Spectral k-Support Norm Regularization

Andrew McDonald

Department of Computer Science, UCL
(Joint work with Massimiliano Pontil and Dimitris Stamos)
25 March, 2015

Problem: Matrix Completion

Goal: Recover a matrix from a subset of measurements.

e.g. random sample of 10% of entries

Applications

- Collaborative filtering: predict interests of a user from preferences from many users (e.g. Netflix Problem)
- Triangulation of distances from an incomplete network (e.g. wireless network)
- Multitask learning: leverage commonalities between multiple learning tasks

Problem Statement

Given a subset Ω of observations of a matrix X, estimate the missing entries.
(i) ill-posed problem \rightarrow assume X is low rank, use regularizer to encourage low rank structure
(ii) regularization with rank operator is NP hard \rightarrow use convex approximation, e.g. trace norm (sum of singular values)

$$
\min _{W}\|\Omega(W)-\Omega(X)\|_{F}^{2}+\lambda\|W\|_{t r}
$$

Trace Norm Regularization

- Trace norm is the tightest convex relaxation of rank operator on the spectral norm unit ball. [Fazel, Hindi \& Boyd 2001]
- Optimization can be solved efficiently using proximal gradient methods.
- Can be shown that this method finds true underlying matrix with high probability.

Goal: can we improve on the performance using other regularizers?

The Vector k-Support Norm

- The k-support norm is a regularizer used in sparse vector estimation problems. [Argyriou, Foygel \& Srebro 2012]
- For $k \in\{1, \ldots, d\}$, unit ball is :

$$
\operatorname{co}\left\{w: \operatorname{card}(w) \leq k,\|w\|_{2} \leq 1\right\}
$$

- Includes $\|\cdot\|_{1}(k=1)$ and $\|\cdot\|_{2}(k=d)$.
- Dual norm is the ℓ_{2}-norm of the largest k components of a vector.

Vector k-Support Unit Balls

- unit balls in $\mathbb{R}^{3}(k=1,2,3)$

- convex hull interpretation

The Spectral k-Support Norm

Extend the k-support norm to matrices.

- The k-support norm is a symmetric gauge function: induces the spectral k-support norm [von Neumann 1937]

$$
\|W\|_{(k)}=\left\|\left(\sigma_{1}(W), \ldots, \sigma_{d}(W)\right)\right\|_{(k)}
$$

- Unit ball is given by

$$
\operatorname{co}\left\{W: \operatorname{rank}(W) \leq k,\|W\|_{F} \leq 1\right\}
$$

- Includes $\|\cdot\|_{t r}(k=1)$, and $\|\cdot\|_{F}(k=d)$.
[McDonald, Pontil \& Stamos 2014]

Optimization

- The k-support norm can be written as

$$
\|w\|_{(k)}=\inf _{\theta \in \Theta} \sqrt{\sum_{i=1}^{d} \frac{w_{i}^{2}}{\theta_{i}}}, \quad \Theta=\left\{0<\theta_{i} \leq 1, \sum_{i} \theta_{i} \leq k\right\}
$$

- Coordinate-wise separable using Lagrange multipliers.
- The norm can be computed in $\mathcal{O}(d \log d)$ time as

$$
\|w\|_{(k)}^{2}=\left\|w_{[1: r]}^{\downarrow}\right\|_{2}^{2}+\frac{1}{k-r}\left\|w_{(r: d]}^{\downarrow}\right\|_{1}^{2} .
$$

- Similar computation for proximity operator of squared norm: can use proximal gradient methods to solve optimization.
- Matrix case follows using SVD.

Extension: The (k, p)-Support Norm

Fit the curvature of the underlying model.

- For $p \in[1, \infty]$ define the vector (k, p)-support norm by its unit ball

$$
\operatorname{co}\left\{w: \operatorname{card}(w) \leq k,\|w\|_{p} \leq 1\right\}
$$

- The dual norm is the ℓ_{q}-norm of the k largest components $\left(\frac{1}{p}+\frac{1}{q}=1\right)$.
(Work in progress.)

The Spectral (k, p)-Support Norm

Fit the curvature of the underlying spectrum.

- For $p \in[1, \infty]$ the spectral (k, p)-support unit ball is defined in terms of the Schatten p-norm

$$
\operatorname{co}\left\{W: \operatorname{rank}(W) \leq k,\|W\|_{p} \leq 1\right\}
$$

- Von Neumann again: $\|W\|_{(k, p)}=\|\sigma(W)\|_{(k, p)}$.

