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We experience the surrounding environment through sensors.

We have a set of natural sensors, i.e., eyes, ears, nose...

Tech devices are equipped with many sensors, providing 
an incredible amount of information about the real world.
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• Use it to estimate other parameters of interest. 
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We have access to an incredible amount of data. 
How can we use it? 

• Provide it to the end-user as measured, 
• Store it on a server for future use, 
• Use it to estimate other parameters of interest. 

Inverse	
  problem

Inverse problem are variegated. 
Signal processing problems are inverse problems.
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We consider a discretization of the physical field:

Environmental sensing

Pollution

IC temperature
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• Source localization. 

• Data interpolation (low-dim representation).

• Boundary estimation.

• Parameter estimation.
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Solving a linear inverse problem
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 We aim at precisely estimating    .↵

• Source localization. 

• Data interpolation (low-dim representation).

• Boundary estimation.

• Parameter estimation.
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Sensing is expensive
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Sensing is generally expensive and maybe technically difficult.

Where do we place the sensors to get the maximum information?
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Where do we place the sensors?

7

↵

Sensor placement finds     .

Subset selection: NP-hard! [Das 2008]

LProblem:  choose the placement      to minimize the MSE of     . 

pick              rows!
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Iteration 0

Iteration 1

Iteration 2

Optimal

Greedy

Greedy algorithms:  
at each iteration, pick the best local choice.

• No guarantees about the distance 
between  the greedy and the global 
optimal solution 

• Polynomial time (if the cost function 
can be efficiently computed)



EPFL, March 25th 2015

Classic approximation strategy: go greedy!

8

Can we optimize directly the MSE? 
MSE greedy minimization is usually inefficient [Das 2008]  and slow.

Iteration 0

Iteration 1

Iteration 2

Optimal

Greedy

Greedy algorithms:  
at each iteration, pick the best local choice.

• No guarantees about the distance 
between  the greedy and the global 
optimal solution 

• Polynomial time (if the cost function 
can be efficiently computed)
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• FP is a measure of the closeness to orthogonality, 
• The minimizers of the FP are UN tight frames [Casazza 2009], 
• Minimizing the FP induces a minimization of the MSE.
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Theorem [Nemhauser 1978]:   Consider a greedy 
algorithm maximizing a submodular, normalized, 
monotonically increasing set function       .  
Then, the greedy solution is near-optimal: 
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• Submodularity ~ concept of diminishing returns.

Greedy algorithms and submodularity
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• Submodularity ~ concept of diminishing returns.
• Frame Potential is submodular

Greedy algorithms and submodularity
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Greedy worst-out sensor selection: 
• At the k-th iteration, we remove the row maximizing the FP of          , 
• After             iterations, the sensor placement is                     . L = SN�L
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Our strategy: 
• FP is submodular, 
• FrameSense is near-optimal w.r.t. FP, 
• We derive LB and UB of the MSE w.r.t. FP, 
• FrameSense is near-optimal w.r.t. MSE.
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where the approximation factor depends on the spectrum and 
the norms of the rows of     . 
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Proposed algorithm
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FrameSense (polytime, no heuristics, guarantees): 
• Greedy algorithm optimizing the Frame Potential (FP), 
• Near-optimal w.r.t. the MSE, 
• State-of-the-art performance w.r.t. the MSE, 
• Low computational complexity.



One of the applications where FrameSense shines...

Sensing the temperature of a processor
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A modern 8 core microprocessor
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Application: temperature sensing
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A modern 8 core microprocessor

• Thermal stress: failures, reduced performance, increased power 
consumption, mechanical stress.  

• Temperature information is desirable to optimize workload. 
• Temperature cannot be sensed everywhere.
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Objectives: 
• Design an algorithm to recover the entire 

thermal map from few measurements. 
• Design a sensor placement algorithm to 

minimize the reconstruction error. 
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Problem statement

16

Given: a set of thermal distributions, 
representing the workload of the processor.

,                            , . . . . ,                      { }

Objectives: 
• Design an algorithm to recover the entire 

thermal map from few measurements. 
• Design a sensor placement algorithm to 

minimize the reconstruction error. 
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Low-dimensional linear model
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 We learn     using PCA [Ranieri V.C.A.V. 2012]            
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Recover the parameters from 
few measurements to recover 

the thermal map.

We use FrameSense to place the sensors. 
   optimized given the noise level.
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Performance evaluation
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Reconstruction results on the 8-cores Niagara.
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Similar results on a 64-cores STM architecture.

Reconstruction results on the 8-cores Niagara.

5 10 15 20 25 3010−6

10−4

10−2

100

102

104

106

Number of Sensors L

M
ea

n 
Sq

ua
re

d 
Er

ro
r

FrameSense + PCA
[Nowroz 2010]



EPFL, March 25th 2015

Results and future work
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FrameSense (TSP 2014): 
• A greedy algorithm based on the frame potential, 
• First near-optimal algorithm w.r.t. MSE, 
• Computationally efficient, 
• State-of-the-art performance.

Applications 
• Thermal monitoring of many-core processors (DAC 2012, TCOMP 2015), 
• DASS: distributed adaptive sampling scheduling (TCOMM 2014).

Extensions 
• Source placement for linear forward problems, 
• Union of subspaces (EUSIPCO 2014).

Future work 
• Sensor optimization for control theory, 
• Tomographic sensing. 



Thanks for your attention! 
Questions?


