \mathbf{B} \bar{\mathbf{x}}^{n} \right) \longrightarrow \{ \mathbf{z}_{3}^{n} + \sigma \lambda \mathbf{B} \bar{\mathbf{x}}^{n} \}_{b} \left(1 - \max \left\{ 0, 1 - \frac{1}{\| \{ \mathbf{z}_{3}^{n} + \sigma \lambda \mathbf{B} \bar{\mathbf{x}}^{n} \}_{b} \|_{2}} \right\} \right)$$

$$\mathbf{x}^{n+1} = \mathbf{x}^{n} - \tau \mathbf{K}^{\top} \mathbf{z}^{n+1}$$

$$\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^{n})$$

- Restrict the possible disparity to a carefully selected subset
- Candidates from $g_{x,y}(\rho)$ and from neighboring pixels

$$g_{x,y}(\rho) = \sum_{i,j} \sum_{p>i,q>j} \Phi(L_{i,j}(x,y) - L_{p,q}(x - \rho\Delta_x(p-i), y - \rho\Delta_y(q-j)))$$
$$\mathbf{Q}_{x,y} = \mathbf{Q}_{x,y} = \mathbf{Q}_{x,y}$$

- Restrict the possible disparity to a carefully selected subset
- Candidates from $g_{x,y}(\rho)$ and from neighboring pixels

$$g_{x,y}(\rho) = \sum_{i,j} \sum_{p>i,q>j} \Phi(L_{i,j}(x,y) - L_{p,q}(x - \rho\Delta_x(p-i), y - \rho\Delta_y(q-j)))$$
$$\mathbf{Q}_{x,y} = \begin{bmatrix} \mathbf{Q}_{x,y} \\ \mathbf{Q}_{x,y} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{x,y} \\ \mathbf{Q}_{$$

- Restrict the possible disparity to a carefully selected subset
- Candidates from $g_{x,y}(\rho)$ and from neighboring pixels

$$g_{x,y}(\rho) = \sum_{i,j} \sum_{p>i,q>j} \Phi(L_{i,j}(x,y) - L_{p,q}(x - \rho\Delta_x(p-i), y - \rho\Delta_y(q-j)))$$

[1] S. Heber et al., "Variational Shape from Light Field", EMMCVPR 13
[2] S. Wanner et al., "Globally Constant Depth Labeling of 4D Light Fields", CVPR 12
[3] S. Heber et al., "Shape from Light Fields meets Robust PCA", ECCV 14

Relative Disparity Error •

	4 views	3 views	Stereo
4 views	3 views	stereo	[2]

	Rel error
%	of pixels

	4 views		4 views 3 views		stereo			[1]			[2]		[3]		
error	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.2%	0.2%
pixels	0.13	0.33	1.9	0.139	0.33	1.99	0.42	0.85	3.26	2.12	3.91	8.37	2.9	7.28	5.03

[1] S. Heber et al., "Variational Shape from Light Field", EMMCVPR 13 [2] S. Wanner et al., "Globally Constant Depth Labeling of 4D Light Fields", CVPR 12
[3] S. Heber et al., "Shape from Light Fields meets Robust PCA", ECCV 14

Relative Disparity Error ullet

	4 views			3 view	7s			Ste	ereo	
4 views	3 views			stereo			[1]			[2]
1% 0.5% 0.2%	1% 0.5%	0.2%	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.2%
0 13 0 33 1 9	0 139 0 33	1 99	0.42	0.85	3.26	212	3.91	8.37	$\frac{2.9}{2.9}$	7 28

	4 views				3 views			stereo		[1]			[2]		[3]	
or	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.5%	0.2%	1%	0.2%	0.2°	2
ls	0.13	0.33	1.9	0.139	0.33	1.99	0.42	0.85	3.26	2.12	3.91	8.37	2.9	7.28	5.03	3
				•	•		•	•			•		•			Ø.

[1] S. Heber et al., "Variational Shape from Light Field", EMMCVPR 13 [2] S. Wanner et al., "Globally Constant Depth Labeling of 4D Light Fields", CVPR 12

[3] S. Heber et al., "Shape from Light Fields meets Robust PCA", ECCV 14

• Light fields from camera array

[1] S. Heber et al., "Variational Shape from Light Field", EMMCVPR 13
[2] S. Wanner et al., "Globally Constant Depth Labeling of 4D Light Fields", CVPR 12
[3] S. Heber et al., "Shape from Light Fields meets Robust PCA", ECCV 14

17

[1] S. Wanner et al., "Globally Constant Depth Labeling of 4D Light Fields", CVPR 12[2] C. Kim et al. "Scene Reconstruction from High Spatio-angular Resolution Light Fields", SIGGRAPH 13

• Leverage redundancy in light fields leads to convex disparity estimation

- Leverage redundancy in light fields leads to convex disparity estimation
- Robust occlusions handling

19

- Leverage redundancy in light fields leads to convex disparity estimation
- Robust occlusions handling
- Disparity estimation using Block Coordinate Descent

- Leverage redundancy in light fields leads to convex disparity estimation
- Robust occlusions handling
- Disparity estimation using Block Coordinate Descent

- Leverage redundancy in light fields leads to convex disparity estimation
- Robust occlusions handling
- Disparity estimation using Block Coordinate Descent

- Leverage redundancy in light fields leads to convex disparity estimation
- Robust occlusions handling
- Disparity estimation using Block Coordinate Descent

$$\min_{C_{\mathcal{S}_{i}}, E_{\mathcal{S}_{i}}} \frac{1}{2} \| Y_{\mathcal{S}_{i}} - Q_{\mathcal{S}_{i}} C_{\mathcal{S}_{i}} - E_{\mathcal{S}_{i}} \|_{2}^{2} + \mu \| E_{\mathcal{S}_{i}} \|_{1} + \lambda \| \nabla C_{\mathcal{S}_{i}} \|_{1,2} + \gamma \| C_{\mathcal{S}_{i}} \|_{1,2}$$

- Leverage redundancy in light fields leads to convex disparity estimation
- Robust occlusions handling
- Disparity estimation using Block Coordinate Descent

