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1 Introduction

WP4 is concerned with the automatic recognition from audio, video, and combined audio-video streams,
with an emphasis on developing models and algorithms to combine modalities. Algorithms will be imple-
mented in the AMI domain and evaluated on common datasets. The models that will be applied include
HMMs, Bayesian networks, neural networks, multistream approaches, and multisource decoding.

1.1 Involved partners

Table 1 shows the involved partners and person-months in WP4.

Part. UEDIN DFKI ICSI TNO BUT TUM
PMnth. 18 3 48 26 54 65

Part. IDIAP USFD UT FC
PMnth. 54 18 28 4

Table 1: Involved partners and person-months in WP4

1.2 Splitting of work

Instead of dividing the tasks into speech, visual, and audio-visual groups it was decided to split the tasks
into problem-based groups. Solutions are not distinguished by their approach (for example visual or audio
identification of persons). Therefore different approaches can be evaluated and compared on a common
data set with a given standard (for example how many persons have been identified correctly during the
meeting?). We identified seven main questions and therefore split WP4 into seven sub-groups:

• Baseline speech recognition system

• Event spotting

• Person segmentation / clustering / identification

• Emotion recognition

• Localization and Tracking

• Gestures and actions

• Focus of attention

1.3 Aim in the first year and outline of this deliverable

The expected result of WP4 is a set of multimodal recognizers for robust speech recognition for multiparty
meetings, gesture and action recognition, emotion recognition, source localization, object tracking, and
person identification.

In the first year we developed and ported a wide range of algorithms to the AMI domain. We decided
about common interfaces and have draft evaluation schemes available. This allows us to compare different
approaches and algorithms on common AMI data. This deliverable reports about the progress that has
been made in porting and implementing these algorithms for audio, video, and multimodal algorithms
for AMI. The methods are described in detail in Sec. 2 - 8, where each section describes the progress that
has been made in one of the seven sub-groups (cf. Sec. 1.2).
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2 Automatic Speech Recognition

2.1 Objectives

The ASR subgroup is concerned with the development of a speech recognition system for the use on AMI
data. As AMI data for training and is not yet available preliminary system building work has started.
Past experience in meeting transcription has shown that bootstrapping of meeting systems from other
ASR systems is beneficial. Hence it was decided to initially develop models based on conversational
telephone speech (CTS) and on the ICSI meeting corpus. The aim in this development is to prepare
the necessary setup for ASR training and testing and the initial models for bootstrapping. Hence the
following sections describe a system for CTS, followed by description of initial system results for ICSI
meeting data.

For acoustic model training the Hidden Markov Model Toolkit (HTK) was used whereas language
model training and testing was based on the SRI language model toolkit. The recognition process itself
is based on HDecode, a speech recogniser in development at Cambridge University. In addition to
these fundamental tools a large number of scripts and programs has been developed to enable simple
and efficient execution of fundamental steps in the construction of speech recognition systems. This
framework has and will enable straight-forward migration to different corpora and/or data sources.

2.2 Transcription of Conversational Telephone Speech

Work on conversational telephone speech is based on the 3 corpora: Switchboard-I, CallHome English,
and Switchboard cellular. Word level transcripts and audio segmentations for training covering most
of these corpora were obtained from Cambridge University (h5etrain03). Recognition experiments are
conducted using the official 2001 NIST Hub5E evaluation set. For testing of word lists and language
models in addition the both the 1998 and 2002 NIST Hub5E evaluation were used.

The following describes wordlist generation, dictionary construction, work on acoustic and language
modelling as well as acoustic adaptation.

2.2.1 Wordlist generation

The wordlist of a speech recognition system is the set of words that it should be able to recognise. For
a given corpus the total number of complete words (i.e. excluding false starts and partial words) can be
relatively small (approximately 10,000 for ICSI meetings data for example). So it is likely that a test
set will contain words that are common but did not appear in the acoustic training data. It is therefore
necessary to augment the wordlist with words from a larger source.

To generate the wordlist for the CTS task the set of complete words from the Switchboard corpus
is augmented with the most frequently occurring set of complete words from the HUB4 broadcast news
corpus until a wordlist of the desired size is obtained. The resulting list can be compared to the words in
the test set. Words occurring in the test set but not in the wordlist are called out-of-vocabulary words
(OOVs). It is desirable to minimise the number of OOVs while keeping a reasonably sized wordlist. Note
that no knowledge of the test set is used in the selection of words.

Table 2 shows the OOV rate for various wordlist sizes on the CTS test sets. A wordlist containing
50,000 words was finally chosen.

2.2.2 Dictionary

Dictionary development has comprised two main sub-tasks, the preparation of a baseline pronunciation
dictionary and the addition of new entries to this dictionary from word lists extracted as described above.

The baseline dictionary is derived from the UNISYN pronunciation dictionary, a multi-accent dictio-
nary developed at the Centre for Speech Technology Research, University of Edinburgh. The dictionary

6



Length of wordlist CTS OOV rate (%) ICSI OOV rate (%)
40000 0.351 0.315
45000 0.312 0.302
50000 0.285 0.291
55000 0.271 0.274
60000 0.263 0.264

Table 2: Out-of-vocabulary rate on CTS and ICSI meetings tasks for various wordlist sizes.

is configured to give general American English pronunciations with British English spelling conventions
using a reduced ARPABET phoneset of 44 phones plus silence. The final baseline dictionary comprises
a total of approximately 115,000 pronunciations.

Pronunciations from UNISYN have been supplemented by the addition of manually checked pronun-
ciations to produce custom dictionaries of 8100 and 2500 words respectively for use with the switchboard
and ICSI corpora. A procedure for generating new pronunciations has been developed as follows:

• Generation of an Out-Of-Vocabulary (OOV) word list from the text-normalised word list

• Automatic generation of pronunciation hypotheses using a decision tree based letter-to-sound sys-
tem trained on the baseline dictionary (achieving 80% word accuracy and 96% phoneme accuracy)

• Automatic generation of pronunciation hypotheses for partwords

• Cross-checking pronunciation hypotheses with other dictionary resources

• Manual correction of the pronunciation hypothesis

• Newly added pronunciations are added to existing dictionary resources to aid in later dictionary
development

The resources used for dictionary development have been collected on Sheffield’s host system complete
with documentation.

2.2.3 Language modelling

Creation of language models requires a significant quantity of text that has a similar style to the text
in the test domain. Language models optimised for a specific domain are created by interpolating many
different models where each one is created from a different text corpus.

Various text corpora were collected in order to create language models:

1. Switchboard: includes Switchboard, CallHome and Switchboard Cellular data.

2. HUB4 LM96: a broadcast news corpus.

3. ICSI meetings: the meetings data collected at ICSI.

4. Web data: data collected at the University of Washington by searching the Internet for text that
is similar to a given corpus.

5. M4: meetings data collected on the M4 project at IDIAP.

6. BBC: data collected from a variety of broadcasts by the BBC including news and documentaries.

7



Text corpus Number of words
Switchboard 3,494,406
HUB4 LM96 151,846,263
ICSI meetings 952,173

Web data (swb) 162,913,566
Web data (fisher) 484,214,055

Web data (fisher topics) 156,322,948
Web data (meetings) 128,282,257

M4 30,949
BBC 33,049,016
Total 1,121,105,663

Table 3: The various text corpora used for creating Language models.

Table 3 lists the corpora that were used and the number of words in each after text normalisation was
performed.

Text normalisation is a process in which a corpus is modified to yield optimal consistency. By consis-
tent, we mean that the same strategy for spelling, use of hyphenation and special symbols is used across
all corpora. It was decided that the recogniser should be based on British English spellings (despite
having US English pronunciations in the dictionary!). Thus ‘colour’ is not spelled ‘color’ and ‘normalise’
has an ‘s’ not a ‘z’. Unfortunately, there are a few exceptions that are not easily translated without re-
ferring to the context in which the words are used. Such words include ‘meter’ versus ‘metre’ and ‘check’
versus ‘cheque’. Where this was the case then the US spelling was used instead. Other normalisation
considerations include the correct conversion of digits (including dates, times, currency and numerical
values) to a spoken form, the correct expansion of abbreviations such as Mrs. to Missus and whether
to expand acronyms (e.g. ‘UNICEF’ is unchanged but ‘FBI’ becomes ‘F. B. I.’). Normalisation of the
“Web data” corpora was particularly important. This included, amongst other things, the removal of
HTML tags and a frequency based normalisation scheme in which the most frequent erroneous OOVs
were manually corrected.

CTS language models were optimised for perplexity and tests were performed on the three CTS test
sets. Tables 4, 5 and 6 show the perplexity results of the CTS optimised bigram, trigram and four-gram
language models respectively. There is a significant reduction in the perplexity when incorporating the
Switchboard and Fisher Web data. Little is gained from incorporating meetings data as it is a completely
different domain.

Experiments were conducted to determine the effect of discarding infrequent trigrams and four-grams
to reduce model complexity. Testing on the CTS test sets several optimised language models were
constructed by interpolating with Switchboard, HUB4 LM96 and ICSI meetings language models in
which no n-grams were discarded. The result is shown in table 7. There is a relatively small increase in
the perplexity of the final optimised model while there is a significant reduction in its size.

2.2.4 Acoustic modelling and Decoding

Acoustic model training used the Cambridge University h5train03 training set which covers approximately
300 hours of speech. The acoustic training data is encoded using the HTK implementation of perceptual
linear prediction coefficients together with the 0th cepstral coefficient. In total 13 coefficients plus first
and second order derivatives were used. Further the data is normalised using cepstral mean and variance
normalisation on a conversation side basis. Initial monophone models are trained. These are used to
initialise from-scratch training of crossword triphone models. These initial triphone models are used for
further bootstrapping using 2-model re-estimation. After repeating this procedure several times the final
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PPLs Switchboard HUB4 LM96 ICSI Web (swb) Web (fisher) Web (fshtop) Web (mtngs) M4 BBC
104.53 1.000
144.11 1.000
236.19 1.000
132.10 1.000
132.85 1.000
144.93 1.000
175.47 1.000
586.02 1.000
273.18 1.000
95.00 0.757 0.243
94.89 0.741 0.228 0.031
91.87 0.673 0.062 0.266
91.27 0.663 0.043 0.134 0.161
90.89 0.659 0.027 0.084 0.093 0.138
90.89 0.656 0.022 0.008 0.076 0.086 0.141 0.011

Table 4: The perplexity results from interpolating the bigram models created from the various corpora and tested on the CTS test data.
The interpolation weights are shown in the body of the table and the perplexity (PPL) in the left most column.
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PPLs Switchboard HUB4 LM96 ICSI Web (swb) Web (fisher) Web (fshtop) Web (mtngs) M4 BBC
85.97 1.000
112.50 1.000
228.57 1.000
102.45 1.000
102.36 1.000
117.09 1.000
143.56 1.000
609.41 1.000
239.65 1.000
72.55 0.676 0.324
72.43 0.657 0.312 0.032
68.34 0.569 0.102 0.017 0.312
66.93 0.562 0.056 0.009 0.123 0.251
66.75 0.562 0.049 0.008 0.092 0.186 0.103
66.75 0.564 0.048 0.007 0.089 0.188 0.100 0.005