Optimization

- For $p \in(1, \infty)$ the (k, p)-support norm can be computed as

$$
\|w\|_{(k, p)}^{p}=\left\|w_{[1: r]}^{\downarrow}\right\|_{p}^{p}+\frac{1}{(k-r)^{p / q}}\left\|w_{(r: d]}^{\downarrow}\right\|_{1}^{p} .
$$

- For $p=1$ we recover the ℓ_{1} norm for all k, and for $p=\infty$ we have

$$
\|w\|_{(k, \infty)}=\max \left(\|w\|_{\infty}, \frac{1}{k}\|w\|_{1}\right) .
$$

- For $p \in(1, \infty)$, we solve the constrained problem

$$
\underset{s}{\operatorname{argmin}}\left\{\langle s, \nabla \ell(w)\rangle:\|s\|_{(k, p)} \leq \alpha\right\} .
$$

- For $p=\infty$ we can compute the projection onto the unit ball: can use proximal gradient methods.

Experiments: Matrix Completion

Benchmark datasets: MovieLens (movies), Jester (jokes)

dataset	norm	test error	k	p
MovieLens 100k	trace	0.2017	-	-
	k-support	0.1990	1.87	-
	(k, p)-support	$\mathbf{0 . 1 9 8 8}$	2.00	1.16
Jester 1	trace	0.1752	-	-
	k-support	0.1739	6.38	-
	(k, p)-support	$\mathbf{0 . 1 7 3 1}$	2.00	6.50
Jester 3	trace	0.1959	-	-
	k-support	0.1942	2.13	-
	(k, p)-support	$\mathbf{0 . 1 9 3 2}$	3.00	1.14

Note: $k=1$ is trace norm, $p=2$ is spectral k-support norm.

Role of p in (k, p)-Support Norm

Spectral (k, p)-support norm:

- Intuition: for large p, the ℓ_{p} norm of a vector is increasingly dominated by the largest components.
- Regularization with larger values of p encourages matrices with flatter spectrum.

Spectrum of synthetic rank 5 matrix with different regularizers:

Extension: Connection to the Cluster Norm

- Using the infimum formulation

$$
\|w\|_{\text {box }}=\inf _{\theta \in \Theta} \sqrt{\sum_{i=1}^{d} \frac{w_{i}^{2}}{\theta_{i}}}, \quad \Theta=\left\{a<\theta_{i} \leq b, \sum_{i} \theta_{i} \leq c\right\} .
$$

- Box norm is a perturbation of the k-support norm $\left(k=\frac{d-c a}{b-a}\right)$

$$
\|w\|_{\text {box }}^{2}=\min _{u, v}\left\{\frac{1}{a}\|u\|_{2}^{2}+\frac{1}{b-a}\|v\|_{(k)}^{2}\right\}
$$

- Matrix case: we recover the cluster norm [Jacob, Bach, \& Vert] used in multitask learning.

Role of a, c in Box Norm

Simulated datasets:

Low signal/high noise: high a.

High rank of underlying matrix: high k.

Further Work

- Statistical bounds on the performance of the norms: various results known [Chatterjee, Chen \& Banerjee 2014, Maurer \& Pontil 2012, Richard, Obozinksi \& Vert 2014]
- Infimum formulation of (k, p)-support norm: known for $p \in[1,2]$, unclear for $p \in(2, \infty]$.
- Study the family of norms for a general choice of the parameter set Θ. [Micchelli, Morales \& Pontil 2013]

Conclusion

- Spectral k-support norm as regularizer for low rank matrix learning
- Spectral (k, p)-support norm allows us to learn curvature of the spectrum
- Box norm as perturbation of k-support norm
- Connection to multitask learning cluster norm

References

[1] A. Argyriou, R. Foygel, and N. Srebro. Sparse prediction with the k-support norm.
In Advances in Neural Information Processing Systems 25, pages 1466-1474, 2012.
[2] S. Chatterjee, S. Chen, and A. Banerjee.
Generalized dantzig selector: Application to the k-support norm.
In NIPS, 2014.
[3] Maryam Fazel, Haitham Hindi, and Stephen P. Boyd.
A rank minimization heuristic with application to minimum orders system approximation.
Proceedings of the American Control Conference, 2001.
[4] L. Jacob, F. Bach, and J.-P. Vert.
Clustered multi-task learning: a convex formulation.
Advances in Neural Information Processing Systems (NIPS 21), 2009.
[5] A. Maurer and M. Pontil.
Structured sparsity and generalization.
The Journal of Machine Learning Research, 13:671-690, 2012.
[6] A. M. McDonald, M. Pontil, and D. Stamos.
Spectral k-support regularization.
In Advances in Neural Information Processing Systems 27, 2014.
[7] C. A. Micchelli, J. M. Morales, and M. Pontil.
Regularizers for structured sparsity.
Advances in Comp. Mathematics, 38:455-489, 2013.
[8] E. Richard, G. Obozinksi, and J.-P. Vert.
Tight convex relaxations for sparse matrix factorization.
In Advances in Neural Information Processing Systems (NIPS), 2014.
[9] J. Von Neumann.
Some matrix-inequalities and metrization of matric-space.
Tomsk. Univ. Rev. Vol I, 1937.

