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Abstract—A computer vision system for person-independent recognition of hand
postures against complex backgrounds is presented. The system is based on
Elastic Graph Matching (EGM), which was extended to allow for combinations of
different feature types at the graph nodes.
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1 INTRODUCTION

GESTURES are a very powerful means of communication among
humans. In fact, gesturing is so deeply rooted in our communication
that people often continue gesturing when speaking on the
telephone. Consequently, a significant amount of research has
recently addressed building gesture-based human-computer and
human-robot interfaces [15], [2], [8], [16], [17]. The recognition of
hand postures is an important ingredient for building gesture-based
interfaces. Although there have been attempts to recognize gestures
and sign language without recognizing the hand posture it is clear
that these approaches are very limited. For example, in American
Sign Language, the same arm movement can have very different
meanings depending on the posture of the gesturing hand.

A number of requirements make hand posture recognition
particularly challenging. First, if a system is intended to be person
independent, it must cope with geometric distortions due to
different hand anatomy or different performance of gestures by
different persons. Second, the system must be able to deal with
complex, cluttered backgrounds, making segmentation of the
gesturing hand difficult. Most work in the field tries to circumvent
the problem by either using colored markers, or by requiring the
background to be static, or by requiring the hand to be the only skin-
colored object in the scene [20], [3], [7], [6], [12], [9], [14], [13]. In
contrast to this, our goal was a system that works in relatively
unconstrained environments, where segmentation based on primi-
tive cues is not always possible. Along similar lines, it should not be
necessary for subjects to take off rings, etc., before interacting with
the system but they should be able to just “come as they are.” Other
important requirements that, however, were not at the focus of this
work, are real-time performance, naturalness of gestures, and
robustness to varying lighting conditions.

We chose Elastic Graph Matching (EGM), a neurally inspired
architecture for view-based object recognition, as our starting point
because 1) it has an inherent ability to handle geometric
distortions, 2) it does not require a perfectly segmented input
image, and 3) it elegantly represents variances in object appearance
with the bunch graph method. In order to make EGM more robust
in the presence of complex backgrounds, we have extended it to
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handle multiple feature types. Our experiments demonstrate the
advantage of using multiple feature types over the classical
approach. The remainder of the paper is organized as follows: In
Section 2, we will review EGM. Section 3 describes the general-
ization of EGM to multiple feature types. In Section 4, we present
our experiments. Finally, Section 5 gives a discussion.

2 ELASTIC GRAPH MATCHING

Elastic Graph Matching (EGM) is a neurally inspired object
recognition architecture [11], which has already been successfully
applied to object recognition, face finding and recognition, and the
analysis of cluttered scenes. Although being motivated by a theory
of neural information processing, EGM is similar to other elastic
matching approaches [5]. In EGM, views of objects are represented
as labeled graphs with an underlying two-dimensional topology.
The nodes of a graph are labeled with a local image description.
Edges of a graph are labeled with a distance vector. Elastic
matching of a model graph to an image means to search for a set of
node positions such that 1) the local image description attached to
each node matches the image region around the position where the
node is placed and 2) the graph is not distorted too much.

Gabor Jets. As a local image description, a Gabor jet is usually
used. This is a vector of responses of Gabor wavelets:

wk(x>:‘;—§exp(—%)[exp(z‘kx)—exp(‘T”Z)] )

These wavelets represent a plane wave with wave vector k
restricted by a Gaussian envelope function of width ¢; x denotes
the two-dimensional image location. The responses of several such
filters with different size and orientation, parameterized by
different k, constitute a jet:

os ¢y, . , ™
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Here, the index v € {0,...,L — 1} labels different spatial scales
or frequencies and x € {0, ..., D — 1} labels different orientations.
Hence, L is the number of frequency levels used and D is the
number of orientations. The value f is the spacing factor between
kernels in the frequency domain and k,,, is the maximum wave
number. In this paper, weuse L=3,D =38, f = 1/\/5, kmaz = 1.7,
and o0 =2.5. A jet is a complex vector composed of the L x D
complex filter responses c;, where the index j is a double index
running over different orientations and scales. The c; are
represented as absolute value a; and phase ¢;: ¢; = a;e'®.

Two similarity functions have been proposed for comparing
Gabor jets [11], [21]:
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Sabs uses only magnitudes of the complex filter responses. It has
the form of a normalized scalar product. Sy, uses the magnitude
and phase of the complex filter responses. Both functions yield
similarity values between zero and one. While S,s(J,J') slowly
changes when J’ is moved across the image, Sy, (J, J') varies very
rapidly because the phases of filter responses change significantly
on a spatial scale corresponding to the wave-vector k of strongly
responding kernels.

