Spectral *k*-Support Norm Regularization

Andrew McDonald

Department of Computer Science, UCL

(Joint work with Massimiliano Pontil and Dimitris Stamos)

25 March, 2015

Problem: Matrix Completion

Goal: Recover a matrix from a subset of measurements.

e.g. random sample of 10% of entries

Applications

- Collaborative filtering: predict interests of a user from preferences from many users (e.g. Netflix Problem)
- Triangulation of distances from an incomplete network (e.g. wireless network)
- Multitask learning: leverage commonalities between multiple learning tasks

▶ ...

Problem Statement

Given a subset Ω of observations of a matrix X, estimate the missing entries.

- (i) ill-posed problem \rightarrow assume X is low rank, use regularizer to encourage low rank structure
- (ii) regularization with *rank* operator is NP hard \rightarrow use convex approximation, e.g. *trace norm* (sum of singular values)

$$\min_{W} \|\Omega(W) - \Omega(X)\|_F^2 + \lambda \|W\|_{tr}$$

Trace Norm Regularization

- Trace norm is the tightest convex relaxation of rank operator on the spectral norm unit ball. [Fazel, Hindi & Boyd 2001]
- Optimization can be solved efficiently using proximal gradient methods.
- Can be shown that this method finds true underlying matrix with high probability.

Goal: can we improve on the performance using other regularizers?

The Vector k-Support Norm

- ► The *k*-support norm is a regularizer used in sparse vector estimation problems. [Argyriou, Foygel & Srebro 2012]
- For $k \in \{1, \ldots, d\}$, unit ball is :

$$\operatorname{co}\{w:\operatorname{card}(w)\leq k, \|w\|_2\leq 1\}.$$

- Includes $\|\cdot\|_1$ (k = 1) and $\|\cdot\|_2$ (k = d).
- Dual norm is the largest k components of a vector.

Vector k-Support Unit Balls

The Spectral k-Support Norm

Extend the *k*-support norm to matrices.

The k-support norm is a symmetric gauge function: induces the spectral k-support norm [von Neumann 1937]

$$\|W\|_{(k)} = \|(\sigma_1(W), \ldots, \sigma_d(W))\|_{(k)}$$

Unit ball is given by

$$\operatorname{co}\{W:\operatorname{rank}(W)\leq k, \|W\|_F\leq 1\}.$$

• Includes $\|\cdot\|_{tr}$ (k = 1), and $\|\cdot\|_F$ (k = d).

[McDonald, Pontil & Stamos 2014]

Optimization

The k-support norm can be written as

$$\|w\|_{(k)} = \inf_{\theta \in \Theta} \sqrt{\sum_{i=1}^{d} \frac{w_i^2}{\theta_i}}, \quad \Theta = \{0 < \theta_i \le 1, \sum_i \theta_i \le k\}$$

- Coordinate-wise separable using Lagrange multipliers.
- The norm can be computed in $\mathcal{O}(d \log d)$ time as

$$\|w\|_{(k)}^{2} = \|w_{[1:r]}^{\downarrow}\|_{2}^{2} + \frac{1}{k-r}\|w_{(r:d]}^{\downarrow}\|_{1}^{2}.$$

- Similar computation for proximity operator of squared norm: can use proximal gradient methods to solve optimization.
- Matrix case follows using SVD.

Extension: The (k, p)-Support Norm

Fit the curvature of the underlying model.

For p ∈ [1,∞] define the vector (k, p)-support norm by its unit ball

$$\operatorname{co}\{w:\operatorname{card}(w)\leq k, \|w\|_p\leq 1\}.$$

• The dual norm is the ℓ_q -norm of the k largest components $(\frac{1}{p} + \frac{1}{q} = 1)$.

(Work in progress.)

The Spectral (k, p)-Support Norm

Fit the curvature of the underlying spectrum.

For p ∈ [1,∞] the spectral (k, p)-support unit ball is defined in terms of the Schatten p-norm

 $\operatorname{co}\{W:\operatorname{rank}(W)\leq k, \|W\|_p\leq 1\}.$

► Von Neumann again: $\|W\|_{(k,p)} = \|\sigma(W)\|_{(k,p)}$.

