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1 Introduction

The automatic analysis of meetings recorded in multi-sensor rooms is an emerging research field in
various domains, including audio and speech processing, computer vision, human-computer inter-
action, and information retrieval [38, 73, 54, 68, 17, 51, 78]. Analyzing meetings poses a diversity
of technical challenges, and opens doors to a number of relevant applications, including automatic
structuring and indexing of meeting collections, and facilitation of remote meetings.

In the context of meetings, detecting, localizing, and tracking people and their speaking activity are
crucial for enriching the interactive experience between participants of a meeting, on a single site
as well as on multiple sites, e.g. videoconferencing. The localization and tracking tasks play fun-
damental roles in two areas. The first one is media processing: speaker location is useful to select
or steer a camera as part of a visualization or production model, to enhance the audio stream via
microphone-array beamforming for speech recognition, to provide accumulated information for per-
son identification, and to recognize location-based events (e.g. a presentation). The second one is
human interaction analysis: social psychology has highlighted the role of non-verbal behavior (e.g.
gaze and facial expressions) in interactions, and the correlation between speaker turn patterns and as-
pects of the behavior of a group [53]. Extracting cues to identify such multimodal behaviors requires
reliable speaker localization and tracking.

Although the above tasks are facilitated in meetings by the constraints of the physical space and the
expected type of human activities, they still pose several challenges. The interactive nature of meet-
ings involves spontaneous multi-party speech, which contains highly dynamic patterns of speaker
turns, including short speech utterances, non-linear human motion, partial and total visual occlusion,
and multiple sources (multiple overlapping speakers and/or background noise sources). The meeting
room environment is thus highly dynamical, and in order to develop useful applications for enhanced
user experience during meetings (e.g. online and realtime) and affer meetings (e.g. automatic sum-
marization or queries from a user), robust and computationally tractable methods that can cope with
the multisource aspect as well as the highly dynamical aspect are necessary. Ideally, such methods
should address, in principled ways, the need for fusion of perceptual data (e.g. multiple audio and
visual sources), in order to exploit the modalities’ redundancy and complementarity, and the need for
accurate descriptions of the interactive, multiperson processes that meetings contain (e.g. represent-
ing the dynamic status of each individual, while accounting for the constraints introduced by their
interaction).

This report presents an overview of existing work on localization and tracking of multiple interlocu-
tors with multiple sensors. Rather than being exhaustive, the report attempts to provide a non-expert
reader with pointers to what the authors regard as representative work in the domain, and to present
a succint discussion of the advantages and limitations of such methods, including the ones that have
been developed as part of the AMI project. The multisource context will be the focus throughout.
Additionally, given that the emphasis of the review is on localization and tracking of talking people,
we limit the review to audio-only and audio-visual (AV) methods.

The report is organized as follows. Section 2 reviews existing work on localization and tracking with
audio sensors. Section 3 does so for work using audio-visual sensors. Finally, Section 4 discusses
available resources (i.e., data and related annotations) in this domain.

2 Localization and tracking with audio sensors

The speed of sound in the air being finite and relatively low in an indoor environment (around 342
m/s), most practical audio localization/tracking applications rely on time asynchrony between the
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waves arriving at multiple microphones in multiple locations, called microphone arrays. A three-
fold inverse problem then arises: that of inferring, from the slight differences between the recorded
signals, the number of active speakers at any given time (detection), their instantaneous positions
(localization) and their spatio-temporal trajectories over time (tracking).

These “slight differences” are tightly linked to the geometrical placement of the microphones. More
precisely, the differences are usually measured from three non-exclusive viewpoints:

1. Time asynchrony: the time of flight of the acoustic waves from mouth to microphone is dif-
ferent for different microphones, due to their different placements. Audio localization/tracking
methods relying on time asynchrony usually require precise knowledge of the microphone ar-
ray’s geometry. However, they do not require any particular knowledge about the room, and
are thus the most developed in terms of practical applications. Omnidirectional microphones
are used in most cases. Typical geometries include Uniform Linear Arrays (ULA) and Uni-
form Circular Arrays (UCA): a finite number of microphones equally spaced along a line or a
circle, respectively. However, a solution particularly designed for meeting rooms is the Huge
Microphone Array (HMA) including a large number of microphones on a wall [65].

2. Impulse response: for a given mouth location, the path travelled by the sound to the various
microphones will vary. Hence, the impulse response will vary as well. Assuming the im-
pulse response characteristics of the room to be perfectly known beforehand (calibration), it is
possible to deduce the position of the speaker. However, the tedious calibration step is often
undesirable in practical application (e.g. portable videoconferencing systems), so the impulse
responses need to be estimated in an online, automatic fashion. This task is also called blind
Multiple Inputs Multiple Outputs (MIMO) channel identification [12, 7], where geometrical
knowledge of the microphone array is not required. The task is tightly linked to Blind Source
Separation approaches [8]. Solving this problem amounts to retrieve a complete model of the
meeting room, which would permit not only to locate but also to separate the various signals at
the same time. This problem is still difficult and open to research. A preliminary test of such a
method can be found in [9].