Table 5: The perplexity results from interpolating the trigram models created from the various corpora and tested on the CTS test data.
The interpolation weights are shown in the body of the table and the perplexity (PPL) in the left most column.
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PPLs Switchboard HUB4 LM96 ICSI Web (swb) Web (fisher) Web (fshtop) Web (mtngs) M4 BBC
84.12 1.000
109.07 1.000
235.67 1.000
97.04 1.000
95.42 1.000
111.87 1.000
137.58 1.000
616.79 1.000
231.23 1.000
69.04 0.651 0.349
68.88 0.629 0.336 0.035
63.83 0.529 0.117 0.020 0.334
61.82 0.514 0.061 0.010 0.127 0.287
61.58 0.514 0.053 0.009 0.098 0.229 0.096
61.59 0.515 0.052 0.008 0.096 0.229 0.094 0.005

Table 6: The perplexity results from interpolating the four-gram models created from the various corpora and tested on the CTS test
data. The interpolation weights are shown in the body of the table and the perplexity (PPL) in the left most column.
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min 3-grams min 4-grams model size int PPL
4 4 4.2M 3-grams, 3.4M 4-grams 64.52
2 2 10.8M 3-grams, 11.4M 4-grams 63.83

Table 7: The effect on model size and perplexity of setting minimum counts on trigrams and four-grams.
The minimum count must be reached before the n-gram is included in the model. The minimum count
setting was applied to the Switchboard Web data and the model interpolated with the full Switchboard,
HUB4 LM96 and ICSI meetings language models. A huge reduction in the size of the Switchboard Web
data model is accompanied by a slight increase in the perplexity of the optimised model.

model set is obtained. The performance of this system (unadapted maximum likelihood trained models)
is 36.7% on the 2001 NIST evaluation data. This result is comparable or better than the equivalent
stages of the best system in that year. Additional acoustic modelling experiments are targeting the use of
HLDA and semi-tied covariances. Furthermore decoding strategies are investigated: the use of DUcoder,
a recogniser used in M4; and the scalability of HDecode. So far the use of DUcoder appears to yield
considerably poorer performance. Experiments with HDecode explore the pruning parameters used. The
aims were to firstly understand the effect that each parameter has on both accuracy and decoding speed,
and secondly to determine a parameter set resulting in reasonably fast (1-2xRT) single-pass, trigram LM
decoding with minimal loss in accuracy compared with a slower (>10xRT) configuration.

2.2.5 Adaptation

Two main techniques have been applied in the context of speaker adaptation: Vocal Tract Length Normal-
isation (VTLN) and Maximum Likelihood Linear Regression (MLLR). VTLN is a well known technique
which is based on the fact that the spectral spread of the speech spectrum is in first approximation a
linear function of the length of the acoustic tube.

The implementation used here is based on speaker dependent warping of the frequency axis of the es-
timated speech spectrum. VTLN is usually performed both in training and testing. The method adopted
for training consists in iteratively alternating the estimation of warp factors with the re-estimation of
model parameters. In particular each training step consists of single pass retraining followed by several
iterations of Baum-Welch re-estimation. This procedure has been repeated until the set of warp factors
for each conversation side has stabilised. Table 8 shows the behaviour of warp factor histogram for both
female and male speakers. One can observe that while the warp factor distribution for female speakers
(a, b, c, d) moves towards smaller values after each step, the reverse is the case for male speakers (e, f,
g, h). In a final step models were trained from scratch, i.e. using the previously normalised features and
inclusive the regeneration of phonetic decision trees. This model set constitutes the final VTLN model
set.

For the use of VTLN in testing the following procedure was used:

1. Initial decoding using non-normalised features and models

2. Estimation of warp factors using VTLN models

3. Recomputation of normalised feature vectors

4. Decoding using the VTLN models

When using VTLN both in training and test a relative reduction of 10% in Word Error Rate was obtained.
More details can be found in table 9 where WER for every training step has been reported.

Table 9 also shows results for speaker adaptation experiments using MLLR. Here one transform for
speech and one for silence was estimated. Both mean and variance adaptation was performed.
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Table 8: Warping factors histograms estimated with non-normalised models (a and e), after the first (b and f), second (c and g) and
fourth (d and h) step of VTLN training procedure for female (a,b,c,d) and male (e,f,g,h) speakers.
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TOT Sub Del Ins Sw1 S23 Cell F M
No adaptation 37.2 24.2 8.8 4.2 30.1 38.0 43.0 36.7 37.6
Test only VTLN 36.4 23.6 8.5 4.3 29.5 36.5 42.6 36.1 36.7
1st pass training 35.7 22.9 8.9 3.8 29.1 35.4 42.2 35.0 36.4

2nd pass training 35.0 22.5 8.8 3.7 28.5 34.6 41.4 34.2 35.8
3rd pass training 34.5 22.0 8.7 3.7 27.7 34.2 40.9 33.6 35.3

4th pass training 34.2 22.0 8.6 3.6 27.5 34.2 40.5 33.3 35.1
VTLN retrain 34.1 22.1 7.9 4.2 27.6 34.6 39.8 33.8 34.5
VTLN + MLLR 32.0 20.4 8.0 3.6 25.9 31.6 38.1 31.1 32.9

Table 9: Speaker adaptation results (% WER) for CTS task: the first line shows the baseline where no
adaptation was performed, from the 2nd row to the 6th VTLN results for the iterative procedure have
been reported, the 7th line shows results with the same testing technique but after training from scratch,
last line contains overall performances measured using both the adaptation techniques

In the context of CTS experiments this technique has been applied adapting our best VTLN models
and estimating global transforms using the rough transcription given by VTLN testing. Note that the
overall optimal performance is 32.0% absolute on the 2001 NIST Hub5E evaluation set.

2.3 Meeting Transcription

In this section the steps in development of a system for the transcription of the ICSI meeting data is
described. Naturally the system development builds on work on CTS, hence the focus of the description
is set on differences to CTS.

The following experiments focus on reporting results on the ICSI corpus part of the development
and evaluation sets of the 2004 NIST RT meeting evaluations. However, as these data sets are small 2
additional test sets have been defined, one 7 hour test set (amieval-full) and one 3 hour test set taking
about half an hour out of each meeting in amieval-full (amieval).

2.3.1 Audio Preprocessing

The main task has been to carry out speech/silence segmentation of the meeting data, initially just
focusing on the independent headset microphone condition on the ICSI corpus. Two different approaches
were explored:

1. Simple frame energy-based technique: In this approach each frame is classified as
speech/silence based on energy in single channel or sub-band energies of multiple channels. In
both cases, the speech/silence decision for a frame is made by comparing the metric to a threshold.
The threshold for the energy is based on a running mean and standard deviation of noise frame
energies, while the multi-channel metric threshold is based on an assumed uniform distribution for
the case of no speech. Then the classification results are smoothed using a simple state machine.
This is similar to the speech/silence detection implemented in HTK.

2. TRAPS-MLP classifier approach: In this technique, a multi-layer perceptron (MLP) is trained
on using half second long temporal vector (TRAP) of each critical band logarithmic spectral energy
with two target classes (speech and silence). Then posterior probabilities of these MLPs can be
combined in many ways: averaging, log-averaging entropy.

The speech/silence segmentations obtained from the above two approaches were evaluated on one
meeting (BMR015) using a simple frame-based False-Alarm/False-Rejection (FA/FR) evaluation proto-
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col. ROC curves for different approaches are shown in Figure 1. An equal error rate (ERR) of around

Figure 1: ROC plots for different segmentation approaches

9% (tested on a single meeting only) was obtained for both these approaches, although TRAPS-MLP
classifier gave slightly better performance. The frame energy-based segmentation tools are available for
AMI partners, and the MLP tools are currently being prepared for distribution.

MLP tools We developed set of tools for training and testing MLPs based upon TORCH3 package and
TODE speech decoder. Currently, these tools support a single MLP training using 13 successive MFCC
features (HTK format). Also two different unsepervised adaptations in training were implemented:

1. Adding a layer to input

2. Adding a layer to output

Taking the frame based classification output, chunking software has been developed to output smoothed
segments suitable for input to the recogniser, using a simple procedure to enforce a minimum silence
duration between segments. The priliminary results for one test meeting (BMR015) are presented in
Table 10.

2.3.2 Wordlist generation

A similar procedure to that described in section 2.2.1 was used for the ICSI meetings task. Again the set
of complete words from the ICSI meetings corpus was augmented by words originating from the Hub4
corpus. Table 2 shows the OOV rate for various wordlist sizes on the ICSI meetings test sets. Again a
wordlist of 50,000 words was chosen.
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Segmentation System False-Rejection False-Alarm
Frame-energy technique 10.25 11.04
MLP with no adaptation 2.63 7.56
MLP with adaptation 1 1.70 10.40
MLP with adaptation 2 2.10 9.79

Table 10: False-Rejection and False-Alarm results for various segmentation approaches

2.3.3 Dictionary

The procedure detailed above for the CTS dictionary was followed to generate a new dictionary for the
ICSI Meetings Corpus from an OOV list.

2.3.4 Language modelling

The same data sources as described in section 2.2.3 were used for the construction of language models
for the ICSI data. The corresponding perplexity results optimised for the ICSI test data are shown in
tables 11, 12 and 13.

2.3.5 Acoustic modelling and Decoding

Data preparation for the training of ICSI acoustic models involves training and test set selection, text
normalisation of the original corpus transcriptions, conversion of the transcriptions to the formats re-
quired by the training tools, analysis of the out-of-vocabulary word occurrences and subsequent word
list selection. Again, identical to CTS, the data is represented in the form of 12 MF-PLP coefficients
together with the 0th cepstral coefficient and first and second order derivatives. As the CTS system is
based on telephone data ( 4kHz bandwidth) and the ICSI meeting recordings have a bandwidth of 8kHz,
two sets of PLP parameters are calculated - the first set of parameters are limited in bandwidth to be the
same as telephone speech, while the second set uses the full 8kHz available bandwidth. The discussion
below refers to these two parameter sets as “Narrow-band” (NB) and “Wide-band” (WB) respectively.
In order to facilitate experiments using MAP adaptation of CTS models, experiments are conducted on
both WB and NB data sets. Cepstral mean and variance normalisation is also performed on a per headset
microphone channel basis.

Initial forced alignment of the training set is performed using CTS acoustic models. The objective
here is to remove utterances with poor audio/transcription quality. The ICSI NB acoustic models trained
on ICSI data alone are then obtained by bootstrapped training from scratch using 2-model re-estimation
with the best CTS models. This is set in contrast to the use of MAP adaptation of CTS models, as
described later in this section.

ICSI WB acoustic models are generated using single-pass retraining with the best ICSI NB acoustic
models, followed by standard Baum-Welch re-estimation training with mixture splitting up to 16 mixtures.
Similar to CTS and ICSI NB training, bootstrapped training from scratch with 2-model re-estimation is
used to further refine these models.

