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Mixture of regularizers
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Overview of compressive imaging

System model

y=Mx+w (1)

> M is the measurement matrix (Fourier, Gaussian etc.)
> x is the image that is in vectorized form
> w is the image that is in vectorized form

> b is the measurement vector

Solution

Then we solve

miny | Wx||1 )
subject to Mx =Yy

where W is the sparsity basis.

L]
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Why a mixture model ?

> Signals can posseses various structures at the same time.

» For example the reconstruction with TV norm ||x|| 7y = ZL] [[(V(x)),]]2
miny ||X|| TV (3)
subject to Mx =y
will introduce flat regions.
> What happens if we solve with a mixture of regularizers ?
min alxllry + (1 —a)lx| (4)

subject to Mx=y

-
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lllustration: Mixture model performs better
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General Problem

miny f(x) = Zf:o fz(x) (5)
subject to Ax=Db

How to solve with

» computational efficiency
> guarantee on objective function

> guarantee on feasibility
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Constrained convex minimization: A primal-dual framework
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Swiss army knife of convex formulations

Our primal problem prototype: A simple mathematical formulation®
f* := min {f(x):Ax:b,xGX}7 (6)
xERP

> fis a proper, closed and convex function, and X is a nonempty, closed convex set.
» A € R"XP and b € R" are known.
> An optimal solution x* to (6) satisfies f(x*) = f*, Ax* = b and x* € X.

IWe can simply replace Ax = b with Ax — b € C for a convex cone C without any fundamental change.
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Swiss army knife of convex formulations

Our primal problem prototype: A simple mathematical formulation®

f* :== min {f(x):Ax:b,xGX}7 (6)

xXERP

> fis a proper, closed and convex function, and X is a nonempty, closed convex set.
» A € R"XP and b € R" are known.
> An optimal solution x* to (6) satisfies f(x*) = f*, Ax* = b and x* € X.

Example to keep in mind in the sequel

x* := arg min {||x||1 :Ax = b, [[x]|e0 < 1}
XERP

LWe can simply replace Ax = b with Ax — b € C for a convex cone C without any fundamental change.
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Swiss army knife of convex formulations
Our primal problem prototype: A simple mathematical formulation®

f* :== min {f(x):Ax:b,xEX}7 (6)

xXERP

> fis a proper, closed and convex function, and X is a nonempty, closed convex set.
» A € R"XP and b € R" are known.
> An optimal solution x* to (6) satisfies f(x*) = f*, Ax* = b and x* € X.

Example to keep in mind in the sequel
x* := arg min {HX”l :Ax = b, [[x]|e0 < 1}
XERP

Broader context for (6):

> Standard convex optimization formulations: linear programming, convex
quadratic programming, second order cone programming, semidefinite
programming and interior point algorithms.

> Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . ..

LWe can simply replace Ax = b with Ax — b € C for a convex cone C without any fundamental change.
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Numerical e-accuracy

Exact vs. approximate solutions

» Computing an exact solution x* to (6) is impracticable unless problem has a
closed form solution, which is extremely limited in reality.

> Numerical optimization algorithms result in x* that approximates x* up to a
given accuracy € in some sense.

> In the sequel, by e-accurate solutions x} of (6), we mean the following
Definition (e-accurate solutions)
Given a numerical tolerance € > 0, a point x} € RP? is called an e-solution of (6) if

[f(x¥) — f*| <€ (objective residual),
[[Ax* —b|| < e (feasibility gap),
xreX (exact simple set feasibility).

> Indeed, € can be different for the objective, feasibility gap, or the iterate residual.
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The optimal solution set
Before we talk about algorithms, we must first characterize what we are looking for!
Optimality condition

The optimality condition of minyerr {f(x) : Ax = b} can be written as

{o € ATX* + Of (x*), @

0 =Ax*—b.
(Subdifferential) 9f(x) := {v €R? : f(y) > f(x) +vT(y — x), Yy € RP}.
> This is the well-known KKT (Karush-Kuhn-Tucker) condition.
> Any point (x*, \*) satisfying (7) is called a KKT point.

» x* is called a stationary point and A\* is the corresponding multipliers.

