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Overview of compressive imaging

System model

y = Mx + ω (1)

I M is the measurement matrix (Fourier, Gaussian etc.)
I x is the image that is in vectorized form
I ω is the image that is in vectorized form
I b is the measurement vector

Solution
Then we solve

minx ‖W x‖1
subject to Mx = y (2)

where W is the sparsity basis.
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Why a mixture model ?

I Signals can posseses various structures at the same time.
I For example the reconstruction with TV norm ‖x‖TV =

∑
i,j ‖(∇(x))i,j‖2

minx ‖x‖TV
subject to Mx = y (3)

will introduce flat regions.
I What happens if we solve with a mixture of regularizers ?

minx α‖x‖TV + (1− α)‖x‖1
subject to Mx = y (4)
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Illustration: Mixture model performs better
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General Problem

minx f (x) :=
∑p

i=0 fi(x)
subject to Ax = b (5)

How to solve with
I computational efficiency
I guarantee on objective function
I guarantee on feasibility
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Swiss army knife of convex formulations

Our primal problem prototype: A simple mathematical formulation1

f ? := min
x∈Rp

{
f (x) : Ax = b,x ∈ X

}
, (6)

I f is a proper, closed and convex function, and X is a nonempty, closed convex set.
I A ∈ Rn×p and b ∈ Rn are known.
I An optimal solution x? to (6) satisfies f (x?) = f ?, Ax? = b and x? ∈ X .

Example to keep in mind in the sequel

x? := arg min
x∈Rp

{
‖x‖1 : Ax = b, ‖x‖∞ ≤ 1

}
Broader context for (6):
I Standard convex optimization formulations: linear programming, convex
quadratic programming, second order cone programming, semidefinite
programming and interior point algorithms.

I Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . . .

1We can simply replace Ax = b with Ax− b ∈ C for a convex cone C without any fundamental change.
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Numerical ε-accuracy

Exact vs. approximate solutions

I Computing an exact solution x? to (6) is impracticable unless problem has a
closed form solution, which is extremely limited in reality.

I Numerical optimization algorithms result in x?ε that approximates x? up to a
given accuracy ε in some sense.

I In the sequel, by ε-accurate solutions x?ε of (6), we mean the following

Definition (ε-accurate solutions)
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (6) if|f (x?ε )− f ?| ≤ ε (objective residual),

‖Ax?ε − b‖ ≤ ε (feasibility gap),
x?ε ∈ X (exact simple set feasibility).

I Indeed, ε can be different for the objective, feasibility gap, or the iterate residual.
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The optimal solution set
Before we talk about algorithms, we must first characterize what we are looking for!

Optimality condition
The optimality condition of minx∈Rp {f (x) : Ax = b} can be written as{

0 ∈ ATλ? + ∂f (x?),
0 = Ax? − b.

(7)

(Subdifferential) ∂f (x) := {v ∈ Rp : f (y) ≥ f (x) + vT (y− x), ∀y ∈ Rp}.
I This is the well-known KKT (Karush-Kuhn-Tucker) condition.
I Any point (x?, λ?) satisfying (7) is called a KKT point.
I x? is called a stationary point and λ? is the corresponding multipliers.

Lagrange function and the minimax formulation
We can naturally interpret the optimality condition via a minimax formulation

max
λ

min
x∈dom(f )

L(x, λ),

where λ ∈ Rn is the vector of Lagrange multipliers or dual variables w.r.t. Ax = b
associated with the Lagrange function:

L(x, λ) := f (x) + λT (Ax− b)
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Finding an optimal solution

A plausible strategy:
To solve the constrained problem (6), we therefore seek the solutions

(x?, λ?) ∈ arg max
λ

min
x∈X
L(x, λ),

which we can naively brake down into two—in general nonsmooth—problems:

Lagrangian subproblem: x∗(λ) ∈ arg minx∈X {L(x, λ) := f (x) + 〈λ,Ax− b〉}
Dual problem: λ? ∈ arg maxλ {d(λ) := L(x∗(λ), λ)}

I The function d(λ) is called the dual function.
I The optimal dual objective value is d? = d(λ?).

