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Introduction and Outline

Outline:

✓ Diffusion MRI and problem formulation

✓ Structured sparsity through reweighting

✓ Results

✓ Discussion and future work

Problem: Recovery of multiple correlated sparse signals
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Diffusion MRI (dMRI)
✤ What is it?

✓ Diffusion MRI measures the Brownian motion of 
water molecules in a fluid due to thermal energy.
✓ In ordered tissues, water does not diffuse equally 
in all directions (anisotropic diffusion).

Study the spatial order in living organs in a non-
invasive way.
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Diffusion MRI (dMRI)
✤ What is it?

✓ Diffusion MRI measures the Brownian motion of 
water molecules in a fluid due to thermal energy.
✓ In ordered tissues, water does not diffuse equally 
in all directions (anisotropic diffusion).

Study the spatial order in living organs in a non-
invasive way.

✓Why? Neuroscience / Clinical applications
✓How? Fiber tracking (tractography)

✤ STRUCTURAL NEURAL CONNECTIVITY

Tuesday, March 24, 15



4

dMRI: Local Reconstruction problem

Recover the fiber orientation in every voxel of the brain.

✓ Fiber Orientation Distribution (FOD)

Probability of having a fiber along a given direction (function on      )S2

Function of interest:
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dMRI: FOD recovery via sparse reconstruction
Assumptions:

1. Diffusion characteristics of all fiber in the brain are identical.

2. No exchange between spatially distinct fiber bundles.
f1S1(✓,�) + f2S2(✓,�) = S(✓,�) = R(✓) ⌦ F (✓,�)

Signal attenuation Fiber ✓ KERNEL: Response generated by a single fiber estimated from the data.
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dMRI: FOD recovery via sparse reconstruction
Assumptions:

1. Diffusion characteristics of all fiber in the brain are identical.

2. No exchange between spatially distinct fiber bundles.
f1S1(✓,�) + f2S2(✓,�) = S(✓,�) = R(✓) ⌦ F (✓,�)

Signal attenuation Fiber ✓ KERNEL: Response generated by a single fiber estimated from the data.

Spherical Deconvolution methods assume the signal can be expressed as the 
convolution of a kernel with the Fiber Orientation Distribution:

*=

SIGNAL FODKERNEL

✓ non-negative

✓ sparse
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y = �x + �
✓        is the acquired diffusion MRI data and         is the FOD (of a single voxel).

✓        is the sensing basis or dictionary.

✓        represents de acquisition noise.

y
�
�

x

The intra-voxel recovery problem can be expressed voxelwise in terms of the 
following linear formulation: (Jian and Vemuri, 2007)

Each atom of the dictionary is 
associated to a discrete 
direction on the sphere

dMRI: FOD recovery via sparse reconstruction

Reweighted constrained      minimization 

sparsity term

wheremin
x�0

k�x� yk22 s.t. kxk
w,1  k

�1

kxkw,1 =
X

i

wi|xi|

(Candes et al, 2008)
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The intra-voxel recovery problem can be expressed voxelwise in terms of the 
following linear formulation: (Jian and Vemuri, 2007)

Each atom of the dictionary is 
associated to a discrete 
direction on the sphere

dMRI: FOD recovery via sparse reconstruction

Reweighted constrained      minimization 

sparsity term

w(t)
i � 1/x(t�1)

iSolving a sequence of these weighted problems with

wheremin
x�0

k�x� yk22 s.t. kxk
w,1  k

�1

kxkw,1 =
X

i

wi|xi|

(Candes et al, 2008)
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sparsity and structure
spatial regularisation

✓IDEA: Solve the FOD field for all voxels simultaneously to exploit spatial coherence 
between neighboring voxels: 

min
X2Rn⇥N

+

k�X� Yk22 s.t. kXkW,1  K.

Structured Sparsity through reweighting in dMRI

kXkW,1 =
X

d,v

Wdv|Xdv|

voxels

di
re

ct
io

ns { {X 2 Rn⇥N
+

Proposed formulation: 

with 

✓Assumption: neighbor voxels 
should present the same/neighbor 
directions.

Tuesday, March 24, 15



8

✓Assumption: neighbor voxels 
should present the same/
neighbor directions.

N (d)

N (v)

di
re
ct
io
ns {d ... ... ...

X

angular neighbourhood

voxels

{v
...

... X
spatial neighbourhood

...

...

Structured Sparsity through reweighting in dMRI

Definition of neighborhood:
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9Spherical deconvolution: global 
problem

Xdv
voxels

di
re
ct
io
ns { {d

v
...

...

... ...

...

...

W(t+1)
dv =

1

⌧ (t) +
P

d0v02N(dv) |X
(t)

d0v0 |
|N (v)|

✓Assumption: neighbor voxels 
should present the same/
neighbor directions.Definition of neighborhood:

Definition of the weights:
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Simulations and Results

Exploiting spatial coherence          Undersampling regimes           Speed up acquisition
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Conclusions

CONCLUSIONS:

✓ Spatially structured sparsity guaranties robustness to noisy and ability to 
go to higher undersampling regimes.

✓The method is versatile and can be generalised to recover multiple 
correlated sparse signals 

FUTURE WORK:

✓ in dMRI: application to recovery of microstructure properties of the tissue, 
tractography methods,...
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THANK YOU
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