Three test sets are chosen to evaluate the ICSI NB and WB acoustic models. The ICSI portion of
both development test and evaluation sets from the recent NIST RT04s meeting transcription evaluations
(20mins and 23mins respectively) are used to gauge performance compared to results obtained in those
evaluations. In addition a more significant test set was constructed consisting of 3.5 hours of speech.
These sets are called, RT04s dev, RT04s eval, and AMI ICSI eval respectively. Tables 14, 15, and 16
present results for each of these sets using the narrow-band models. The results for the wide-band
representation are shown in the tables 17, 18, and 19. Note that the best results here are obtained using
wide-band data.
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PLPs Switchboard HUB4 LM96 ICSI Web (swb) Web (fisher) Web (fshtop) Web (mtngs) M4 BBC
209.55 1.000
267.25 1.000
141.36 1.000
240.19 1.000
222.21 1.000
273.67 1.000
237.46 1.000
1130.97 1.000
551.78 1.000
127.61 0.526 0.027 0.016 0.020 0.003 0.408
126.81 0.479 0.025 0.014 0.019 0.003 0.395 0.065
106.37 0.227 0.015 0.538 0.013 0.014 0.005 0.189
106.37 0.223 0.015 0.536 0.013 0.013 0.005 0.189 0.007

Table 11: The perplexity results from interpolating the bigram models created from the various corpora and tested on the ICSI test data.
The interpolation weights are shown in the body of the table and the perplexity (PPL) in the left most column.
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PPLs Switchboard HUB4 LM96 ICSI Web (swb) Web (fisher) Web (fshtop) Web (mtngs) M4 BBC
192.90 1.000
229.32 1.000
129.37 1.000
198.53 1.000
206.92 1.000
259.50 1.000
210.17 1.000
1173.28 1.000
529.28 1.000
100.43 0.454 0.061 0.043 0.072 0.005 0.364
99.93 0.423 0.059 0.040 0.069 0.005 0.357 0.046
84.41 0.211 0.041 0.453 0.038 0.057 0.007 0.192
84.42 0.208 0.041 0.451 0.038 0.057 0.008 0.192 0.005

Table 12: The perplexity results from interpolating the trigram models created from the various corpora and tested on the ICSI test
data. The interpolation weights are shown in the body of the table and the perplexity (PPL) in the left most column.
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PPLs Switchboard HUB4 LM96 ICSI Web (swb) Web (fisher) Web (fshtop) Web (mtngs) M4 BBC
193.43 1.000
229.76 1.000
135.49 1.000
196.25 1.000
179.81 1.000
257.45 1.000
203.38 1.000
1186.97 1.000
485.51 1.000
96.15 0.428 0.067 0.055 0.082 0.009 0.358
95.63 0.397 0.065 0.052 0.079 0.009 0.351 0.047
81.78 0.217 0.049 0.400 0.048 0.067 0.010 0.209
81.79 0.214 0.049 0.398 0.047 0.066 0.011 0.208 0.007

Table 13: The perplexity results from interpolating the four-gram models created from the various corpora and tested on the ICSI test
data. The interpolation weights are shown in the body of the table and the perplexity (PPL) in the left most column.
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LM WER(%) S D I F M
BG 24.5 14.2 8.4 1.9 26.1 23.4
TG 21.3 12.2 7.3 1.7 22.9 20.1

Table 14: ICSI NB Models: RT04s dev results

LM WER(%) S D I F M
BG 31.4 19.2 9.7 2.5 31.3 31.5
TG 28.8 17.5 8.9 2.5 27.5 29.4

Table 15: ICSI NB Models: RT04s eval results

LM WER(%) S D I F M
BG 36.4 21.6 11.1 3.7 - -
TG 33.8 19.6 10.3 3.8 - -

Table 16: ICSI NB Models: AMI ICSI eval results

LM WER(%) S D I F M
BG 22.5 13.0 8.0 1.5 24.1 21.4
TG 19.9 11.6 6.7 1.6 21.6 18.6

Table 17: ICSI WB Models: RT04s dev results

LM WER(%) S D I F M
BG 29.2 18.5 8.2 2.4 26.8 30.3
TG 25.7 15.9 7.4 2.4 23.2 26.7

Table 18: ICSI WB Models: RT04s eval results

LM WER(%) S D I F M
BG 34.6 20.5 10.3 3.8 - -
TG 32.2 18.6 9.8 3.9 - -

Table 19: ICSI WB Models: AMI ICSI eval results
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In contrast to stand-alone training on the ICSI corpus the use of iterative MAP adaptation of CTS
models to the ICSI meeting domain was tested. So far the results are obtained using a considerably
weaker language model. However, the tables give an indication of the performance to be expected with
a setup comparable to the previous setup.

MAP adaptation of well trained CTS models to ICSI data was applied in three different ways.

• One iteration with small τ (controlling value) - common way.

• More iterations with higher τ value - more precise models from previous iteration are used as input
of actual iteration.

• More iteration with small τ value - using a two model re-estimation approach. Here the models
from the previous iteration are used for state level alignment and CTS models are used as input for
adaptation.

The following tables show results on the rt04dev set. Similar performance gains have been observed
on rt04eval. Table 20 shows the baseline performance using CTS models alone. Table 21 show results
for MAP adaptation using different values for τ . In Table 22 it is shown that further iterations can yield
further substantial improvements.

TOT Sub Del Ins F M

rt04dev 28.7 17.5 9.8 1.4 30.1 27.8

Table 20: Baseline results given by non adapted CTS models.

TOT Sub Del Ins F M

τ = .1 28.1 16.9 9.7 1.5 28.5 27.7
τ = .7 28.1 16.9 9.7 1.6 28.5 27.8
τ = .9 28.0 16.9 9.7 1.5 28.5 27.7
τ = 10 28.2 17.1 9.8 1.4 28.7 27.9
τ = 20 28.5 17.2 9.9 1.4 29.3 28.0
τ = 30 28.9 17.4 10.2 1.4 29.6 28.5

Table 21: Results using MAP on the rt04dev test set

TOT Sub Del Ins F M

τ = .7 26.9 16.4 9.2 1.3 28.1 26.0
τ = .9 26.9 16.4 9.2 1.3 28.1 26.0
τ = 20 26.8 16.2 9.3 1.3 27.9 26.1
τ = 30 26.9 16.1 9.3 1.4 27.7 26.3

Table 22: Results for iterative MAP on the rt04dev test set

2.4 Summary of Systems

In the previous sections we have outlined ASR systems we have developed and their performance, both
for the automatic transcription of conversational telephone speech and for transcription of meeting data.

The main features of the CTS system are
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• Maximum likelihood training on 300 hours

• Up to 4-gram language models trained on about 1GW (1000 million words).

• Speaker adaptation in the form of VTLN and MLLR

• Multi-pass system generating lattices

• A dictionary with pronunciations for 50000 words.

The main features of the ICSI system are

• WB coding

• Up to 4-gram language models trained on about 1GW (1000 million words).

• A single pass system generating lattices

• A dictionary with pronunciations for 50000 words.

Note that for each system we have developed the necessary software that allows straight-forward
replication of the results.

We further have developed a system that allows the unbiased automatic transcription of the complete
ICSI corpus using cross-validation. The output of this system are lattices that will be used in experiments
in work-package 5.

The development of the AMI CTS system is almost complete. The best performance on the 6 hour
NIST 2001 Hub5E evaluation set is 32.0% WER absolute. We can compare this number with the best
performing system in the 2001 NIST Hub5E speech recognition evaluations: The system by Cambridge
University gave a WER of 39.1% in the first pass (unadapted). The second pass (CU-P2) yielded 31.1%.
In comparison to the AMI CTS system CU-P2 uses more sophisticated training and higher complexity
language modelling. Hence we expect similar or better performance with these additional system features.

The AMI-ICSI system is still simple and many components are still to be ported from CTS to this
system. However, initial experiments are encouraging: On the NIST RT04 development test set we obtain
with an unadapted system a word error rate of 19.9%. This compares to 17.4% on the same test set,
achieved by the best system in the NIST RT 2004 Meetings evaluations.

2.5 Additional ASR Activities

Although the ASR engine development described in Sec. 2.2 - 2.4 was the most significant contribution
of the ASR subgroup, there were a number of other ASR-related activities in which consortium members
were engaged.

2.5.1 ASR tool development

Additional HMM training tools are developed by Lukas Burget (Brno). SERest is a tool for embedded
HMM training. New key features of SERest [14] include re-estimation of linear transformations (MLLT,
LDA, HLDA) within the training process, and use of recognition networks for the training. Work is in
progress on the discriminative MMI (Maximum mutual information) training.

SVite allows decoding using an arbitrary recognition network. Additional tools for compilation of
HMM’s, pronunciation dictionaries and language models into a single network in progress (based on
AT&T tools) is in progress.

For the merging of recognition results of a set of recognizers, SRover tool was developed [15]. Unlike
standard ROVER based uniquely on strings of words, SRover allows for time-mediated merging of decoder
outputs.
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2.5.2 ASR NIST evaluation system development

ICSI continued the development of a Meetings ASR system and participated in NIST’s Spring 2004
Meetings Evaluation. ICSI was one of 4 sites to participate in the ASR portion of the evaluation. We
had participated in the previous NIST Meetings evaluation (held in spring 2002) using a simple port
of a Switchboard-trained ASR system based on SRI’s DECIPHER engine. For our 2004 participation,
taking advantage of the larger collection of Meetings data becoming available, we focused on strategies
for adapting acoustic models, language models, and signal processing of the telephone-speech-trained
system to the Meetings domain. To give some sense of the overall progress, table 23 shows word error
rate (WER) on the 2002 eval data (which became the 2004 development data) using our 2002 vs. 2004
eval systems. The table gives results for personal mics and for tabletop mics. (The 2002 eval used hand-
specified segments for the personal mics whereas the 2004 evaluation required automatic segmentation,
so both numbers are provided for the 2004 system.)

personal mics ALL ICSI CMU LDC NIST
2002 eval system (hand segs) 36.0 25.9 47.9 36.8 35.2
2004 eval system (hand segs) 30.3 17.4 43.0 34.0 27.5
2004 eval system (auto segs) 36.1 20.5 50.2 43.8 30.1

tabletop mics ALL ICSI CMU LDC NIST
2002 eval system 61.6 53.6 64.5 69.7 61.6
2004 eval system 43.8 28.4 59.1 52.3 44.0

Table 23: Performance (% WER) on 2002 eval set

The actual performance of the 2004 system on the 2004 eval data is given in table 24. The system
was a streamlined system that ran in under 5x real-time. The table also includes performance of a
somewhat more elaborate contrast submission using a 20x recognition protocol. More details can be
found in [100, 108, 60].

personal mics tabletop mics
2004 5x system 34.8 46.7
2004 20x system 32.7 44.5

Table 24: Performance (% WER) on 2004 eval set
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3 Event Spotting

3.1 Objectives

Acoustic event (mainly keyword) spotting (KWS) in meetings has the following goals:

1. To find all occurrences of entered word in a meeting and sort them according to confidences (in real
time). This will allow for Google-like browsing of meetings using acoustics.

2. To verify if a word really occurred in a particular meeting (return its confidence). This is linked to
WP5 summarization work.

