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Signals on Graphs 
l Graphs: flexible tools to represent the geometric 

structure of signals defined on irregular domains 

2

Vertices: discrete data domain 
Edge weights: pairwise relationships between vertices 
Graph signal: function that assigns a real value to each vertex 
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Interplay Between Topology and Signals 
l The dependencies that arise from the connectivity of 

the graph define the graph signals 
!

!

!

!

!

!
l The same signal is smoother with respect to the 

intrinsic structure of 

3
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Examples
!

!

!

!

!

!

!

!

!
Need for efficient tools to identify and exploit structure in these signals 
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Social Networks

Transportation Networks

Sensor Networks (Source: www.meteoswiss.ch)
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Outline
l Motivation 

!
l Preliminaries on Signal Processing on Graphs 
!

l Parametric Dictionary Learning on Graphs 
- Dictionary Structure 
- Dictionary Learning Algorithm  
!

l Extension to Multiple Graphs 
!

l Conclusion

5
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Processing on Graphs
l Require the extraction of core features 
- Compression/Storage

6
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Processing on Graphs
l Require the extraction of core features 
- Compression/Storage 
- Recognition/Identification of common features 
!
!
!
!
!
!
!
!

Sparsity can reveal signal’s structure  

7
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Dictionary for Graph Signals
l Need for new, meaningful graph signal representations 

that  
✓ reveal relevant structural properties of the graph signals/extract 

important features on graphs  
✓ sparsely represent different classes of signals on graphs  

!

!

!

!

How can we define sparsity on graphs? 

8
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Our approach: Parametric graph dictionary
l We consider a general class of graph signals that are 

linear combination of overlapping local patterns  
l The patterns can be translated in different nodes of the 

graphs. 

9

Given a set of training signals living on a graph, learn an overcomplete, 
parametric dictionary that incorporates the graph structure and can be 
efficiently implemented 
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Notations
l Connected, undirected, weighted graph  
!

l Graph signal: a function                    that assigns real 
values to each vertex of the graph 
!

l Normalized Laplacian  
!

- Complete set of orthonormal eigenvectors  
- Real, non-negative eigenvalues  

10

G = (V,E,W )

y : V ! R

L = I �D�1/2WD�1/2

� = [�0,�1, ...,�N�1]

0 = �0 < �1 <= �2 <= ... <= �N�1 <= 2
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Graph Fourier Transform
l The eigenvectors of the Laplacian provide a harmonic 

analysis of graph signals

11

ŷ (�`) = hy,�`i =
NX

n=1

y(n)�⇤
` (n), ` = 0, 1, ..., N � 1

y(n) =
N�1X

`=0

ŷ (�`)�`(n), 8n 2 V

GFT: 

IGFT: 

�0 �1 �8
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Translation of graph signals
l Given a signal    defined in the vertex domain, the 

translation to node    is defined as 
!

!

!
l Smoothness of    controls the localization of         

around the vertex 

12
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Parametric Dictionary Structure 
l A set of generating kernels                           capture 

the spectral characteristics of the signals  
l The atoms        are localized around a node    by 

choosing the kernel        to be a smooth polynomial 
kernel of degree  
!

!
l A set of localized atoms is obtained by 

15

{ bgs(·)}s=1,2,...,S

Tng n
bg(·)

K

ĝ(�`) =
KX

k=0

↵k�
k
` , ` = 0, ..., N � 1

Tg =
p
Nĝ(L) =

p
N

KX

k=0

↵kLk
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Parametric Dictionary Structure
l The structured graph dictionary                                     

is a concatenation of    subdictionaries  of the form   
!

!

!
!

- Each kernel corresponds to a local pattern which is placed in 
different areas of the graph  
!

- The resulting atom given by column    of      has a support 
concentrated in the    -hop neighbourhood of vertex 

16

D = [D1,D2, ...,DS ]
S

Ds = bgs(L) =
KX

k=0

↵skLk

n Ds

K n
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The spectral constraints 
guarantee that: 
1. The learned kernels cover 
the whole spectrum 
2. The dictionary is a frame

Dictionary Learning Algorithm
l Given a set of training signals                                           

on the graph    , solve 

17

Y = [y1, y2, ..., yM ] 2 <N

G

argmin

↵2R(K+1)S , X2RSN⇥M

�
||Y �DX||2F + µk↵k22

 

subject to kxmk0  T0, 8m 2 {1, ...,M},

Ds =

KX

k=0

↵skLk
, 8s 2 {1, 2, ..., S}

0 � Ds � c, 8s 2 {1, 2, ..., S}

(c� ✏1)I �
SX

s=1

Ds � (c+ ✏2)I,
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Outcome
l A structured dictionary that can sparsely represent 

graph signals and can be efficiently applied: 
1. Compact and easy to store (only                 parameters) 

!
2. Fast application of dictionary forward and adjoint operators when 

the graph is sparse.  
!