Bunch Graphs. The bunch graph idea [22] was invented to
model variability in object appearance. The natural variability in
the jets of corresponding points in several images of the same
object or a class of objects (e.g., several left eyes of different
persons) is captured by labeling each node of a graph with a set or
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Fig. 1. Establishing correspondences between image points using different feature types. The task is to find the position in the target image (c) that corresponds to the
marked position in the source image (a) ((b), (d) are the corresponding skin color segmentations). (e)-(h) are similarity landscapes obtained when comparing local image
descriptions extracted at each position in (c) with the local image description taken at the marked position in (a). Light areas represent high similarity. (e) Only Gabor Jets,
(f) only color average, (g) only colorGabor Jets, and (h) Compound Jets comprising a linear combination of all three. The circle in (c) corresponds to the maximum in (h).

“bunch” of jets (short: bunch jet) extracted from corresponding
points in different example images rather than only with a single
jet. Previously, we have shown that this method can also be used to
elegantly model complex backgrounds [19]. For the matching
process, we need a similarity function comparing the set of jets
attached to each node of the bunch graph with local image
information. The similarity of a bunch jet B” comprising K jets at a
node n to a single jet J(x) taken at a point x in an image is defined
to be the maximum of the similarities of the K individual jets:

J(x)) =
SB

bhe 15 defined analogously. When a graph G with N nodes is
matched to an image I at the node positions x,, its total similarity
is given by the average of the node similarities:

Sabs(B m]?,x{sabs(J"(k),J(X)) k=1,... K}, (4)

G
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Again, we define Sfj, in an analogous manner.

3 EGM wiTH MULTIPLE FEATURE TYPES

While earlier versions of EGM have only worked with a single
shape or texture feature type such as Gabor or Mallat filters, we
have recently extended it for handling multiple feature types [18].
There are several ways of extending EGM for multiple feature
types. First, the feature types used may differ from node to node.
For example, a model graph describing a face could employ edge
features at the outline of the face and texture features at the inside.
Second, all nodes may be labeled with a combination of different
feature types which is identical for all nodes. Third, nodes may be
labeled with combinations of feature types which may differ from
node to node. Here, we focus on the second scheme.

Compound Jets. In order to allow for multiple feature types at a
node, we introduce the notion of a compound jet. In a compound jet,
several local image descriptions are simply concatenated. When
similarities between two compoundjets 7 and J' are computed, first
the similarities of their corresponding constituents are considered.
These are are then combined by computing a weighted average:

ij_-,l (6)

The Sz are similarities between jets of a particular feature type F.

S(7,T) wasf Jr J'F),

Compound Bunch Graphs. We can extend the bunch graph
idea to graphs with compound jets as well. Compound bunch graphs
are constructed in the following manner:

e For every node n of a particular graph of a view of an
object, the jets of the same feature type F extracted from K
different training images are integrated into a bunch jet
By = {J3(1),...,J3(K)}. With these bunch jets as node
labels, one bunch graph is created for every feature type
whose geometry is averaged from the constituent graphs.

e  The bunch jets B} of different feature types but from the
same node n of the same view are concatenated to a
compound bunch jet B". With these compound bunch jets as
node labels, a compound bunch graph is created whose
geometry is identical to that of the constituent bunch
graphs of different feature types.

For evaluating the similarity S®(B",7(x)) between a com-
pound bunch jet B" and a compound jet J(x) extracted at a
particular location x a weighted average of contributions S%
stemming from different feature types is used:

S¥B", T )_was (B, Jr(x

Z wr=1. (7)
The functions S% compare a bunch jet B’ to a simple jet J of the
same feature type F in analogy to (4):

Jr(x)) =

The similarity functions Sy directly compare two jets of a
particular feature type F. The similarity of a compound bunch
graph G with node positions x, to an image I is defined as the
average of the similarities of all N nodes, in analogy to the
previous section:

SE—(B?_—, IHI?‘X{S}'(J;(ICL J}—(X))7 k= 1>~'~7K}' (8)

“G.1) = ZSB (B", T (x1)) - (9)

4 EXPERIMENTS

4.1 Additional Feature Types

In addition to conventional Gabor jets we chose to include two
color feature types in our representation of hand postures. Fig. 1
shows how the different feature types compare for finding
image point correspondences. We represent colors in HS (hue,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 12, DECEMBER 2001

N
£

1451

T T
4'!