At the time of writing this report, the acoustic events are limited to keywords, so that we will speak
about the keyword spotting (KWS) in the following text.

3.2 Approaches to KWS

The most common approach to KWS is based on LVCSR. The word-strings or lattices are searched for
keywords, for the detection, their confidences are compared to a threshold. LVCSR-based however suffers
when the searched keyword is not contained in the dictionary or in case it has very low weight in the
language model. Both can happen quite often for “interesting” keywords such as proper names. The
recognition is run only once.

The second approach is based on composing the model of a keyword when the keyword is entered. The
recognizer can be run only after this model is built. In case the keyword is not contained in a dictionary,
the user must provide its approximate phonetic form, or this can be automatically created (this is related
to pronunciation modeling in LVCSR).

Running acoustic KWS on large databases is however very time-consuming, and even for a fast system
(say 0.01xRT), the response to a query on for example 30 hours of speech data could take ∼18 minutes,
which is unacceptable. Therefore we investigate approaches based on phoneme recognition and phoneme
lattices, which stand between LVCSR and purely acoustic approach.

The KWS is evaluated using Figure-of-Merit (FOM), which is the average of correct detections per
1,2,...10 false alarms per hour. We can approximately interpret it as the accuracy of KWS provided that
there are 5 false alarms per hour.

3.3 Data for tests

Attention was given to the definition of experimental data-sets for KWS on ICSI meeting corpus. Al-
though in reality, rare words (such as Bayes, minimization, etc) will be searched, in order to perform
statistical evaluations, we had to define a data-set with frequently occurring keywords (otherwise the
FOM metric becomes unreliable). Attention was paid to the definition of as-fair-as-possible division of
data into training/evaluation/test parts with non-overlapping speakers - it was actually necessary to
work on speaker turns rather than whole meetings, as they contain many overlapping speakers. We have
balanced the ratio of native/nonnative speakers, balanced the ratio of European/Asiatic speakers and
moved speakers with small portion of speech or keywords to the training set. The division is the following:

• training (41.3h)

• development (18.72h)

• test (17.2h)
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In the definition of keyword set, we have selected the most frequently occurring words but checked, that
the phonetic form of a keyword is not a subset of another word nor of word transition. The percentage
of such cases was evaluated for all candidates and words with high number of such cases were removed.
The final list consists of 17 keywords: actually, different, doing, first, interesting, little, meeting, people,
probably, problem, question, something, stuff, system, talking, those, using.

3.4 Acoustic-based KWS

In these tests, the acoustic models of keywords were created. The confidence of the keyword is computed
as a difference of 2 likelihoods: positive one from the last state of keyword-model and negative one from
background model (a phoneme-loop). The positive path is actually prepended with a phoneme-loop too,
to allow for natural ”starts” of keywords.

Two approaches were tested for the modeling:

• modeling by standard HMM-GMM models (marked by HMM-GMM in the table).

• estimation of phoneme posteriors by 3 neural nets, with split-context TRAP-based features at the
input (see the beginning of the next section) – marked by PHN-NN.

Table 25 summarizes the results in terms of FOM on the test set. ’log-post’ and ’new-post’ stand for two
different functions for pre-processing the posteriors at the output of the net before the Viterbi decoder,
’new-post’ is a function composed of 2 exponentials expanding both the regions around probabilities 0
and 1.

system FOM [%]

HMM-GMM, CI models, 10 hrs ICSI training 46.8
HMM-GMM, CD models, 10 hrs ICSI training 56.73
HMM-GMM, CD models, AMI-CTS, not adapted 56.01
PHN-NN, hidden layer 500, 10 hrs ICSI training, log-post 61.01
PHN-NN, hidden layer 500, 40 hrs ICSI training, log-post 61.44
PHN-NN, hidden layer 500, 10 hrs ICSI training, new-post 64.58

Table 25: Results in terms of FOM on the test set

3.5 Phoneme-lattice based KWS

This approach starts with reliable detection of phonemes. We are using TRAP-NN system with separate
modeling of left- and right-context TRAPs by 2 neural nets, with a subsequent merging by a third net.
This system [92] outperformed both CI-HMM and CD-HMM on TIMIT and ICSI, it’s performance while
trained on a subset of ICSI meeting corpus is 46.5% phoneme error rate.

Currently, these systems are being trained on bigger data-sets (full ICSI and AMI-CTS), the results
will be evaluated and used for KWS.

Phoneme lattices are generated by converting phoneme-posteriors into quasi-features and running
HTK decoder HVite. The parameters of lattice generation (branching factor and word-insertion penalty)
are tuned using evaluation of lower-bound phoneme error rate on lattices. We have found that for PER
46.5%, the lower-bound can reach ∼15%, however, at the price of huge lattices. The choice of optimal
parameters is currently in progress.

For the detection of keywords in lattices, we have developed a toolkit for keyword-spotting in phoneme
lattices using string-set-to-lattice matching. Poor FOM’s were obtained while running the KWS on
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lattices with small branching factors and word-insertion penalties set to the same values as in phoneme-
recognition (too many misses). We are investigating the following approaches to overcome this problem:

• taking into account multiple pronunciation variants of the keyword.

• ”fuzzification” of lattices using phoneme confusion matrices (taking into account possible errors
of the phoneme recognizer). Either the phonetic form of the keyword or the recognized phoneme
lattice can be ”fuzzified”.

• insertion and deletions of phonemes are handled.

• working with bigger lattices (size and parameters being optimized by lower-bound PER).

• Viterbi-style search of the keyword in phoneme lattice.

The goal in KWS based on phoneme lattices is to be able to quickly search these lattice for candidates
unseen by LVCSR, and re-score them using the acoustic approach.

3.6 Plans

Our goal in AMI is to come with a complete system for keyword spotting. We would like to combine
LVCSR- and acoustic/phoneme-lattice-based approaches in the following way:

• for words present in LVCSR dictionary: perform KWS by searching word-lattices at the output of
LVCSR, evaluate confidences of words.

• for OOV’s and in cases the keyword is de-favorized by the LM: spot similar words in the output of
LVCSR and process these places using phoneme-lattice/acoustic KWS.

• for acoustic segments with unknown word or phonetic transcription (spotting by example), use the
time boundaries of user-defined segment to select a ”fragment” in the phonetic lattice. Search this
”fragment of lattice” in the lattices of all meetings to determine similar acoustic segments.
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4 Person Segmentation, Clustering, and Identification

4.1 Objectives

Algorithms for face detection, face recognition, speaker recognition, person segmentation, and clustering
will be assembled and transferred to the common platform. Fusion of audio- and visual methods will be
carried out.

4.2 Person identification

TNO’s existing speaker recognition system was enhanced on several points, and TNO participated with
their system in the NIST 2004 Speaker Recognition Evaluation. Below is a description of the submitted
systems. Details about the evaluation can be found the the evaluation plan [67].

4.2.1 Introduction

The TNO speaker recognition system submission to NIST SRE 2004 consist of two basic techniques: one
based on Gaussian Mixture Model/Universal background model (GMM/UBM) and one based on Support
Vector Machines. We have concentrated on the single speaker conditions. Most of our development time
has been spent on the GMM/UBM system, for the required core test condition we have submitted
4 slightly different GMM/UBM systems. Our primary system is a per-test-condition fusion of all other
TNO systems submitted for that cell. We have performed unsupervised adaption only for the GMM/UBM
systems.

4.2.2 Speech activity detection and feature extraction

We have utilized a very basic speech activity detection. The total energy in each 16ms frame was
determined. Frames were labeled ‘speech’ if the energy was less than 30dB under the maximum of the
speech file. Specifically, no spectral weighting or time-adaptive detection criterion was applied. Initial
experiments with more elaborate speech detection schemes led to lower development test performance.

For feature extraction, we have used two forms of Perceptual Linear Prediction, one without (PLP)
and one with RASTA processing. We have also used Mel Frequency Cepstral Coefficients in one system.
In table 26 we’ve summarized the feature extraction for the non-fused systems.

PLP and RASTA extraction have the following parameters

• 32ms frame length

• 62.5Hz frame rate (16ms step)

• 12 PLP coefficients and log energy

• 13 ∆ coefficients calculated as linear regression over 7 consecutive frames.

MFCC extraction has slightly different set-up

• 32ms frame length

• 100 Hz frame rate (10ms step)

• 23 log-spaced filter bands, transformed into 18 cepstral coefficients

• 18 ∆ coefficients calculated as linear regression over 7 consecutive frames.

PLP and MFCC features were normalized using short-time based feature warping [73] (256 samples,
approximately 4 seconds) using and extremely inefficient but arguably elegantly simple GNU/Octave
implementation. RASTA features were normalized to zero mean unit variance over the whole (speech
active) file.
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# Features Technique UBM speech male/females relevance
1 PLP+∆, warp (26) GMM/UBM(512) NIST SRE 2001 74/100 16
2 PLP+∆, warp (26) GMM/UBM(1024) Swithboard 2 p2 324/256 4
3 MFCC+∆, warp (36) GMM/UBM(512) NIST SRE 2001 74/100 16
4 RASTA+∆ (26) GMM/UBM(512) NIST SRE 2001 74/100 16
5 PLP+∆, warp (26) SVM GLDS NIST SRE 2001 74/100 –

Table 26: Feature extraction and training parameters for the various systems

4.2.3 GMM/UBM systems

In table 26 we have also included the different UBM training conditions that for the different GMM
systems 1–4. For the GMM systems, diagonal covariance, gender-specific UBMs were computed using
either the training material of all NIST SRE 2001 evaluation speakers (74 male, 100 female; systems 1,
3, 4) or some of the Switchboard 2 phase 2 database (one conversation of 256 females, 324 males). The
Switchboard data was first echo-canceled using the ISIP echo canceler [1]. Based on these UBMs, speaker
and T-norm impostor models (using the NIST SRE 2001 evaluation training data) were computed using
maximum a posteriori (MAP) estimation, [86] adapting priors, means and variances. A relevance factor
of 16 was used, except for system 2 for which we used a more ‘aggressive’ value of 4. All systems use 512
mixtures, except for system 2 which used 1024 mixtures. We generally found little to no improvement in
development test performance by increasing the number of Gaussians. Gausians were initialized using k-
means clustering algorithm with 10 iteration steps, and re-estimated by 4 EM iterations of the Expectation
Maximization algorithm (system 2 used 5 iterations).

4.2.4 SVM system

The SVM system is based on the work from William Campbell. [16]. We adopted his Generalized Linear
Discrimination Sequence kernel (earlier coined Naive A-Posteriori Sequence kernel) method. Specifically,
we used the Nf = 26 feature-warped PLP+∆ coefficients that were used for systems 1 and 2, and
expanded them to a higher dimensional space by calculating all monomials up to order 3, leading to
∑3

i=n

(

Nf+n−1

n

)

= 3653 features per frame. A diagonal sums-of-squares matrix R was constructed from
these expanded features.

An SVM speaker model was trained by averaging all expanded features over time, and scaling the
average by the inverse square root of the R matrix diagonal elements corresponding to the individual
expanded feature dimension. These average expanded features were targeted the value ‘1’ in the SVM
training procedure. As ‘background’ speakers we used all NIST SRE 2001 gender-specific speakers,
where for each speaker the average expanded features were targeted −1. The matrix R was estimated
on all background and the one target speaker, but we have observed no performance degrade if only the
background speakers were used.