Lagrange function and the minimax formulation
We can naturally interpret the optimality condition via a minimax formulation

max min £(x, ),
A x&dom(f)

where X\ € R" is the vector of Lagrange multipliers or dual variables w.r.t. Ax =b
associated with the Lagrange function:

L(x,\) = f(x) + 2T (Ax — b)
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Finding an optimal solution

A plausible strategy:

To solve the constrained problem (6), we therefore seek the solutions

(x*,A\*) € argmax min £(x, \),
A xeX

which we can naively brake down into two—in general nonsmooth—problems:
Lagrangian subproblem: x*(\) € argmingex{L(x, ) := f(x) + (A, Ax — b)}
Dual problem: A* € argmaxy {d(A) := L(x*(A),\)}
> The function d(\) is called the dual function.
> The optimal dual objective value is d* = d(\*).

The dual function d(\) is concave. Hence, we can attempt the following strategy:
1. Find the optimal solution A* of the “convex” dual problem.

2. Obtain the optimal primal solution x* = x*(\*) via the convex primal problem.

.
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A plausible strategy:
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(x*,A\*) € argmax min £(x, \),
A xeX

which we can naively brake down into two—in general nonsmooth—problems:
Lagrangian subproblem: x*(\) € argmingex{L(x, ) := f(x) + (A, Ax — b)}
Dual problem: A* € argmaxy {d(A) := L(x*(A),\)}
> The function d(\) is called the dual function.
> The optimal dual objective value is d* = d(\*).

The dual function d(\) is concave. Hence, we can attempt the following strategy:
1. Find the optimal solution A* of the “convex” dual problem.

2. Obtain the optimal primal solution x* = x*(\*) via the convex primal problem.

Challenges for the plausible strategy above

1. Establishing its correctness
2. Computational efficiency of finding an é-approximate optimal dual solution AX

3. Mapping X — x} (i.e., €(¢)), where € is for the original constrained problem (6)
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Finding an optimal solution

A plausible strategy:

To solve the constrained problem (6), we therefore seek the solutions

(x*,A\*) € argmax min £(x, \),
A xeX

which we can naively brake down into two—in general nonsmooth—problems:
Lagrangian subproblem: x*(\) € argmingex{L(x, ) := f(x) + (A, Ax — b)}
Dual problem: A* € argmaxy {d(A) := L(x*(A),\)}
> The function d(\) is called the dual function.
> The optimal dual objective value is d* = d(\*).

The dual function d(\) is concave. Hence, we can attempt the following strategy:
1. Find the optimal solution A* of the “convex” dual problem.

2. Obtain the optimal primal solution x* = x*(\*) via the convex primal problem.

Challenges for the plausible strategy above

— d*

1. Establishing its correctness: Assume f* > —oo and Slater’s condition for f*

2. Computational efficiency of finding an é-approximate optimal dual solution AX

3. Mapping X — x} (i.e., €(¢)), where € is for the original constrained problem (6)
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Nesterov's smoothing idea: From O (%) to O (1)

When can the dual function have Lipschitz gradient?

When f(x) is «y-strongly convex, the dual function d()) is W—Lipschitz gradient.
(Strong convexity) f(x) is y-strongly convex iff f(x) — Z||x||3 is convex.

g Yy 2
dN) = min  f(x) - |3 +Ax-b)+ S|x]3
X:XEX 2 2

N

convex & leads to d€F,

possibly nonsmooth

AGM automatically obtains d* — d(x*) < € with k = O (%)

Siide 12/ 26 P
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Nesterov's smoothing idea: From O (%) to O (1)

When can the dual function have Lipschitz gradient?

2
i 1Al

When f(x) is «y-strongly convex, the dual function d()) i > -Lipschitz gradient.

(Strong convexity) f(x) is y-strongly convex iff f(x) — Z||x||3 is convex.

g Yy 2
dN) = min  f(x) - |3 +Ax-b)+ S|x]3
X:XEX 2 2

N

convex & leads to d€F,

possibly nonsmooth

Nesterov's smoother [3]
We add a strongly convex term to Lagrange subproblem so that the dual is smooth!
dy(A) = min f(x) 4+ (A\,Ax —b) + 1||x — x.||3, with a center point x. € X
XiXEX 2
Vdy(A) = Ax3(N) — b (x4()\): the y-Lagrangian subproblem solution)
1. dy(A) = vDx < d(X) < dy(X), where Dy = maxxex %HX—XcH%-

2| A2 R?
v(k+2)2 °

3. We minimize the upperbound wrt  and obtain d* — d(x*) < € with k = O (%)

2. x¥ of AGM on d(}) has d* — d(x*) <Dy + df — d(xF) <yDx +

e
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Computational efficiency: The key role of the prox-operator
Smoothed dual: dy(\) = mingxex f(X) + (A, Ax — b) + I |x — x.[|3

1
x*(A) = prox; ., (xc — 7AT)\>
’ Y

Definition (Prox-operator)

prox, (x) i= argmin {g() + (1/2)]z — x|}

Key properties:

> distributes when the primal problem has decomposable structure:

f(x) == Zﬁ(xi), and X :i= X1 X -+ X X
=1

where m > 1 is the number of components.