Example 
!

- The computational cost of                           is 
- The total computational cost is  

!
3. Implementable in distributed settings 

18

(K + 1)S

DT y =
SX

s=1

KX

k=0

↵skLky

{Lky}k=1,2,...,K O(K|E|)

O(K|E|+NSK)
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Flickr dataset
l Nodes:  245 vertices in the Trafalgar Square (London), 

each representing a geographical area 10x10m^2  
l Assign edges when distance < 30m 
l Graph Signals: Daily number of distinct users that took 

photos between Jan. 2010 and June 2012

19
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Traffic dataset
l Nodes: 439 detector stations in Alameda County, CA 
!
l Assign edge when distance < 13km 
!

l Graph Signals: Daily number of bottlenecks (in 
minutes) between Jan. 2007 to May. 2013

21
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Brain dataset
l Nodes: 90 brain regions of contiguous voxels 
!

l Edges assigned if anatomical distance < 40 mm 
!

l Graph Signals: fMRI signals acquired on five subjects, 
in different states - 1290 signals per subject     

22
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Approximation performance
!

!

!

!

!

!

!
!

l As the sparsity level increases, the localization property becomes 
beneficial 

l The polynomial dictionary is able to learn local patterns in areas of the 
graph that do not show up in the training signals.  

23

(a) Flickr dataset (b) Traffic dataset (c) Brain dataset 
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Examples of Learned Atoms 
l Six most commonly included atoms by OMP

24

Polynomial Graph Dictionary K-SVD Dictionary 
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Example of Learned Kernels
l Brain dataset: 
!

!

!

!

!

!

!
!

l The learned kernels correspond to a low-pass and a high-pass filter 

25
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Application: Image Segmentation
l For each pixel (node), extrapolate 5x5 patches 
- Patch binary graph: connect each pixel to its horizontal and vertical 

neighbors 
- Signal on the graph: patch intensity 

l Learn a dictionary from patch signals with    
l Filter each signal with the learned filters i.e.,  
!

!
l Node feature: mean and variance of the filtered signals 
l Clustering: K-means on the feature vectors

26

DT
s yj =

N�1X

`=0

byj(�`) bgs(�`)�`

S = 4,K = 15
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Application: Image Segmentation
27

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

http://lts4.epfl.ch


EPFL – Signal Processing Laboratory (LTS4) !
http://lts4.epfl.ch

Multi-graph dictionary learning
l Problem: Learn atoms for effective representation of 

signals, that are collected on different graph topologies 
!

l Main assumption: Signals on different topologies 
may share similar spectral characteristics 

28

y = e�5L�n = �e�5⇤�T �n

l same process evolving in two different topologies  

l  signal observation:
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Multi-graph dictionary learning
l Learn generating kernels that capture the common 

information across the graphs in the spectral domain 
!

l Capture the common spectral components through the 
polynomial coefficients

29

argmin

↵2R(K+1)S , Xt2RSN⇥Mt

(
TX

t=1

1

Mt
||Yt �DtXt||2F + µk↵k22

)

subject to kXm
t k0  T0, 8m 2 {1, ...,Mt},

Ds
t =

KX

k=0

↵skLk
t , 8s 2 {1, 2, ..., S},

0 � Ds
t � c, 8s 2 {1, 2, ..., S}
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Example of graph processes
1. Heat diffusion kernel: 

!

!

2. Wave kernel: 
!

!

3. Spectral graph wavelet kernel:

30

bg⌧ (�k) = e�⌧�k

bg⌧ (�k) = e�
(⌧�log �k)

2

2�2

bg⌧ (�k) = g(⌧�k)
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Preliminary results
l Consider bottleneck signals from Jan. 2007-Aug.2014 

on three different graphs: 
- San Francisco  
- Alameda 
- Santa Barbara

31
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Summary
l Take-home messages:  
- Localization is important  
- Polynomial matrix functions of the graph Laplacian seems to be a 

flexible structure for sparsely representing graph signals 
!

!
l Still many open questions:  
- Regularization on graphs with the learned kernels 
- Applications where the kernel information could be beneficial, such 

as classification, coding etc  
- Definition of the optimal graph topology

32
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