T-norm models were formed by taking the background speaker expanded feature training data, and
sequentially changing one target from −1 to 1 in order to obtain one impostor model. Thus, for the
‘1side-1side’ condition the male target speakers were trained with 74 examples −1 and one 1, while the
T-norm models were trained with 73 examples −1 and one 1. For training conditions with more than one
side we used one positive training example per side. We used IDIAP’s ‘SVMTorch’ implementation [18]
using the simple inner product as kernel, which led to relatively fast training and testing.

4.2.5 Unsupervised Adaptation

Unsupervised adaptation was only performed for GMM systems. We used a method introduced by Claude
Barras [9], where we adapt a speaker model using a test fragment where the T-normalized test score is
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bigger than a fixed threshold. We used a fixed threshold of 3, which is close to the minimum Decision
Cost Function threshold setting. We adapted only means, using a relevance factor 1.5 times the one used
for producing the original speaker model. For the test runs with adaptation, we used the adapted model
for decisions on the next test segment. T-norm or UBM models were not changed.

We have tried several methods for unsupervised adaptation of the SVM system. The first attempt used
a test fragment with sufficiently high score as an additional positive target example, and then retraining
a new SVM speaker model. A second attempt averaged the expanded features of a test segment with the
original training data, with several mixing strategies. However, none of these attempts led to improvement
during the development testing.

4.2.6 Two speaker conditions

We have submitted a 2-speaker test condition for two 1-speaker training conditions (1side and 16sides).
We used a method described as ‘internal segmentation’ in [28] for separating the potential target speaker
from the other speaker in the test segments. First, the log-likelihood-ratio for each from in the test
segment was determined. This time sequence was smoothed by convolution with a 100-point (1.6 second)
boxcar filter. Then, the frame scores above the 80% percentile of the distribution were selected as detected
regions. The detection time sequence was further filtered using a 101 point median filter. The smoothed
log-likelihood-ratios were averaged over frames indicated by the smoothed detector. This average was
used as mean log likelihood score for further detection processing.

4.2.7 Detection decision

Detection decisions were based on NIST SRE 2001 development test data. Specifically, each submitted
system had separate detection thresholds for male and female speakers, and for not-adapted and unsuper-
vised adapted systems. All threshold lie in the range 2.6–3, however, based one zero mean unit standard
deviation T-normalization using impostor model scores.

4.2.8 Implementation

All processing was carried out on GNU/Linux systems, mostly 2.8GHz Intel Xeon processors. The main
training and recognition tools were scripted in GNU/Octave, combined with bash, Perl and GNU/R
scripts. SVM training and classification was carried out using compiled C++ code of the SVMTorch
distribution. Feature extraction was performed using the plp tool from SoftSound’s Abbot, the rasta

tool from ICSI’s SPRACHcore distribution, and wave2mfcc from CMU’s CMUseg package.
The NIST evaluation recognition scripts processed the NDX files in the given order. Adaptation

was included in the main run, thus benefitting from T-norm calculations necessary for the non-adapted
test. T-norm statistics were gathered in memory during the evaluation run, while the index of maximum
UBM posterior probabilities per frame for each test segment were saved temporarily in files during the
evaluation run.

4.2.9 Results

In figure 2 the DET curves for the TNO systems are plotted.

4.3 Speaker segmentation and identification

We’ve been working on software that reads data from a flock of birds. This software is able to collect from
four devices simultaneous frame samples at a rate of 50 Hz. The obtained head orientations are combined
with speaker information obtained from manual transcriptions. Speaker overlap and silence is omitted.
On this data we’ve performed some initial research dealing with average speaker turn length’s, average
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Figure 2: Detection Error Trade-off curves for the various TNO systems in the 1side-1side consition.
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orientation when speaking and listening and more of this limited domain exploration. Recently we’ve
setup a distributed experiment environment resulting in a system where we can conduct experiments at
remote sites with one server sending out and collecting the samples. With this environment we intend to
ask persons to evaluate the samples judging who is the current speaker. These results can be compared
with machine learning algorithms on the same data.

• First results show that when given feedback people perform better over the meetings where feedback
is or was given, if a new meeting is presented the performance seems to drop below the results from
people who never received any feedback.

• It appears that in the middle of a speakerturn humans judge best in deriving the speaker from the
head orientations alone.

4.4 Object labeling

An identification of type and person has to be evaluated for every detected object. This process is called
object labeling. Resulting object type can be head or face and hand. Product of person identification
is an assignment of selected object to relevant meeting participant. Object labeling has to be consistent
during whole meeting independently on an activity of the participants. If each camera is evaluated
separately a simple algorithm can be used to the object labeling. Known and unchangeable information
about position of participant at the beginning of meeting uses this algorithm. Tracked image is divided
into two same size parts with vertical line. On each side is sitting one participant and all objects belong
to him. Than is supposed that the highest object is head of the participant. We can use the template
matching for an improvement of this algorithm because it is possible to test if given object is really head
of participant. Than two remaining lower objects are the hands. However this algorithm does not always
work. For example if one participant leaves its place and walks through meeting room the identification
of its objects can be lost. Other problems can occur if two identified objects are merged together or one
already identified object is divided into two separate objects. In general labeling of objects has to be
evaluated for all new detected objects and for all transformed objects, which are already identified.

4.4.1 Simultaneously evaluation of all cameras

More reliable solution of the object labeling is evaluation of all cameras simultaneously. A lot of additional
information about a meeting room setup and participants can help during this computation. We use
algorithm that is based on an elimination of impossible identification. At the beginning of meeting is
evaluated labeling according to seat positions of participants using simple algorithm. A set of possible
unused identifications in given time is evaluated for all unlabeled objects detected during the meeting.
This set contains heads and hands, which are not assigned according to already identified objects on all
cameras and possible number of participants. However other conditions given by meeting room setup
have to be granted. For example it is clear that if one object on first camera is labeled as head of person
B no object on second camera can be assigned to this person. Similar rules can be designed for relation
between objects on first and third cameras or second and third camera. One of them for example says
that if person is located on the left side of first camera it is impossible for this person to be on third
camera at the same time. However if participant is located on the right side of first camera it can be
assumed that unlabeled object on the left side of third camera belongs to the same participant. Some
relations between objects on different cameras.

Set of possible identifications can be eliminated by other rules. There can be used known properties
of human body as maximum distance between hands or head and hands of one person and also tem-
plate matching can be used to discover if object contains face region. Resulting object identification
is determined from eliminated set. If evaluated set contains only one member object is labeled by its
identification. In other case when set contains more members with the same identification of participant
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Figure 3: Looking direction

labeling can be also easy done. If the set contains several identifications with different person assignment
other rules for detection of merged or divided objects and finding of lost objects can be applied. But it is
possible that using of all possible rules for set elimination does not help and set of possible identification
is still to big or empty and labeling cannot be completed. In fact used algorithm works in this way. The
sets of possible identification are computed for unlabeled objects in given frame and eliminating rules
are applied. If at least one object is successfully labeled and other object remain unlabeled in this step
process of evaluation and elimination is repeated. This is done for all frames of the meeting from its
beginning to the end.

4.4.2 Results

Function of described algorithms used to skin color object detection and its labeling was verified on video
meeting corpus recorded in IDIAP. Some results obtained from several meeting are shown in table 27.
Average number of objects with skin color occurred on all cameras during the meetings, number of
detected objects and number of correctly labeled objects is shown.
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Skin color objects 73155
Detected objects 66578
Detection effectivity [%] 91.0
Correctly labeled object 63587
Labeling effectivity [%] 68.9

Table 27: Experimental results
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5 Emotion Recognition

5.1 Objectives

Systems for automatic emotion recognition, based on audio, video, and combined methods will be devel-
oped. Existing methods will be ported to the AMI domain and evaluated.

5.2 Introduction

The emotion subgroup of AMI-WP4 is concerned with the recognition of emotions or emotional content
in meetings. For the development of emotion recognition tools, the annotation or labeling of emotional
content in the AMI meeting data is of significant importance. This document will provide an overview
of the specific conditions that emotion recognition in AMI is faced with as well as a discussion of various
approaches to describe emotions by means of annotation of data and evaluation of recognition systems.
Since the creation of AMI relevant data was not finished until the compilation of this document, recog-
nition algorithms were developed and evaluated on various existing databases at the different partners.
However, considerable progress has been made in robustness of methods based on speech and face analysis
during the first period of AMI. The corresponding algorithms are introduced in section 5.5.

5.3 Emotion recognition in meeting scenarios

5.3.1 Hardware conditions

The AMI data corpus, comprises the recordings of 100 hours of meetings in specially configured meeting
rooms. These so called Smart Meeting Rooms are equipped with wide-angle cameras to assure that
each participant is captured by at least one of them. Furthermore close-up cameras are installed on the
meeting table angled ahead of each person. Several audio streams can be recorded from lapel-micros and
microphone arrays in the middle of the table.

Due to the hardware set-up mentioned, multimodal emotion recognition in AMI is limited to audio-
visual modalities, i.e. mainly Speech Emotion Recognition, Facial Expression Recognition, and Ges-
ture/Pose Recognition. The Speech Emotion Recognition can rely on high quality audio-recordings from
lapel microphones of each participant. Disturbances by noises like moving chairs, clicking biros, or typing
on keyboards are expected to have only minor impact. Also the cocktail-party effect of several persons
speaking at the same time is assumed to be minimized by the application of lapel-micros.

On the other hand the conditions for automatic Facial Expression Recognition are more challenging. In
the video streams, derived from the wide-angle cameras, faces are captured from an inadequate direction
regarding the predominating orientation of the frontal plane of participant’s faces. Furthermore the
resolution is insufficient for applying relevant algorithms. Due to possibly frequent and extensive upper-
body movements and wide head turns, the close-up cameras also provide challenging data. Though,
the problems with large variation in scaling and rotation can be minimized by application of robust
face localization and gaze tracking algorithms to take advantage of the high resolution captures of facial
details.

5.3.2 The psychological point of view

Apart from raw hardware limitations in this real-world application of meeting scenarios, the psychological
aspects turn the task of emotion recognition into an even more challenging light. Especially the limited
number of participants usually unknown to each other and the formal atmosphere of common meetings
have an significant impact on the behavior and therefore on the expression of emotions. Since participants
finding themselves in a kind of exposed situation tend to suppress their affects or hide them behind acted
emotions. Therefore most attendents’ expressions of feelings can be expected to contain only colors
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of emotional states or be acted even, which must be kept in mind by aiming at a set of emotions to
be distinguished and the final evaluation results of recognizers compared to works based on different
naturalistic data.

5.3.3 Dependencies on preceding recognition systems

Multimodal emotion recognition in AMI makes use of mainly three different information sources:

1. Prosodic properties of speech

2. Linguistic content of speech

3. Facial expressions

Tapping these sources requires results of preceding annotations or recognizers respectively:

• Speaker recognition: In order to establish user dependent models during a meeting information
about the source in terms of the person speaking is necessary.