-

Fig. 3. Posture 12 performed by 10 out of 19 subjects against complex backgrounds.

saturation) space. Preliminary tests showed that, for our data set,
skin color tones fall in a region centered at H;=0.118 and
So = 0.333, whose elongation in the S direction is about 5 times
bigger than in the H direction (all subjects were Caucasian). We
account for this by introducing scaling factors ay =1, ag = 1/5.

Color Average. We consider the color averages of 3 x 3 pixel
regions. The similarity function is defined by:

o HH' + o%SS'
\/Q%HQ + a%Sﬂ/a%H’Q + 04?95’2

Scol('L J/) = (10)

ColorGabor Jet. A colorGabor jet is similar to a Gabor jet, but
convolutions are performed on images expressing each pixel’s
similarity to skin color. The skin color similarity compares each
pixel to the prototypical skin color (Hy, Sy):

Sskin :Rt (1 — \/&%(H — H0)2+a§(5 — 50)2),

0 <t
Rt(x): z x>t

(11)

Ri(z) is a thresholded ramp function parameterized by a constant
t = 0.784. The colorGabor jets strongly respond to edge - and bar-
like structures in the skin color segmentation. As the fingertips are
usually closer to skin color than the background, it is advantageous
to consider the phases of the filter responses in the similarity
function. Only the phase information can distinguish between, e.g.,
a skin-colored bar on not-skin-colored background from the
opposite. Hence, we use Sy, from (3) for computing similarities
between colorGabor jets during the graph matching.

4.2 Image Database and Training

Our database consists of more than 1,000 color images of 1282
pixels of 12 hand postures (Fig. 2) performed by 19 persons against
simple and complex backgrounds (Fig. 3) with varying amount of
skin color. The images of three subjects signing against uniform
light and dark backgrounds formed the training set, giving six
training images per posture, the remaining images formed the test
set. For the images in the training set, we constructed graphs of
15 nodes. All 15 nodes were manually placed at anatomically

significant points. The number of training images is quite small,
but because preliminary experiments were very encouraging and,
due to the amount of manual work involved in creating the model
graphs, we chose not to add more images to the training set. Jets of
the three different feature types were extracted at the node
positions of every training image. Then, we created one model
graph for every feature type for every training image of every
posture giving a total of 3 x 6 x 12 =216 model graphs. These
graphs were combined into 12 compound bunch graphs (one for
every posture) as described in Section 3.

4.3 Matching Procedure and Recognition
For recognition, the 12 compound bunch graphs are sequentially
matched to an input image as described below. The graph
obtaining the highest similarity represents the classification result.
The matching procedure operates in four steps:

1. Coarse positioning of the graph: The image is scanned in
coarse steps of five pixels in x and y direction without
graph distortion.

2. Rotation in plane: The graph may rotate around its center
of gravity by up to 15° in the image plane (seven
orientations). Additionally, it may shift its position by up
to six pixels (two steps of three pixels) in x and y direction.

3. Rescaling of the graph: The graph is allowed to grow by up
to 20 percent or shrink by up to 10 percent without relative
changes of the edge lengths (five scales). Additionally, it is
allowed to shift its position by up to four pixels (two steps
of two pixels) in the x and y direction.

4. Local diffusion of single nodes: All nodes may shift their
positions by one pixel to compensate for residual geo-
metric distortions.

During all matching steps, similarities between Gabor jets are
computed using S,i,s, while S, is used for the colorGabor jets (3).
An example of a successful match is given in Fig. 4. The nodes
usually find their proper positions during the matching, even if the
background is very complex or contains large regions of skin color.

4.4 Results

Cross runs on a test set of 604 images taken against uniform light
or dark background and 338 images against complex backgrounds
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Fig. 4. Example of a model graph being matched onto an input image. (a) Original graph. (b) Matched graph. (c) Skin color segmentation.

were performed. The results are summarized in Table 1. The
weighting factors wr between different feature types were
systematically varied in an exhaustive manner considering all
relative weightings of the types 1:0:0, 4:1:0, 3:2:0, 3:1:1, 2:2:1, 2:1:1,
and 1:1:1, and system performance on the test set was measured.
The best result was obtained for wgabor = WcolorGabor = 2%,
Weolor = 50%. Since the weighting of cues only introduces two free
parameters, we decided not to use a separate validation set. It
turns out that a proper combination of the three feature types
outperforms any of them alone. For example, the error for the best
combination found is less than half as big as that for using Gabor
features alone. Performance does not depend critically on the
precise weighting between the features if all are being used (Fig. 5).
The recognition rates vary smoothly with the weighting and there
is a large plateau of weightings yielding recognition rates higher
than any of the feature types alone could account for. If only Gabor
and colorGabor features but not color features are used, perfor-
mance is still very good, suggesting that the color features are not
essential for the system’s performance.