> often efficient & has closed form expression. For instance, if g(z) = ||z||1, then

the prox-operator performs coordinate-wise soft-thresholding by 1.
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Going from the dual € to the primal I

Optimality condition (revisted)
Two equivalent ways of viewing the optimality condition of the primal problem (6)
mixed variational inequality (MVIP) inclusion

T\ * x*
f(x) — f(x*) + M(z*) T (z — z*) > 0, VZGXXR":{E iixi\——’—baﬂ ),

AT

where M (z) := and z* := (x*, \*) is a primal-dual solution of (6).
Ax—b
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Going from the dual € to the primal I

Optimality condition (revisted)

Two equivalent ways of viewing the optimality condition of the primal problem (6)

mixed variational inequality (MVIP) inclusion
AT\ g *
f(x) = f(x*)+ M@z (z—2*) >0, Vz€ X xR" | = 0 €ATA"+f(x%),
0 =Ax*—b.

AT

where M (z) := [Ax b

} and z* := (x*, \*) is a primal-dual solution of (6).

Measuring progress via the gap function

Unfortunately, measuring progress with the inclusion formulation is hard. However,
associated with MVIP, we can define a gap function to measure our progress
G(z):= max {f(x)—fx) +M(=z)"(z—2)}. (8)
ZEX XR™
Key observations:

> G(z) = max f(x) + (\,Ax — b) — min f(%) + (, AX —b) > 0,Vz € X xR"
AER™ XeX

=f(x) if Ax=Db,0c0 o/w =d(X)
> G(z*) = 0 iff z* := (x*, A\*) is a primal-dual solution of (6).
> Primal accuracy € and the dual accuracy € can be related via the gap function.
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Going from the dual € to the primal eIl

A smoothed gap function measuring the excessive primal-dual gap
We define a smoothed version of the gap function G.g(z) =

max f(x) + (A, Ax — b) — éu& — Xell2 — min f(%) + (A, A% — b) + L% — %.|12
Aern 2 xXEX 2

=f3(x)=f(x)+(Ac,Ax—b)+ 57| Ax—b]|2 =dy ()

where (&c,j\c) € X x R™ are primal-dual center points. In the sequel, they are 0.
> The primal accuracy ¢ is related to our primal model estimate f3(x)
> The dual accuracy € is related to our smoothed dual function d- (\)

> We must relate G3(z) to G(z) so that we can tie € to €

-
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Going from the dual € to the primal eIl

A smoothed gap function measuring the excessive primal-dual gap
We define a smoothed version of the gap function G.g(z) =

max f(x) + (A, Ax — b) — éu& — Acll3 — min f(X) + (A, AX — b) + g 1% — %.||2
Aern 2 XEX 2

=15 () =F(x)+{Ae, Ax—b)+ 7 [ Ax—bl|2 =509

where (%X¢, S\C) € X x R™ are primal-dual center points. In the sequel, they are 0.
> The primal accuracy ¢ is related to our primal model estimate f3(x)
> The dual accuracy € is related to our smoothed dual function d- (\)

> We must relate G3(z) to G(z) so that we can tie € to €

Our algorithm via MEG: model-based excessive gap (cf., [4])
Let Gi(-) := G,5,(-). We generate a sequence {Z*, vk, Bk} x>0 such that

‘ Gry1 (") < (1 — 1) G(Z") + v ‘ (MEG)

for 1, — 0, rate 7, € (0,1) (Zk Tk = 00), YkBr+1 < YkBr so that G, 5, (-) = G(-).

Zk

> Consequence: ‘ GEZ") - 0t = zF = 2" = (x*,A\*) | (primal-dual solution).

Lt
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Going from the dual € to the primal e-lll

An uncertainty relation via MEG

The product of the primal and dual convergence rates is lowerbounded by MEG:

B > T AP

Note that 7',3 =0 (Flz) due to Nesterov's lowerbound.

