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Problem: Matrix Completion

Goal: Recover a matrix from a subset of measurements.

e.g. random sample of 10% of entries
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Applications

I Collaborative filtering: predict interests of a user from
preferences from many users (e.g. Netflix Problem)

I Triangulation of distances from an incomplete network (e.g.
wireless network)

I Multitask learning: leverage commonalities between multiple
learning tasks

I . . .
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Problem Statement

Given a subset Ω of observations of a matrix X , estimate the
missing entries.

(i) ill-posed problem → assume X is low rank, use regularizer to
encourage low rank structure

(ii) regularization with rank operator is NP hard → use convex
approximation, e.g. trace norm (sum of singular values)

min
W
‖Ω(W )− Ω(X )‖2

F + λ‖W ‖tr
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Trace Norm Regularization

I Trace norm is the tightest convex relaxation of rank operator
on the spectral norm unit ball. [Fazel, Hindi & Boyd 2001]

I Optimization can be solved efficiently using proximal gradient
methods.

I Can be shown that this method finds true underlying matrix
with high probability.

Goal: can we improve on the performance using other regularizers?
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The Vector k-Support Norm

I The k-support norm is a regularizer used in sparse vector
estimation problems. [Argyriou, Foygel & Srebro 2012]

I For k ∈ {1, . . . , d}, unit ball is :

co{w : card(w) ≤ k, ‖w‖2 ≤ 1}.

I Includes ‖ · ‖1 (k = 1) and ‖ · ‖2 (k = d).

I Dual norm is the `2-norm of the largest k components of a
vector.
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Vector k-Support Unit Balls

I unit balls in IR3 (k = 1, 2, 3)

I convex hull interpretation
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The Spectral k-Support Norm

Extend the k-support norm to matrices.

I The k-support norm is a symmetric gauge function: induces
the spectral k-support norm [von Neumann 1937]

‖W ‖(k) = ‖(σ1(W ), . . . , σd(W ))‖(k)

I Unit ball is given by

co{W : rank(W ) ≤ k , ‖W ‖F ≤ 1}.

I Includes ‖ · ‖tr (k = 1), and ‖ · ‖F (k = d).

[McDonald, Pontil & Stamos 2014]
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Optimization

I The k-support norm can be written as

‖w‖(k) = inf
θ∈Θ

√√√√ d∑
i=1

w2
i

θi
, Θ = {0 < θi ≤ 1,

∑
i
θi ≤ k}

I Coordinate-wise separable using Lagrange multipliers.

I The norm can be computed in O(d log d) time as

‖w‖2
(k) = ‖w↓[1:r ]‖

2
2 +

1

k − r
‖w↓(r :d ]‖

2
1.

I Similar computation for proximity operator of squared norm:
can use proximal gradient methods to solve optimization.

I Matrix case follows using SVD.
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Extension: The (k , p)-Support Norm

Fit the curvature of the underlying model.

I For p ∈ [1,∞] define the vector (k , p)-support norm by its
unit ball

co{w : card(w) ≤ k , ‖w‖p ≤ 1}.

I The dual norm is the `q-norm of the k largest components
( 1
p + 1

q = 1).

(Work in progress.)
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The Spectral (k , p)-Support Norm

Fit the curvature of the underlying spectrum.

I For p ∈ [1,∞] the spectral (k , p)-support unit ball is defined
in terms of the Schatten p-norm

co{W : rank(W ) ≤ k , ‖W ‖p ≤ 1}.

I Von Neumann again: ‖W ‖(k,p) = ‖σ(W )‖(k,p).
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Optimization

I For p ∈ (1,∞) the (k , p)-support norm can be computed as

‖w‖p(k,p) = ‖w↓
[1:r ]‖

p
p +

1

(k − r)p/q
‖w↓

(r :d ]‖
p
1 .

I For p = 1 we recover the `1 norm for all k , and for p =∞ we
have

‖w‖(k,∞) = max
(
‖w‖∞,

1

k
‖w‖1

)
.

I For p ∈ (1,∞), we solve the constrained problem

argmin
s

{
〈s,∇`(w)〉 : ‖s‖(k,p) ≤ α

}
.

I For p =∞ we can compute the projection onto the unit ball:
can use proximal gradient methods.
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Experiments: Matrix Completion

Benchmark datasets: MovieLens (movies), Jester (jokes)

dataset norm test error k p

MovieLens 100k trace 0.2017 - -
k-support 0.1990 1.87 -
(k , p)-support 0.1988 2.00 1.16

Jester 1 trace 0.1752 - -
k-support 0.1739 6.38 -
(k , p)-support 0.1731 2.00 6.50

Jester 3 trace 0.1959 - -
k-support 0.1942 2.13 -
(k , p)-support 0.1932 3.00 1.14

Note: k = 1 is trace norm, p = 2 is spectral k-support norm.
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Role of p in (k , p)-Support Norm

Spectral (k , p)-support norm:

I Intuition: for large p, the `p norm of a vector is increasingly
dominated by the largest components.

I Regularization with larger values of p encourages matrices
with flatter spectrum.

Spectrum of synthetic rank 5 matrix with different regularizers:
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Extension: Connection to the Cluster Norm

I Using the infimum formulation

‖w‖box = inf
θ∈Θ

√√√√ d∑
i=1

w2
i

θi
, Θ = {a < θi ≤ b,

∑
i
θi ≤ c}.

I Box norm is a perturbation of the k-support norm (k = d−ca
b−a )

‖w‖2
box = min

u,v

{
1

a
‖u‖2

2 +
1

b − a
‖v‖2

(k)

}
I Matrix case: we recover the cluster norm [Jacob, Bach, & Vert]

used in multitask learning.
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Role of a, c in Box Norm

Simulated datasets:
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Further Work

I Statistical bounds on the performance of the norms: various
results known [Chatterjee, Chen & Banerjee 2014, Maurer & Pontil

2012, Richard, Obozinksi & Vert 2014]

I Infimum formulation of (k , p)-support norm: known for
p ∈ [1, 2], unclear for p ∈ (2,∞].

I Study the family of norms for a general choice of the
parameter set Θ. [Micchelli, Morales & Pontil 2013]
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Conclusion

I Spectral k-support norm as regularizer for low rank matrix
learning

I Spectral (k, p)-support norm allows us to learn curvature of
the spectrum

I Box norm as perturbation of k-support norm

I Connection to multitask learning cluster norm
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