Optimization

▶ For $p \in (1,\infty)$ the (k,p)-support norm can be computed as

$$\|w\|_{(k,p)}^{p} = \|w_{[1:r]}^{\downarrow}\|_{p}^{p} + \frac{1}{(k-r)^{p/q}}\|w_{(r:d]}^{\downarrow}\|_{1}^{p}.$$

For p = 1 we recover the ℓ_1 norm for all k, and for $p = \infty$ we have

$$\|w\|_{(k,\infty)} = \max\left(\|w\|_{\infty}, \frac{1}{k}\|w\|_{1}\right).$$

• For $p \in (1,\infty)$, we solve the constrained problem

$$\underset{s}{\operatorname{argmin}}\left\{\langle s, \nabla \ell(w) \rangle : \|s\|_{(k,p)} \leq \alpha\right\}.$$

For p = ∞ we can compute the projection onto the unit ball: can use proximal gradient methods.

Experiments: Matrix Completion

Benchmark datasets: MovieLens (movies), Jester (jokes)

dataset	norm	test error	k	p
MovieLens 100k	trace	0.2017	-	-
	<i>k</i> -support	0.1990	1.87	-
	(k, p)-support	0.1988	2.00	1.16
Jester 1	trace	0.1752	-	-
	<i>k</i> -support	0.1739	6.38	-
	(k, p)-support	0.1731	2.00	6.50
Jester 3	trace	0.1959	-	-
	<i>k</i> -support	0.1942	2.13	-
	(k, p)-support	0.1932	3.00	1.14

Note: k = 1 is trace norm, p = 2 is spectral k-support norm.

Role of p in (k, p)-Support Norm

Spectral (k, p)-support norm:

- ► Intuition: for large p, the lp norm of a vector is increasingly dominated by the largest components.
- Regularization with larger values of p encourages matrices with flatter spectrum.

Spectrum of synthetic rank 5 matrix with different regularizers:

Extension: Connection to the Cluster Norm

Using the infimum formulation

$$\|w\|_{box} = \inf_{\theta \in \Theta} \sqrt{\sum_{i=1}^{d} \frac{w_i^2}{\theta_i}}, \quad \Theta = \{ a < \theta_i \le b, \sum_i \theta_i \le c \}.$$

▶ Box norm is a perturbation of the k-support norm $(k = \frac{d-ca}{b-a})$

$$\|w\|_{box}^{2} = \min_{u,v} \left\{ \frac{1}{a} \|u\|_{2}^{2} + \frac{1}{b-a} \|v\|_{(k)}^{2} \right\}$$

 Matrix case: we recover the *cluster norm* [Jacob, Bach, & Vert] used in multitask learning.

Role of a, c in Box Norm

Simulated datasets:

Low signal/high noise: high *a*.

High rank of underlying matrix: high k.

Further Work

- Statistical bounds on the performance of the norms: various results known [Chatterjee, Chen & Banerjee 2014, Maurer & Pontil 2012, Richard, Obozinksi & Vert 2014]
- Infimum formulation of (k, p)-support norm: known for p ∈ [1, 2], unclear for p ∈ (2, ∞].
- Study the family of norms for a general choice of the parameter set Θ. [Micchelli, Morales & Pontil 2013]

Conclusion

- Spectral k-support norm as regularizer for low rank matrix learning
- Spectral (k, p)-support norm allows us to learn curvature of the spectrum
- Box norm as perturbation of k-support norm
- Connection to multitask learning cluster norm

References

- A. Argyriou, R. Foygel, and N. Srebro. Sparse prediction with the k-support norm. In Advances in Neural Information Processing Systems 25, pages 1466–1474, 2012.
- [2] S. Chatterjee, S. Chen, and A. Banerjee. Generalized dantzig selector: Application to the k-support norm. In NIPS, 2014.
- [3] Maryam Fazel, Haitham Hindi, and Stephen P. Boyd. A rank minimization heuristic with application to minimum orders system approximation. Proceedings of the American Control Conference, 2001.
- [4] L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: a convex formulation. Advances in Neural Information Processing Systems (NIPS 21), 2009.
- [5] A. Maurer and M. Pontil. Structured sparsity and generalization. The Journal of Machine Learning Research, 13:671–690, 2012.
- [6] A. M. McDonald, M. Pontil, and D. Stamos. Spectral k-support regularization. In Advances in Neural Information Processing Systems 27, 2014.
- [7] C. A. Micchelli, J. M. Morales, and M. Pontil. Regularizers for structured sparsity. Advances in Comp. Mathematics, 38:455–489, 2013.
- [8] E. Richard, G. Obozinksi, and J.-P. Vert. Tight convex relaxations for sparse matrix factorization. In Advances in Neural Information Processing Systems (NIPS), 2014.
- J. Von Neumann. Some matrix-inequalities and metrization of matric-space. Tomsk. Univ. Rev. Vol I, 1937.