• Speech recognition: Basis of emotion recognition from the linguistic content are naturally the spoken
words, transcribed by speech recognizers/annotators. Furthermore the temporal information is
crucial to reliably detect tunes of speech by the length of pauses.

• Face localization and gaze recognition: Since algorithms for facial expression recognition have to be
adapted on scaling, rotation and the direction of gaze these instances are to provide the essential
information. Again the identity of the captured person is crucial to instantly adapt models hereby.

5.4 Adequate description of emotions in AMI

5.4.1 Discrete labels vs. continous dimensions

There is no general agreement on how to annotate or label emotional content in a natural database. A
number of emotion annotation or labelling schemes have been proposed in the literature. Acted material
can usually adequately be described using discrete category labels. Also for other kinds of material the
categorical approach has been applied. Theorists in the discrete emotion theory tradition propose the
existence of a small number of “basic” emotions, six for example [20], or seven [30]: anger, disgust, fear,
joy, neutrality, sadness, surprise. However, given the gradations and subtlety of emotions occuring in
natural data, the labelling of emotion using category labels is not straightforward and may result in
emotional content being left unlabelled or labelled statistically unreliably [23, 38].

Instead of using discrete labels, the use of abstract dimensions is proposed. In the dimensional
tradition, different emotional states are mapped in a two or sometimes three-dimensional space. The two-
dimensional approach consists of a valence/evaluation dimension (positive/negative, pleasant/unpleasant,
agreeable/disagreeable) and an activation/arousel dimension (active/passive) [93, 23, 21]. If used, a third
dimension represents control or power.

5.4.2 Emotion annotation using FEELTRACE

At the Martigny workshop, the dimensional approach was demonstrated by Roddy Cowie from Belfast
University. He suggested to use both the dimensional FEELTRACE annotation tool [21] and a set of cate-
gory labels specifically chosen with respect to the (emotional content in the) AMI data set. Four members
of the emotion subgroup attended the HUMAINE emotion summer-school in Belfast in September 2004.
At the summer-school, among others some hands-on experience with the dimensional FEELTRACE tool
was obtained. The AMI annotation ’problem’ was discussed with HUMAINE emotion researchers.
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Table 28: The 26 Emotions percieved in meetings

at ease
bored
joking
annoyed
nervous
satisfied

frustrated
amused
relaxed
interested
cheerful
uninterested
disappointed

agreeable
contemplative
encouraging
sceptical
friendly
attentive
confused

confident
decisive
impatient
concerned
serious
curious

After the HUMAINE summer-school, it was decided to use FEELTRACE as a baseline tool for
emotion annotation in AMI and to setup a number of annotation trials to find out its appropriateness in
the context of AMI. A survey was conducted to find FEELTRACE landmarks suitable for meetings (see
next section). The following questions are asked in the first trial:

1. Dimensional approach: Is the ’dimensional annotation approach’ suitable given the targets within
AMI? Is there consistency in labeling (inter-annotator agreement)?

2. Categorical labeling: How does the additional categorical labeling task work out? Is the provided
list of labels suitable?

3. Emotional content: What does a first exploration of emotional content in real AMI data tell us?
What do annotators think?

4. FEELTRACE : What are the experiences of annotators using the FEELTRACE tool in the context
of AMI data? Do they have suggestions for improvements?

5. Annotation manual: Are the instructions and training that are given to the annotators without any
prior knowledge on emotion annotation sufficient (validation of annotation manual)?

6. Landmarks: Is there a noticable effect of using/not using landmarks on inter-annotator agreement?

7. Technical details: Are there any technical issues?

The first trial is planned to take place in December 2004 and Januari 2005 and uses the AMI pilot
recordings.

5.4.3 Landmark survey

A user study was conducted to determine meetings specific emotion labels. A survey listing 243 terms
describing emotions was compiled from the lists at the Queens University in Belfast, the University of
Geneva and a few other sources. It requested each participant to select twenty emotions that they most
frequently perceived in their meetings. It was completed by 37 participants from various companies
and with various job descriptions, including lecturers, researchers, managers, secretaries and students.
The 243 emotional labels were clustered by meaning into groups. The most frequently chosen one or
two labels were shortlisted from each group. Taking some labels from each group ensures that there is
sufficent coverage of the emotion space. Table 28 lists the 26 shortlisted emotions.

Studies on purely continuous dimensions have been performed by [21] using a tool called FEELTRACE
(see figure 4). They show that individuals draw unequal semantic interpretation of specific areas within
the emotion space. Such shortcomings are partly overcome when the tool is “landmarked” by category
labels. That is, a small set of sample emotions are marked on the FEELTRACE tool at their most
appropriate positions. Their tests indicated that landmarks result in greater inter-annotator agreement.
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A second survey was conducted to determine where each of the shortlisted labels should appear on
FEELTRACE . The survey first presented participants with the five labels: anger, irritation, sadness,
happiness and contentment. These were presented so that participants unfamiliar with FEELTRACE
would have minimal experience in its use. Then the emotions listed in table 28, were presented twice:
the first to allow the participant to gain additional training and the second to collect data.

Data was collected from 33 participants. Eleven landmarks were eventually selected by analysing the
data collected from both surveys taking into consideration the number of landmarks that would be useful
to an annotator. Too many landmarks leads to a cluttered tool and a risk of annotators doing categorical
labelling while the full benefit of landmarks is not exploited when there are too few. The FEELTRACE
tool with the meeting specific landmark labels is shown in figure 4.
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Figure 4: Proposed FEELTRACE landmarks

5.5 Algorithms for emotion recognition

5.5.1 Speech emotion recognition

Overview During the first year of AMI existing algorithms have been enhanced and ined to be prepared
for the work on real AMI meeting data. In speech emotion recognition approaches towards a discriminative
combination of acoustic features and language information for a robust automatic recognition of speakers’
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affects were investigated. Throughout the work seven discrete emotional states are distinguished. Firstly
we describe a model for the recognition of emotion by the acoustic properties. The derived features of
the signal-, pitch-, energy-, and spectral contours are ranked via a sequential forward floating search,
based on a nearest-mean classification as wrapper. Secondly an approach to emotion recognition by
the spoken content is introduced applying Bayesian Network based spotting for emotional key-phrases.
Finally the two information sources will be integrated in a soft decision fusion by using a Neural Net. The
achieved gain will be evaluated and compared to common methods. Two emotional speech corpora used
for training and evaluation are described in detail and the results achieved are discussed with respect to
their considerable advance in automatic affect recognition.

Introduction Most of the advances to speech emotion recognition rely on acoustic characteristics
of an emotional spoken utterance. However, in recent approaches more emphasis is also put on the
spoken content itself [6], and the most reasonable advance seems to be the discriminative integration
of acoustic and linguistic information. In the work presented we therefore strive to combine these two
information sources in a most robust way. Firstly we aim to show an optimal acoustic feature set and
classification method in a comparison, respecting high performance and speaker independence. Secondly
we concentrate on the language information. While in other works the probability of an emotion is
estimated by conditional probabilities of single words in an utterance we introduce an emotional phrase
spotting algorithm based on Bayesian Networks. The idea behind this effort is to include the context of
a whole utterance as negations of feelings and allow for a speaker’s indication of the emotional extent.
Consider on this the exemplary phrase: “I do not feel too good at all”. The keyword good is neglected and
furthermore too alludes the actual extent. After this discussion of acoustic and language based emotion
recognition a novel approach to the fusion of these shall be presented. While the combination has yet
been accomplished mostly in a late semantic fusion manner, we introduce a soft decision fusion saving
available information for the final decision process. As still no unity about a general classification scheme
for emotions in technical applications exists, and the use of discrete emotional user states is far spread
among researchers in the field of automatic affect recognition, we consider the emotional states named
in the MPEG4 standard here: anger, joy, disgust, fear, sadness, and surprise. This set is supplemented
by a neutral state for a dissociation from a non-emotional state. In view of international comparability
[32][39] we decided upon this set of seven emotions in our work. The estimation of an emotion shall
respect a whole spoken utterance.

Emotional Speech Corpus The emotional speech corpus EMO-CAR has been collected in the frame-
work of an internal project on integration of emotion in automotive user interfaces. A dynamic microphone
was used in an acoustically isolated room to record the emotional utterances. German and English sen-
tences of 13 speakers, twelve male, one female, were assembled. A first corpus consists of 2828 acted
emotional samples used for the training and evaluation in the prosodic and linguistic analysis. The
samples were recorded over a period of one year to avoid anticipation effects of the actors. While these
acted emotions tend to form a reasonable basis for a first impression of the obtainable performance,
the use of spontaneous emotions seems to offer more realistic results, especially in view of the spoken
content. A second set consists of 700 selected utterances in automotive infotainment speech interaction
dialogs recorded for the evaluation of the fusion. In the project disgust and sadness were of minor interest.
Therefore these have been provoked in additional usability test-setups to ensure equal distribution among
the emotions in the data set. To obtain a basis for comparison the speakers had to reclassify their own
samples in a random order at the end of the test series. Table 29 shows their average performance. A
rather marginal overall standard deviation among the human classifiers of 2.11% was observed. Thereby
ang abbreviates anger, dis disgust, fea fear, neu neutral, sad sadness, and sur surprise.

Initially the raw contours of pitch and energy are calculated as they rely rather on broad classes of
sounds. Spectral characteristics in general are known as dependent on phonemes, thus on the phonetic
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Emotion ang dis fea joy neu sad sur
Error, % 8.0 19.7 18.7 14.7 16.5 23.7 12.5

Table 29: Error rate at human reclassification, mean 16.3%

content of an utterance. Therefore, as the only spectral information, spectral energy below 250Hz and
650Hz is used. 20ms frames of the speech signal are analyzed every 10ms using a Hamming window
function. The values of energy resemble the logarithmic mean energy within a frame. The pitch contour
is computed by the Average Magnitude Difference Function (AMDF), which proves robust against noise
but susceptible to dominant formants. A low-pass filtering, applying a symmetrical moving average
filter of the filter-width of three, smooths the raw contours prior to the statistical analysis. In a next
step higher level features are derived out of the contours, freed of their mean value and normalized to
their standard deviation. As the optimal set of global static features is broadly discussed [33][39], we
considered an initially large set of more than 200 features. Subsequently the emotional relevance of the
features has been investigated via Sequential Forward Floating Search (SFFS) with a three-fold stratified
cross-validation. Due to computational efforts, a linear nearest-mean classifier was used as wrapper.
Evaluations showed that under the given amount of training data a final 33 dimensional feature-vector
produced the best results.

Classification of acoustic features Various different methods have been taken into consideration for
the classification on the acoustic layer. In a test-series the classifiers listed in Table 30 have been tested
applying the large speech corpus. Two thirds have each been used for training, one third for testing
in three cycles, i.e. three-fold cross validation. A speaker dependent (S DEP) training with only one
speaker, and speaker independent (S IND) evaluation were considered. The mean error rates are shown
in Table 30. Standard deviations reached from 0.01% to 0.03%.