The dual function d(λ) is concave. Hence, we can attempt the following strategy:
1. Find the optimal solution λ? of the “convex” dual problem.
2. Obtain the optimal primal solution x? = x∗(λ?) via the convex primal problem.

Challenges for the plausible strategy above
1. Establishing its correctness

: Assume f ? > −∞ and Slater’s condition for f ? = d?

2. Computational efficiency of finding an ε̄-approximate optimal dual solution λ?ε̄
3. Mapping λ?ε̄ → x?ε (i.e., ε̄(ε)), where ε is for the original constrained problem (6)
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Nesterov’s smoothing idea: From O
( 1

ε̄2

)
to O

( 1
ε̄

)
When can the dual function have Lipschitz gradient?
When f (x) is γ-strongly convex, the dual function d(λ) is ‖A‖

2

γ
-Lipschitz gradient.

(Strong convexity) f (x) is γ-strongly convex iff f (x)− γ
2 ‖x‖

2
2 is convex.

d(λ) = min
x:x∈X

f (x)−
γ

2
‖x‖2

2︸               ︷︷               ︸
convex &

possibly nonsmooth

+〈λ,Ax− b〉+
γ

2
‖x‖2

2︸   ︷︷   ︸
leads to d∈FL

AGM automatically obtains d? − d(xk) ≤ ε̄ with k = O
(

1√
ε̄

)

Nesterov’s smoother [3]
We add a strongly convex term to Lagrange subproblem so that the dual is smooth!

dγ(λ) = min
x:x∈X

f (x) + 〈λ,Ax− b〉+
γ

2
‖x− xc‖2

2,with a center point xc ∈ X

∇dγ(λ) = Ax∗γ(λ)− b (x∗γ(λ): the γ-Lagrangian subproblem solution)

1. dγ(λ)− γDX ≤ d(λ) ≤ dγ(λ), where DX = maxx∈X
1
2‖x− xc‖2

2.

2. xk of AGM on dγ(λ) has d? − d(xk) ≤ γDX + d?γ − dγ(xk) ≤ γDX + 2‖A‖2R2

γ(k+2)2 .

3. We minimize the upperbound wrt γ and obtain d? − d(xk) ≤ ε̄ with k = O
(

1
ε̄

)
.
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Computational efficiency: The key role of the prox-operator

Smoothed dual: dγ(λ) = minx:x∈X f (x) + 〈λ,Ax− b〉+ γ
2 ‖x− xc‖2

2

x∗(λ) = proxf/γ

(
xc −

1
γ

ATλ

)
Definition (Prox-operator)

proxg(x) := arg min
z∈Rp
{g(z) + (1/2)‖z− x‖2}.

Key properties:
I distributes when the primal problem has decomposable structure:

f (x) :=
m∑

i=1

fi(xi), and X := X1 × · · · × Xm .

where m ≥ 1 is the number of components.
I often efficient & has closed form expression. For instance, if g(z) = ‖z‖1, then
the prox-operator performs coordinate-wise soft-thresholding by 1.
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Going from the dual ε̄ to the primal ε–I

Optimality condition (revisted)
Two equivalent ways of viewing the optimality condition of the primal problem (6)

mixed variational inequality (MVIP) inclusion

f (x)− f (x?) + M(z?)T (z− z?) ≥ 0, ∀z ∈ X × Rn =
{

0 ∈ ATλ? + ∂f (x?),
0 = Ax? − b.

where M(z) :=
[

ATλ
Ax− b

]
and z? := (x?, λ?) is a primal-dual solution of (6).