3. Microphone channel: recently, it was proposed to use several directional microphones placed
at the same location, but oriented towards different directions [50]. The direction-dependent
transfer function of each microphone is assumed to be known, so that the speaker location can
be reconstructed. This solution can also be combined with the first group of approaches [61].

In the following we focus on the first group of solutions, for which [6, 37] provide comprehensive
introductions. These methods are typically linked, directly or indirectly, to the following observation:
if two signals x1(¢) and xp(r) = x1(r — T12) are received by two microphones, with a relative delay
T12, the cross-correlation function f(t) = [ x1(t)x2(t —t)dt will have a maximum at T = Tj2. We
first briefly mention the detection issue within the context of source localization, then examine the
various instantaneous source localization methods. Finally, tracking of speaker trajectories over time
is presented.

2.1 Detection

Since the speech of a given person is sporadic, it is needed not to estimate any speaker location during
silence. Traditional Voice Activity Detectors (VADs) typically use single channel features, such as
energy and zero-crossing rate. Although well adapted to single channel tasks such as automatic
speech recognition, they are suboptimal in terms of localization precision [42]. Thus, they are not
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necessarily adapted to the task of acoustic source localization. Alternative methods that rely on the
cross-correlation between channels can be found in [13, 44, 45].

2.2 Localization

The usual meaning of “localization” is to identify the location of the various active speech sources
in physical space, from a short time frame on which speech is considered as stationary (typically 20
to 30 ms). As mentioned above, methods based on the asynchrony between the various microphones
rely on the cross-correlation between those signals. They can be divided into two types: time delay
of arrival (TDOA), and direct methods.

The TDOA methods consist in first estimating the time delays between each pair of microphones,
and then deriving the location of the sources from geometrical considerations, e.g. using the Lin-
ear Intersection algorithm [5]. The main bottleneck is the time delay estimation (TDE) step, which
may be affected by reverberations. A practical improvement can be obtained by modifying the cross-
correlation function, e.g. using the generalized cross correlation phase transform (GCC-PHAT) [36].
In the case of multiple sources and one microphone pair, an alternative method for the estimation of
multiple time-delays is the Adaptive Eigenvalue Decomposition Algorithm [4]. However, in the gen-
eral case of multiple microphone pairs, multiple sources, and multiple sound paths (reverberations),
it is not obvious how to pair the various time-delays observed at the various pairs of microphones in
order to deduce the exact location of the acoustic sources.

The direct methods avoid this bottleneck by directly inferring the source(s) locations from the mea-
sured signal. They can be divided into two groups: Coherent Signal Subspace Processing (CSSP),
and beamforming. CSSP methods [74, 15] are extensions of narrowband methods originated in the
fields of radar and communications [62]. Although they allow in theory to estimate jointly the number
of sources and their locations, they suffer from sensitivity to reverberant environments and/or need
sufficient amounts of data.

Beamforming localization methods, also known as Steered Response Power (SRP) methods, are a
reasonable alternative that does not rely on strong room knowledge/modelling assumptions. The
idea is to estimate the power at any location in space by compensating for the corresponding de-
lays between the signals (“steering” the array) [37]. Multiple simultaneous sources will be reflected
by multiple maxima across the search space. However, reverberations will also appear as maxima
(“virtual sources”). A partial solution to this issue is to combine the flexibility of SRP methods with
the robustness to reverberations of PHAT: this is known as SRP-PHAT [18]. In general, the main
drawback of SRP methods is that the search space can be large (e.g. the whole room in the case of
meetings). Recently, an approach was proposed that discretizes the search space into volumes, and
reduces the search to “active” volumes only [21, 22]. In such a framework, localization amounts to
determine whether there is an acoustic source present within each of a predetermined, finite number
of volumes. However, spatial resolution and interference between the signals of the different speakers
may be an issue. Indeed, using the whole spectrum to locate multiple sources leads to unnecessary
noise in the location estimation. In other words, spectral data from all sources is used to locate a given
source, thus inducing an unnecessary bias in the location estimate. A possible way to address these
issues is the “sparsity assumption” in the frequency domain [44, 45]. This assumption is derived from
statistical observations on human speech [60], and simply means that within a frequency bin, only
one speech source is dominant in terms of magnitude, while all other sources can be neglected.