> The rate of 5}, controls the primal residual: |f(x*) — f*| < O (y3)
> The rate of B controls the feasibility: |Ax* — b2 < O (B + %) = O (Br)

> They cannot be simultaneously O (%2)'

3 V
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Convergence guarantee

Theorem [4, 5]

1. When f is strongly convex with > 0, we can take v, = @ and B, = O (1%2)

—Dp«[[AxF —b| < f(xF) -+ <0
PN
|Ax* —b]| s(klﬁ%
; 4
I =%l < Gy Das

2. When f is non-smooth, the best we can do is v, = O (%) and B, = O (%)

—Dps[|Ax* —b| < fxF)—fr < 22IAIDx
k 2 VIl A (D *+F>
[Ax* = bl < P

Side 17/28  HHE
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Application
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An application: Magnetic Resonance Imaging (MRI)
Mixture Model:

et
min = [|[Mx — I3 + allxllrv + pl Wxll1 + Bl Wxloree 9
X

S
Ixlleree ==Y lIxgll2 (10)
=il

With z = Gx we can define the tree norm with non-overlapping groups g;

Ixllree = 3 1(Gx)y, ll2 (11)
i=1

. V
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Wavelet Tree Sparsity Algorithm (WaTMRI) [1]

Mixture Model

s
1 A
mmgllMx—yH%+aHXHTv+uHWXII1+ﬂE II(Z)giII2+5HZ—GWXII§ (12)
X,z

t=1

Two subproblems:
> ming,, BlI(z)gll2 + %Hz?h. - (G’Wx)giH% is solved by proximity operator.
> ming %HMX -yl + %Hz — GWx||2 + afx|ltv + u|| Wx||1 is solved by FISTA
> Proximal operator of a|x|tv + p|| Wx||1 is solved with an iterative algorithm
> Fast empirical convergence but does not allow parallelization

> No guarantee and does not solve the original problem nor the augmented problem
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Solving with the Primal-Dual Framework [2]

Mixture Model

mm*” MX*YHQ+0¢|| v+ el x ll+ 8 E IEW%)5:l2 (13)
——
x0 x1 X2 =1 x3

fo(x0) = [Ix0l13, fi(x1) = allxilltv, fo(x2) = plix2ll1, f3(x3) =By ;_, [ (x3)g4 2

Decomposable form

min,_pr o nr o f(x) = S filxi) (14)
subject to Ax =Db
where
w —-I 0 0 0
A=10 G —-I 0| andb= |0 (15)
M 0 0 -I y
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Experimental Setup

Original image Subsampling map

» N = 128 x 128 MRI brain image sampled via a partial Fourier operator at a
subsampling ratio of 0.2

Note that although we use the same coefficient values for «, 8, u, WaTMRI
addresses the augmented problem without the constraint.

v
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Results

. Objective Feasibility
10

106

15 5
1% 200 400 600 800 1000 107 200 400 600 800 1000 o 200

400 600 800 1000
iteration iteration

iteration

(a) (b) ()

Figure : MRI experiment. (a) Objective function vs iterations. (b) Feasibility gap ||z — G Wx]||2
vs iterations. (c) Signal-to-noise ratio of the iterates vs iterations.
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Conclusion

lions@ep

>

>

Reliable solver for mixture of regularizers

Convergence guarantee on both objective and feasibility gap

Can handle as many regularizers as we want

Requires only proximal operator computations and parallelizable

A primal-dual framework for mixtures of regularizers |

Baran Gozcii, baran.goezcue@epfl.ch
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1P2D Algorithm

Update the primal-dual sequence {z*}

We can design different strategies to update {zk} For instance:

e = (L= m) A Ay (RF)
):(k+l o= (1 - Tk)ik a4 TkX:(A+1 (5\1‘) (1P2D)
ML= A 4 o (AxS, (W) = D)

where ay; := v41||A|| 2 (Bregman), or ay := y,+1 (augmented Lagrangian).

Update parameters
The parameters Bj and v are updated as (¢, € (—1,1] given):

Vi1 = (1 — cxme)ye and  Bry1 = (1 —7x)Bk (16)

The parameter 7y, is updated as:

apy1 = (1 + cp41 + \/40,,% + (1 = Ck+1)2)/2, and Th+1 = ak_Jrll.

-
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