Measuring progress via the gap function
Unfortunately, measuring progress with the inclusion formulation is hard. However,
associated with MVIP, we can define a gap function to measure our progress

G(z) := max
ẑ∈X×Rn

{
f (x)− f (x̂) + M(z)T (z− ẑ)

}
. (8)

Key observations:
I G(z) = max

λ̂∈Rn
f (x) + 〈λ̂,Ax− b〉︸                                ︷︷                                ︸

=f (x) if Ax=b,∞ o/w

−min
x̂∈X

f (x̂) + 〈λ,Ax̂− b〉︸                               ︷︷                               ︸
=d(λ)

≥ 0, ∀z ∈ X × Rn

I G(z?) = 0 iff z? := (x?, λ?) is a primal-dual solution of (6).
I Primal accuracy ε and the dual accuracy ε̄ can be related via the gap function.
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Going from the dual ε̄ to the primal ε–II

A smoothed gap function measuring the excessive primal-dual gap
We define a smoothed version of the gap function Gγβ(z) =

max
λ̂∈Rn

f (x) + 〈λ̂,Ax− b〉 − β

2
‖λ̂− λ̂c‖2

2︸                                                        ︷︷                                                        ︸
=fβ(x)=f (x)+〈λ̂c,Ax−b〉+ 1

2β ‖Ax−b‖2
2

−min
x̂∈X

f (x̂) + 〈λ,Ax̂− b〉+
γ

2
‖x̂− x̂c‖2

2︸                                                       ︷︷                                                       ︸
=dγ(λ)

where (x̂c, λ̂c) ∈ X × Rn are primal-dual center points. In the sequel, they are 0.
I The primal accuracy ε is related to our primal model estimate fβ(x)
I The dual accuracy ε̄ is related to our smoothed dual function dγ(λ)
I We must relate Gγβ(z) to G(z) so that we can tie ε to ε̄

Our algorithm via MEG: model-based excessive gap (cf., [4])
Let Gk(·) := Gγkβk (·). We generate a sequence {z̄k , γk , βk}k≥0 such that

Gk+1(z̄k+1) ≤ (1− τk)Gk(z̄k) + ψk (MEG)

for ψk → 0, rate τk ∈ (0, 1) (
∑

k τk =∞), γkβk+1 < γkβk so that Gγkβk (·)→ G(·).

I Consequence: G(z̄k)→ 0+ ⇒ z̄k → z? = (x?, λ?) (primal-dual solution).
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Going from the dual ε̄ to the primal ε–III

An uncertainty relation via MEG
The product of the primal and dual convergence rates is lowerbounded by MEG:

γkβk ≥ τ2
k ‖A‖

2

Note that τ2
k = Ω

(
1

k2

)
due to Nesterov’s lowerbound.

I The rate of γk controls the primal residual: |f (xk)− f ?| ≤ O (γk)
I The rate of βk controls the feasibility: ‖Axk − b‖2 ≤ O (βk + τk) = O (βk)
I They cannot be simultaneously O

(
1

k2

)
!
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Convergence guarantee

Theorem [4, 5]
1. When f is strongly convex with µ > 0, we can take γk = µ and βk = O

(
1

k2

)
:

−DΛ?‖Axk − b‖ ≤ f (xk)− f ? ≤ 0
‖Axk − b‖ ≤ 4‖A‖2

(k+2)2µ
DΛ?

‖xk − x?‖ ≤ 4‖A‖
(k+2)µDΛ?

2. When f is non-smooth, the best we can do is γk = O
(

1
k

)
and βk = O

(
1
k

)
:{

−DΛ?‖Axk − b‖ ≤ f (xk)− f ? ≤ 2
√

2‖A‖DX
k+1 ,

‖Axk − b‖ ≤ 2
√

2‖A‖(DΛ?+
√

DX )
k+1 .
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An application: Magnetic Resonance Imaging (MRI)

Mixture Model:

min
x

1
2
‖Mx− y‖2

2 + α‖x‖TV + µ‖W x‖1 + β‖W x‖tree (9)

‖x‖tree :=
s∑

i=1

‖xgi‖2 (10)