In practice, although CSSP methods and, more recently, MIMO/BSS methods have seen very promis-
ing developments, they are still not as practically effective as the SRP methods. One drawback of
SRP methods is that number of active sources and reverberations are not determined automatically.
However, this issue can be efficiently addressed by clustering/tracking methods.
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2.3 Tracking

Tracking can be viewed as the task of filtering instantaneous location estimates provided by the meth-
ods mentioned above. The Kalman filter [33, 77] assumes dynamics to be linear and Gaussian. These
assumptions become an issue when dealing with human motion (non linearities such as sharp turns).
Furthermore, in spontaneous speech, utterances are short (typically less than a second), speaker
changes often, and overlaps represent a non-negligible portion of speech [64].

The Extended Kalman Filter (EKF) was proposed to accomodate non-linear dynamics through a lin-
earization step [67], however it is known to be practically difficult to tune its parameters [31]. More
recently the Unscented Kalman Filter (UKF) was proposed to avoid this linearization step and acco-
modate non-Gaussian measurement noise sources [32, 31, 46]. For a recent application of the UKF
to acoustic source localization, see [20]. However, these approaches may encounter difficulties when
dealing with spontaneous speech, which is both highly changing in space (speaker changes) and spo-
radic over time (short utterances).

As an alternative, Sequential Monte-Carlo (SMC) methods, also known as Particle Filtering (PF),
approximate the optimal Bayesian filter by representing probability distributions through a finite set
of particles [27, 19]. For a state-space model, a PF recursively approximates the filtering distrib-
ution of states given observations using a dynamical model, an observation model, and sampling
techniques, by predicting candidate configurations and measuring their likelihood, in a process that
amounts to random search in the configuration space. Applications to single acoustic source local-
ization and tracking can be found in [70, 75, 76], and a comprehensive review in [47]. However, the
fast-changing speaker turns encountered in spontaneous multi-party speech requires either specific
multisource models [39] or adapting the single-source model to “switching between speakers” situa-
tions [48]. Estimating the number of active speech sources is still an issue, tightly linked to the data
association issue. Although Particle Filters can model multiple objects via multi-modal distributions,
deciding which modes are significant and which objects they belong to is an open issue. Moreover,
when the number of active objects varies very often along time, complex birth/death rules are needed.

Recently, alternative approaches were proposed where the number of active speech sources need not
be known [40]. An unsupervised, online approach called “short-term clustering” was proposed, that
automatically groups location estimates that are close to each other in space and time, and separate
those that are not. [41] demonstrates on real data that it can be directly applied to the task of spon-
taneous speech segmentation, without requiring any constraint from the participants. The resulting
speech segmentation is very precise, even when multiple participants talk at the same time. In addi-
tion, “short-term clustering” is shown to allow for detection and solving of trajectory crossing issues.

3 Localization and tracking with audio-visual sensors

Localizing and tracking speakers in enclosed spaces using AV information has increasingly attracted
attention in signal processing and computer vision [58, 28, 16, 56, 23, 71, 81, 1, 3, 14, 11], given
the complementary characteristics of each modality. Broadly speaking, the differences among ex-
isting works arise from the overall goal (tracking single vs. multiple speakers), the specific de-
tection/tracking framework, and the AV sensor configuration. Much work has concentrated on the
single-speaker case, assuming either single-person scenes [16, 56, 1], or multiperson scenes where
only the location of the current speaker needs to be tracked [58, 28, 23, 71, 81, 3]. Many of these
works used simple sensor configurations, i.e., one camera and a microphone pair [16, 56, 71, 3].
Other works have addressed the data fusion problem using multiple microphones and a single camera
[24], and others have used multiple cameras, either non-calibrated [25] or fully calibrated [81, 55],
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given the fact that, while single cameras are useful for remote conferencing applications, multiper-
son conversational settings like meetings often call for the use of multiple sensors to cover the entire
workspace (table, whiteboards, etc.). Among the existing techniques, probabilistic generative mod-
els based on exact [56] or approximate inference methods, both variational [3] and sampling-based
[71, 81, 24, 25, 55], appear to be the most promising, given their principled formulation and demon-
strated performance.

None of the above works, however, can handle the problem of continuously inferring, from audio and
video data, the location and speaking status for multiple people in a realistic conversational setting.
In fact, although audio-based multispeaker tracking and vision-based multiobject tracking have been
studied for a few years as separate problems in signal processing [69, 59, 72, 44] and computer vision
[30, 57, 79, 80], respectively, the AV multispeaker tracking problem has been studied only relatively
recently, making use of more complex sensor configurations [17, 34, 66, 10, 11, 14, 2, 26]. Each
of these works is briefly discussed in the following. For presentation purposes, we categorize the
existing work as being either system-oriented or model-oriented, where the emphasis in the first case
is on module integration, while in the second case is on a unifying mathematical formulation.