An analysis of the system’s errors reveals that strong geometric
distortions due to either differences in performance of a posture,
different hand anatomy, strong rotation in depth, or combinations
of these account for practically all errors. One might suggest that
greater flexibility of the graph during matching could alleviate this
problem. However, allowing for more diffusion in the last
matching step does not have the desired effect. The reason seems
to be that the geometric distortions are not of a statistical nature,
which would be well-modeled by a diffusion process, but instead
show high correlations. This is due to the hand’s kinematics, which
only allow for certain correlated movements of nodes. A more
refined modeling of likely graph distortions seems like a good
avenue for future research.

5 DISCUSSION

We have presented a system for person-independent recognition of
hand postures against complex backgrounds. Our experiments
demonstrate that Elastic Graph Matching with multiple feature
types is a powerful architecture for view-based object recognition.
The good performance, despite the small number of training
images suggests, that the graph representation has good general-
ization properties. The introduction of additional feature types

TABLE 1
Percentages of Correct Recognition
‘ weighting simple background | complex background
only Gabor 82.6% 70.4%
only Color 39.7% 34.6%
only ColorGabor 88.2% 76.3%
best Mixture 92.9% 85.8%

gave significant improvements over just using Gabor jets. In
another experiment [18], the advantages of using multiple feature
types were even more pronounced: For the analysis of cluttered
scenes of occluding objects against complex backgrounds, the
recognition rate climbed from 10.0 percent of correctly analyzed
scenes to 62.9 percent due to the use of compound jets instead of
only Gabor jets. There, however, the success was more dependent
on the precise weighting between the feature types.

We integrated the system into a gesture interface for an
anthropomorphic autonomous robot with an active vision system
[1]. The demonstration system operates in a simple pick and place
scenario. A human operator points to objects on a table in front of
the robot with a particular hand posture, which signals the robot
how to pick up the object pointed to, e.g., from the side or from
above. The robot fixates the hand, recognizes its posture, and picks
up the object in the requested manner. It places the object at
location indicated by a second pointing gesture. The system has
proven its robustness in numerous demonstrations.'

In contrast to almost all systems for hand posture recognition
described in the literature, our system performs fairly well in
situations where there is no easy way of segmenting the hand from
the background. The only other system in the literature attempting
to face the difficult challenge of complex backgrounds that we are
aware of was presented by Cui and Weng [4]. It recognizes 28
different hand gestures in front of complex backgrounds. It reaches
93.1 percent correct recognition rate, but does not seem to be
person independent. Furthermore, it relies on a separate segmen-
tation stage taking 58.3 seconds per image on a SGI INDIGO 2
workstation. It is our conviction that treating segmentation and
recognition as separate processing stages is a fundamental
misconception and that systems attempting to do so are severely
limited. In many situations, the necessary information for correctly
grouping an image’s pixels into segments corresponding to the
scene’s objects simply is not there at the level of primitive features.

For future work, we would like to highlight two promising
avenues. First, the current system combines collections of relatively
low-level features (Gabor jets, local color averages, and colorGabor
jets) directly to high-level object representations in the form of a
labeled graph. In contrast, object recognition in the primate brain
seems to involve computing features at a hierarchy of different
complexity levels. A similar hierarchy could be elegantly intro-
duced into our system by using hierarchical graphs as object
descriptions. For example one might consider lower-level graphs
describing individual fingers, which are themselves the nodes of a
higher-order graph describing the whole hand. In this way,
correlated geometric distortions could be handled more effectively.
Second, for the construction of the model graphs, the proper node
positions in a large number of images have to be edited by hand.
Trying to overcome this limitation would be a very worthwhile
endeavor [10], the ultimate goal being that the system constructs its

1. Video at: http://www.neuroinformatik.ruhr-uni-bocum.de/VDM/
research/robotics/contents.html.
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Fig. 5. Dependence of recognition performance on the relative weighting of feature types (left: uniform backgrounds, right: complex backgrounds). Actual sample points
are indicated by triangles. On the x-Axis the weight of the color features w,,; is plotted. On the y-Axis the weight of the Gabor features w,, is plotted. The weight of the
colorGabor features is given by w., = 100% — w.. — wyq SO that the weights add up to 100 percent. The gray level indicates recognition performance with light indicating
high recognition rates and dark low recognition rates. For both uniform and complex backgrounds, there is a big plateau where recognition is very good. All sample points
within the contour lines are above 90 percent (left) or 80 percent (right). Compare with Table 1.

own object representation on the basis of training images, for

which only the class of the hand posture is known.
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