With z = Gx we can define the tree norm with non-overlapping groups g̃i

‖x‖tree =
s∑

i=1

‖ (Gx)g̃i
‖2 (11)

x_1

x_2

x_3 x_4

G z =

g_1 ğ_1

ğ_2

ğ_3

g_2

g_3
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Wavelet Tree Sparsity Algorithm (WaTMRI) [1]

Mixture Model

min
x,z

1
2
‖Mx− y‖2

2 + α‖x‖TV + µ‖W x‖1 + β

s∑
i=1

‖(z)g̃i‖2 +
λ

2
‖z−GW x‖2

2 (12)

Two subproblems:
I minzg̃i

β‖(z)g̃i‖2 + λ
2 ‖zg̃i − (GW x)g̃i‖2

2 is solved by proximity operator.

I minx
1
2‖Mx− y‖2

2 + λ
2 ‖z−GW x‖2

2 + α‖x‖TV + µ‖W x‖1 is solved by FISTA

I Proximal operator of α‖x‖TV + µ‖W x‖1 is solved with an iterative algorithm

I Fast empirical convergence but does not allow parallelization

I No guarantee and does not solve the original problem nor the augmented problem
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Solving with the Primal-Dual Framework [2]

Mixture Model

min
x

1
2
‖Mx− y︸     ︷︷     ︸

x0

‖2
2 + α‖ x︸︷︷︸

x1

‖TV + µ‖W x︸︷︷︸
x2

‖1 + β

s∑
i=1

‖(GW x︸  ︷︷  ︸
x3

)g̃i‖2 (13)

f0(x0) = ‖x0‖2
2, f1(x1) = α‖x1‖TV, f2(x2) = µ‖x2‖1, f3(x3) = β

∑s
i=1 ‖ (x3)g̃i

‖2

Decomposable form

minx=[xT
0 ,...,x

T
p ]T f (x) :=

∑3
i=0 fi(xi)

subject to Ax = b
(14)

where

A =

W −I 0 0
0 G −I 0
M 0 0 −I

 and b =

0
0
y

 (15)
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Experimental Setup

Original image Subsampling map

I N = 128× 128 MRI brain image sampled via a partial Fourier operator at a
subsampling ratio of 0.2

I Note that although we use the same coefficient values for α, β, µ, WaTMRI
addresses the augmented problem without the constraint.
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Results

iteration
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Figure : MRI experiment. (a) Objective function vs iterations. (b) Feasibility gap ‖z−GWx‖2
vs iterations. (c) Signal-to-noise ratio of the iterates vs iterations.
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Outline

Mixture of regularizers

Constrained convex minimization: A primal-dual framework

Application

Conclusion
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Conclusion

I Reliable solver for mixture of regularizers
I Convergence guarantee on both objective and feasibility gap
I Can handle as many regularizers as we want
I Requires only proximal operator computations and parallelizable
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1P2D Algorithm

Update the primal-dual sequence {z̄k}
We can design different strategies to update {zk}. For instance:

λ̂k := (1− τk)λ̄k + τkλ
?
βk

(x̄k)
x̄k+1 := (1− τk)x̄k + τkx?γk+1 (λ̂k)
λ̄k+1 := λ̂k + αk(Ax?γk+1 (λ̂k)− b)

(1P2D)

where αk := γk+1‖A‖−2 (Bregman), or αk := γk+1 (augmented Lagrangian).

Update parameters
The parameters βk and γk are updated as (ck ∈ (−1, 1] given):

γk+1 := (1− ckτk)γk and βk+1 = (1− τk)βk (16)

The parameter τk is updated as:

ak+1 :=
(

1 + ck+1 +
√

4a2
k + (1− ck+1)2

)
/2, and τk+1 = a−1

k+1.

A primal-dual framework for mixtures of regularizers | Baran Gözcü, baran.goezcue@epfl.ch Slide 28/ 28


	Mixture of regularizers
	Constrained convex minimization: A primal-dual framework
	Application
	Conclusion