Regarding the first category, the work in [17] described a system based on a device that integrates
a small circular microphone array and several calibrated cameras, whose views are merged into a
panorama, The system, in which each person is tracked independently, consists of three modules: AV
auto-initialization, using either a standard acoustic source localization algorithm or visual cues, visual
tracking using a Hidden Markov Model (HMM), and tracking verification. The work in [34] described
a non-probabilistic multispeaker detection algorithm using an omnidirectional camera (which has
limitations of resolution) and a microphone array, calibrated with respect to each other. At each video
frame, the method extracts skin-color blobs by traditional techniques, and then detects a sound source
using standard beamforming on the small set of directions indicated by the skin-blob locations. The
work in [66] described an AV multispeaker system, based on a stereo camera and a linear microphone
array, consisting of three separate modules: stereo-based visual tracking of 3-D head location and
pose for each person independently, estimation of the direction of arrival of the audio signal with the
microphone array, and estimation of audio-visual synchronous activity. Two hypothesis tests are used
to make independent decisions about the speaking activity and visual focus of the speakers, based on
simple statistical models defined on the observations derived from each module. The work in [10]
uses a number of standard techniques in separate modules that are later integrated into a system that
estimates the location and identity of the meeting participants, and detects the current speaker, using
a setup including four calibrated cameras (an omnidirectional camera located on the center of the
meeting table, and four cameras located in the corners of the meeting room), and a 16-microphone
array, located on one end of the table.

For the second category, a number of probabilistic generative models have been recently proposed for
the task of simultaneously inferring location and speaking activity of multiple interlocutors. All of
them are based on PF techniques [11, 14, 2, 26], but differ in the choices of state space, dynamical
model, observation model, and sampling technique. The work in [11] used two calibrated cameras
and four linear sub-microphone arrays on a wall, and was based on the model first proposed in [30],
which defines a multi-person state-space where the number of people can vary over time. A full-body
multi-person observation model was defined by two terms: one for video, derived from a pixelwise
background substraction model, and one for audio, derived from a set of short-time Fourier transforms
computed on each microphone’s signal. The PF relied on basic importance sampling (IS), and so
is likely to become rapidly inefficient as the number of people increases. The work in [14] used
the same calibrated sensor setup as [17], and tracked multiple speakers with a set of independent
PFs, one for each person. For sampling, each PF uses a mixture proposal distribution, in which
the mixture components are derived from the output of single-cue trackers (based on audio, color, or
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shape information). This proposal distribution increases robustness in case of tracking failure in single
modalities. Furthermore, each single-object observation model is assumed to be factorized over the
various cues. The work in [2] uses a setup composed of a stereo camera and a circular 8-microphone
array, and uses a basic PF to perform inference over a multi-person state space, assuming that the
multi-object observation model can be factorized over participants. However, the approach was only
applied to two-people scenes, likely due to the known limitations of the basic PF algorithm. The work
in [26] presents an approach in a meeting room consisting of three uncalibrated cameras covering
the physical space with mostly non-overlapping fields-of-view, and a circular 8-microphone array
placed on the center of the meeting table. The model uses a mixed-state, multi-object state-space,
which integrates a pairwise person occlusion model through the addition of a Markov Random Field
prior in the multi-object dynamic model. To address the problems of traditional PFs in handling the
high-dimensional state space defined by the joint multi-person configurations, inference in this model
is performed with a Markov Chain Monte Carlo particle filter (MCMC-PF), which results in high
sampling efficiency [49, 35]. The model integrates audio-visual data through an observation model
where audio observations are derived from a source localization algorithm, and visual observations
are based on models of the shape and spatial structure of human heads. Overall, the model in [26]
has two advantages over [11, 14]. First, it explicitly incorporates a pairwise person interaction prior
term, which is especially useful to handle person occlusion. Second, it uses an MCMC sampling
technique, which allows to track several objects in a tractable manner (effectively close to the case
of independent PFs), while preserving the rigorous joint state-space formulation. This approach has
also been recently used as part of a system for audio-visual speech acquisition [52].

4 Available Resources

Most of the research summarized in the previous two sections has been conducted over a number
of non-standardized audio or audio-visual data sets, which vary from each other with respect to the
specific sensor setup, the type of recorded situations, the structure of the data set, the type of existing
annotations, and their degree of availability to others for research purposes. The community in this
domain, however, has already acknowledged the considerable effort involved in collecting such data,
and the need to rely in common evaluation procedures.

In the context of the AMI project, an audio-visual corpus was recorded and annotated, and reported
in [43]. This corpus includes a high variety of scenarios, ranging from static, constrained cases, to
dynamic and natural ones, with multiple seated or moving speakers in a meeting room. The sensors
include two eight-microphone circular arrays on a table, and three cameras around the room. The
calibration of the cameras allowed to reconstruct the ground-truth location of the mouth of each
person with a 3-D error inferior to 1.2 cm. Overall, this data set should be interesting for both the
audio and the vision communities, and is publicly available.
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