Classifier S IND S DEP
Error, % Error, %

kMeans 57.05 27.38
kNN 30.41 17.39
GMM 25.17 10.88
MLP 26.85 9.36
SVM 23.88 7.05

ML-SVM 18.71 9.05

Table 30: Comparison of the acoustic feature classifications

The table shows a predominance of Support Vector Machines (SVM). In the field of pattern recognition
a great interest in SVMs can be observed recently. They tend to show a high generalization capability due
to their structural risk minimization oriented training. Non-linear problems are solved by a transformation
of the input feature vectors into a generally higher dimensional feature space by a mapping function
where linear separation is possible. Maximum discrimination is obtained by an optimal placement of
the separation plane between the border of two classes. The plane is spanned by the support vectors
leading to a reduction of references. A number of approaches to solve multi-class problems exists. In this
evaluation we show two different solutions. Once each class is trained in its own SVM against all other
classes, and the decision is made for the class with the highest distance to the other classes. In a second
advance Multi-Layer SVMs (ML-SVM) are introduced. Figure 5 shows the principle.

A layer-wise two class decision is repetitively made until only one class remains. The clustering of
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Figure 5: Optimal alignment of emotion classes using Multi-Layer-SVMs

the emotions and alignment on the layers significantly influences recognition performance. As a rule
throughout the evaluation we found that hardly separable classes should be divided at last. This can
either be modeled by expert knowledge or automatically extracted from the confusion matrices of the
previously introduced SVM approach. A radial basis kernel as mapping function showed the best results.
One disadvantage however is, that this method does not provide confidences for each class. This variant
is therefore not used in the fusion.

Semantic analysis of speech In general only a small amount of utterances will consist of emotional
content. Even if an utterance carries information about the current emotion of the speaker, this infor-
mation will in most cases be only in fragments of the complete utterance. Therefore a spotting, based on
searching for emotional keywords or phrases in natural language, seems a must. Once the emotionally
relevant parts are identified, a probabilistic assignment to the corresponding affects has to take place to
allow for the consideration of ambiguities in the emotional connotation of words and phrases. There-
fore we chose Bayesian or Belief Networks as mathematical background for the modeling. All affects
are modeled together within a single network converging from the word-level to seven root nodes, each
representing an emotional state. Every relevant content observed within an utterance causes a true recog-
nition probability in each root node, which is crucial for a discriminative fusion with the results from the
acoustic analysis.

As basis for the analysis of the spoken content we apply a standard Hidden-Markov-Model based auto-
matic speech recognition (ASR) engine without language model. Since affect recognition from semantics
presumes natural language we designed the ASR-unit omitting a language model, but with a provision
of n-best phrase hypotheses including single word confidences. An optimal performance of the entire
semantic analysis system has been observed at n equals 5, i.e. the 5-best ASR-recognition hypotheses are
processed separately. Let hi be the 7-dim. vector of calculated affect probabilities caused by hypothesis
i, for 1 < i < 5. Our investigations showed, that the vector hi showing the overall maximum entry should
be marked as recognition result for the post-processing.

The spotting is performed with respect to the words contained in the bottom layer of the semantic
model (Figure 6). In case that a word of the model is observed within an automatically transcribed utter-
ance, the knowledge of uncertainty in the form of the ASR-recognition probability pw can be transfered
as soft-evidence Pw into the bottom-level nodes of the Bayesian Network. However, for normalization
reasons a linear function performs adequate scaling and offset correction: Pw = flin(pw).

Within this deliverable we intend to provide only a brief insight in the theory of Bayesian Networks,

40



Figure 6: Overview of the interpretation model for emotions

which enjoy growing popularity in various scientific tasks. Each network consists of a set of nodes related
to state variables Xi, representing a finite set of states. The nodes are connected by directed edges
expressing quantitatively the conditional probabilities of nodes and their parent nodes. A complete
representation of the network structure and conditional probabilities is provided by the joint probability
distribution. Let N denote the total of random variables, and the distribution can be calculated as:

P (X1, ..., XN ) =

N
∏

i=1

P (Xi|parents(Xi))

Methods of interfering the states of some query variables based on observations regarding evidence
variables are provided by the network. Similar to a standard approach to natural speech interpretation,
the aim is to find the emotion hypothesis that maximizes the posterior probability of the word sequence
given the acoustic observation. The root probabilities of the net are equally distributed in the initialization
phase and resemble the priors of each emotion. On the other hand on the bottom layer the quantitative
contribution P (ej |w) of any word w to the belief in an emotion ej is calculated in a training phase by its
frequency of occurrence under the observation of the affect on basis of the hand-labeled large emotional
speech corpus. In four levels a clustering from words to super-words, phrases, super-phrases, and finally
affects takes place as can be seen in Figure 6.

As mentioned, the inference calculus, based on the known Bayes’ Rule performs the propagation of
evidences at the word nodes up to the root nodes. Since this calculus is commutative, which means
that the order of occurrence of evidences has no influence on the obtained results, a modification is
needed to allow for the handling of word sequences during the clustering from the super-word level to
the phrase level. Therefore we propose a further definition: The spatial arrangement of nodes within a
layer corresponds to the order of expected evidence derived from the modeled sequence. The algorithm
provokes a dependency of the strength of a evidence to the order of appearance. Thus this modification
takes care that the observing of the exemplary simple phrase not...good will cause strong evidence within
the corresponding phrase model, while good...not would not be considered.

The proposed method has previously been developed for the natural language controlling of an auto-
motive infotainment system. Within this task it proved its remarkable robustness to speech recognition
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errors and natural out-of-vocabulary commands. At affect recognition, based on the proposed emotion
set of seven, a error rate of 40.4% could be achieved, while a hit presumed that the correct emotion was
unambiguously detected with the maximum probability. Thereby 12% of the utterances of the hand-
labeled corpus EMO-CAR did not contain emotional connotated phrases or words. As the section 5.5.1
will show, the proposed semantic interpretation algorithm provides valuable information to enhance the
performance and robustness of the whole system significantly.

Discriminative integration of acoustic and semantic analysis In this chapter we aim to fuse the
acoustic and linguistic information obtained. In other works the fusion is suggested as a late semantic
logical OR combiner [57]. Since we strive to integrate information of more than two classes, a first
approach might be to consider a couple-wise mean score for each emotion based on the acoustic and
language information score followed by a maximum likelihood decision. As an advantage soft scores of
both aspects are used in the computation prior to the final decision. However, this rather simple fusion
neglects the fact that for each emotion the prior confidences in acoustical and language-based estimations
differ. Furthermore a discriminative approach helps to integrate the knowledge of all accessible emotion
confidences in one decision process. We therefore suggest the use of a Muli-Layer-Perceptron (MLP)
for the fusion. The 14 dimensional input feature vector consists of the seven confidences of each, the
acoustic, and linguistic analysis. Seven output neurons provide the final emotion probabilities by a
softmax function. A use of 100 hidden-layer neurons showed the maximum performance. The MLP was
trained on a second data set disjunctive of the initial training sets. For the evaluation of the combination a
third data set was used. Table 31 shows results achieved using the EMO-CAR dialog corpus and optimal
configurations. Thereby 12% of the utterances contained only acoustic information of the underlying
emotion.

Model Acoustic Language Fusion Fusion
Information Information by means by MLP

Error, % 25.8 40.4 16.9 8.0

Table 31: Performance gain means-based and MLP fusion

Summary Research activities on automatic speech emotion recognition made great progress during the
first year of AMI. Especially a novel approach on the combination of acoustic and linguistic information
as a solid model was introduced and a significant gain was achieved reducing error rates up to 8.0%. In
the emotion estimation by acoustic information a set of features ranked via Sequential Forward Floating
Search was specified. The use of SVMs predominated in robustness on this layer. Additionally a novel
approach to linguistic information interpretation in view of a speaker’s emotion using Bayesian Network
based phrase-spotting with modifications for handling sequences of words could be shown. Finally the
results of these analyzes were integrated in a reasonable and discriminative MLP soft decision fusion and
lead to a significant improvement in overall performance.
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6 Localization and Tracking

6.1 Objectives

Available audio-visual localization and tracking algorithms will be ported and combined to multimodal
tracking procedures, combining e.g., motion features and acoustic sources obtained from microphone
arrays.

6.2 Data annotation

A spoke audio-visual corpus for the localization and tracking tasks, called AV16.3 was collected in the
IDIAP meeting room [55]. 16.3 stands for 16 microphones and 3 cameras, recorded in a fully synchronized
manner. The central idea was to use calibrated cameras to provide continuous 3-dimensional speaker
location annotation for testing audio localization and tracking algorithms. Particular attention was
given to overlapped speech, i.e. when several speakers are simultaneously speaking. Overlap is indeed an
important issue in multi-party spontaneous speech, as found in meetings. We defined and recorded a series
of scenarios so as to cover a variety of research areas, namely audio, video and audio-visual localization
and tracking of people in a meeting room. In order to allow for such a broad range of research topics, we
included a large variety of situations, from “meeting situations” where speakers are seated most of the
time, to “motion situations” where speakers are moving most of the time. This departs from existing,
related databases. The goal was to provide annotation both in terms of “true” 3-D speaker location in
the microphone arrays’ referent, and “true” 3-D head/face location in the image plane of each camera.
Such annotation permits systematic evaluation of localization and tracking algorithms. To the best of
our knowledge, there is no such audio-visual database publicly available.

While investigating for existing solutions for speaker location annotation, we found various solutions
with devices to be worn by each person and a base device that locates each personal device. However,
these solutions were either very costly and extremely performant (high precision and sampling rate,
no tether between the base and the personal devices), or cheap but with poor precision and/or high
constraints (e.g. personal devices tethered to the base). We therefore opted for using calibrated cameras
for reconstructing 3-D speaker location.

The annotation requirements, scheme, tool, and procedure have been put in place. The definition
of the specific annotation format for exchange among participants, and the annotation process are in
progress.

6.3 An Architecture for Dedicated Real-Time Tracker Development and
Management

6.3.1 Introduction

The work that TNO has done in this area gives a generic approach for thinking about and implementing
visual object tracking systems. A concrete architecture is proposed that reflects this generic approach.
Part of the work was testing this architecture for various tracking applications and to obtain hands-on
experience with this architecture.

6.3.2 Applications

Within the AMI project, tracking systems can be applied in a few distinct cases and to various levels of
integration. Overview cameras give the possibility to localize persons within the whole meeting room.
Distinctions can be made for people entering and leaving the room, and for people moving to, from and
at the presentation place. Additionally, persons, and parts of persons such as torsos, heads and hands
can be localized through the close-up cameras. This application borders to gesture recognition, which
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is described in section 7. These applications could also be combined to refine the localization result, by
combining the input from all cameras (close-up and overview) to give an even better localization effort.
The proposed architecture has a focus on performance. This enabled us to add features:

• Results are available immediately after the meeting.

• It allows for event detection during meetings.

• It becomes possible to control cameras directly and respond to events, e.g. zoom-in on details.

6.3.3 Terminology and Separation

When discussing and developing (near) real-time systems that track objects in video it is important
to have clearly defined terms for various aspects of such a system. A clear distinction between various
components and modules helps in coordinating the system resources. It is also essential for efficient re-use
of these components and modules. Such terms are proposed here and used in the following paragraphs:

• The first term is ”Scene”. This refers to a portion of the real world that is observed through sensors
such as cameras.

• The next term is ”Object”. This refers to a real-world object, such as a specific person, a chair,
laptop or perhaps a fixed object, such as a wall, presentation screen or table.

• An ”Image of an object” is the projection of the object through a sensor such as a camera. This
image is probably different for each new frame coming from a camera.

• And finally a ”Template” of an object is an internal representation of the object that a system uses
to find the image of the object in new frames.

These terms describe various ways to look at data and the ways pieces of data relate to each other. More
terms can be defined that describe the life cycle and activities of a small piece of the system that tries
to follow one object or image through the various video frames. This piece is referred to as a ”Tracker”.
Two types of trackers are defined: ”Object Trackers” and ”Template Trackers”. An object tracker tracks
objects through scenes or images. A template tracker tracks templates through images. This separation
is especially helpful when using multiple cameras on one scene, or when multiple pieces of one object
-such as hands, arms, legs, head and torso for humans- are tracked separately and must be combined
with special logic to form a complete object.

The life cycle of a tracker starts with the decision to start a new tracker. A ”Tracker Factory” makes
this decision. This decision can depend on human input, motion detection on the video frames or input
from other sensors. After an initialisation phase for a tracker, the tracker is said to be ”Alive”. During
the life of a tracker it builds up a ”Track” of the template or object that it is following. This track is
typically stored in a series of coordinates and sizes. One could argue that shape should also be stored.
Not all tracking systems have to be able to handle occlusions, so these are not part of the collection of
most generic terms. Support for occlusion handling is however provided on more specific levels of the
proposed architecture. It is time to end the lifetime of a tracker when this tracker has decided that it has
”Lost” the image or object that it was following. The tracker becomes a ”Dead” tracker. It is important
to not just remove all data about this tracker when it becomes a dead tracker, since the very fact that
it lost it’s object or image could be very important to the application at hand. It was found that these
terms could be applied to all tracking systems that we worked on. It was very helpful in the design
process of such systems to keep a distinct separation between applications of the terms.
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6.3.4 Architecture

The proposed architecture implements the distinctions described in the previous paragraphs. An imple-
mentation was made in C++ that relies on the object oriented inheritance model to define the various
modules and to extend functionality of modules when needed for specific paradigms or applications. To
test this architecture an implementation was made on MS DirectShow. As described in Figure 7 the
General Tracking Architecture can be split in two parts. The Basic Tracking Library implements the
terminology described above. It provides only in the most basic functionality. The Functional Track-
ing Library implements all sorts of helpful or more specific additions, like occlusion handling, template
resizing, coordinate system transformations, motion detection, etc.

Figure 7: General Tracking Architecture

By using this architecture we were able to quickly implement and test features like:

• Merging of template tracks based on their history.

• Handling of occlusion on tracker level and above tracker level.

• Using different coordinate systems than the flat image coordinate system.

• Coordinating different types of trackers in one run.

An example Object-Oriented model for a small collection of tracker factories is described in Figure 8.
In this figure the split between the collection of motion-triggered tracker creators and a tracker creator
that uses custom parameters, like human input, to create a new tracker. For the class of motion triggered
tracker factories, there also exists a factory that creates salient point trackers.

Future work on this architecture includes:

• Handling of multiple camera inputs of one scene

• Implementation on other video decoding platforms (i.e. Gstreamer)

• Testing the architecture and extending it’s supporting features by trying to implement different
types of trackers.
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Figure 8: Example object-oriented model

6.4 Visual Localization and Tracking

6.4.1 ICondensation based visual Tracking

Localizing and tracking people is a very relevant task for smart meeting room applications, but is on
the other hand quite challenging. Our module basically uses one of the characteristic properties of the
head - the elliptical structure - to derive the position of any human in the meeting room. This technique
enables tracking of not only frontal faces - as much of the other state-of-the-art approaches do -, but also
of profile or even back views of a person. The architecture of our idea is mainly based on a stochastic
particle filtering framework called ICondensation [40, 41], which provides a number of hypotheses for
the position of a person.

Single Person Tracking At the beginning of the tracking procedure, particles will be initialized on
skin colored regions. For finding areas with skin colored information, the RGB values are transformed
into the rg-chroma space. In this plane skin color can be described by a Gaussian Mixture Model and
thus a probability for each pixel to be skin colored can be computed by

p(skin) ∝ exp[−
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Thus a binary mask like the one depicted in Fig. 9 will be created, where each pixel with p(skin) below

(a) (b)

Figure 9: Binary mask representing only skin-colored areas in the original image

a certain threshold is set to zero and otherwise to one, i.e. blobs will be indicating skin colored areas
by white regions. After that particles - also called hypotheses - are generated containing the parameters
(position, length of the major axis, ratio major to minor axis, angle) of an ellipse which best fits one of
the skin colored areas. The basic principle of the following procedure is depicted in Figure 10. From the
initial particle set a certain number of samples is randomly drawn respective to its weight (probability
for occurrence) in the actual image. In this way some of the particles will be chosen several times, while
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Figure 10: Basic procedure of the Condensation algorithm

others with relatively low weights will not be chosen at all. The sampled particles will be predicted
now with noisy linear dynamics, named as drift and diffusion process in the Figure. In this way a new
sample set has been generated, which has to be finally updated by measuring the observation density
(weight) at each particle position. For this weighting step the gradient image and normal vectors at the
sample positions of the ellipses have to be calculated (cf. Figure 11). Now the dot products between
the gradient and the unit normal vector along the normal vectors (green lines) depicted in Figure 11 is
computed. Thus the weight can be obtained by summing up over all maximum values of the dot products
per sample point, normalized by the number of sample points of the ellipse. This procedure is repeated
for all hypotheses and the observation probability is approximated in this way using the discrete weights.

Multiple person tracking For multiple person tracking this approach was further extended by some
”super-particles” indicating a guess for the number of persons visible in the image. Similar to the
technique explained in the paragraph above, these super-particles are also cycling through the drift-
diffusion-measurement iteration, but now the skin colored blobs, we have already extracted, are used for
the measurement. A combination of the configuration coverage (skin colored area covered by particles
relative to the skin colored area) and the configuration compactness (skin colored area covered by particles
relative to the area covered by particles) serves as basic indicator for the number of persons in the image.
With these guesses, particles containing the elliptical properties are initialized on the different locations
we obtained by the super-particles and thus are enabled to perform head tracking as proposed in the last
section.

Results In the sequence in Figure 12 a typical scene has been taken from a meeting video with images
taken at intervals of approximately 2 seconds. Two persons are sitting behind a table and our tracker
now initializes fully automated and keeps tracking the heads. As depicted there appear sometimes also
particles on the hands of the persons (light blue or violet) but the estimation keeps on the two heads
(indicated by the green ellipses).
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Figure 11: Gradient image, in which edges are represented by small blue arrows. Furthermore one
hypothesis (red ellipse) has been plotted marked additionally with the normal vectors (green lines)

Figure 12: Office scene with partial occlusion caused by another skin colored object

6.4.2 Distributed Partitioned Sampling

We proposed a multi-object visual tracker using particle filters (PFs) [95]. We first define a joint multi-
object state space, which constitutes a rigorous implementation of the problem. The state contains the
configuration for every person in the scene, where a single-person configuration contains translation and
scaling parameters for each participant.

Tracking a significant number of objects in a joint-object framework becomes increasingly difficult as
adding new objects to the scene increases the search space exponentially. A sampling strategy known as
Partitioned Sampling (PS) helps reduce the dimensionality problem by handling one object at a time,
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but introduces problems with bias and impoverishment of the particle representation, dependent on the
object ordering. We propose sampling using Distributed Partitioned Sampling (DPS), which redefines
the distribution as a mixture model composed of subsets of particles, each of which performs PS in a
different ordering [95]. In our approach, PS is performed using a different ordering for each subset to fairly
distribute the bias and impoverishment effects between each object. The subsets are then reassembled
and evaluated normally.

The observation model used in this work consisted of 8-bin color-space (HS) histograms with spatial
components. The resulting multi-dimensional histogram consists of a concatenation of 2-D HS histograms,
each built from pixels taken from different areas of the head (eyes, mouth, hair, etc) according to a tem-
plate. The observation likelihood is defined as a product of single-object likelihoods, where the observation
is the image region enclosed by the proposed single-object configuration, and each object likelihood is
defined as an exponential distribution over the distance based on the Bhattacharyya coefficient between
the observation and the specific object template histogram.

Head tracking experiments were conducted in the meeting room to test the ability of DPS to overcome
impoverishment problems associated with PS. Specifically, DPS and PS were tested on meeting data for
their ability to recover from occlusion (impoverishment hinders this ability) over 50 runs per method, to
account for the stochastic nature of the tracker. Performance was measured by the success rate (SR),
the percentage of successful runs (a successful run occurs when the tracking estimate overlaps the ground
truth throughout the entire sequence). As reported in [95], DPS significantly outperformed both a simple
multi-object PF and a PS tracker.

6.4.3 Template based face localization

We are using the Gabor Wavelet method for detecting significant parts in the face as area with eyes, nose
and mouth. For each person is used the set of templates for different look directions. This method is also
capable to recognize single person faces by comparison the template matches.

Figure 13: Face region detection

We have enough information for determine direction, angle and slope of the head. The slope in the
side is computed as the slope angle of the inner rectangle covering eyes and mouth, which is parallel with
vertical head axis. The look direction in vertical and horizontal direction is computed as ratio of left and
right distances inner rectangle covering eyes and mouth and outer rectangle covering whole head. The
additive information is from the type of the template. If it is used the template for side look, then is
horizontal look direction defined constantly +90 or -90 degrees.
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6.5 Multiple audio source detection and localization

Over the last year, methods were investigated to address the issue of both detecting and locating multiple
speakers, that is persons speaking at the same time. This is indeed a necessity: in many real, multi-party
speech situations people interrupt each other and talk at the same time (overlapped speech). It falls in
the general ”cocktail party” category.

Since spontaneous speech is very sporadic (short utterances separated by silences), the problem was
attacked as an instantaneous decision to make. That means to divide a signal recorded with a microphone
array into short time frames (16 ms), and to answer two questions for each frame separately: how many
active speakers (it could be zero)? Where are they located? In existing literature, the detection and
localization problem are usually considered separately, while here we need to consider them jointly.
Moreover, many results are presented on simulated data.

Two types of approaches were developed: time-domain [54], and frequency-domain [50]. Both attempt
to answer the two questions by first dividing the space around a microphone array into sectors (volumes of
space), and decide for each sector whether or not it contains at least one active source. The long-term goal
is to reiterate the approach in a coarse-to-fine way. Best results were obtained with the frequency-domain
approach, which was extensively tested on more than 1 hour of real data, including both loudspeakers
and humans, recorded by a circular, 8-microphone array.

To sum up, the proposed sector-based detection/localization approach proved its ability to detect and
locate up to 3 simultaneous speakers on real meeting room recordings. Recent work successfully applied
the same technique to the speech enhancement task in cars, in collaboration with Daimler-Chrysler [48].

6.6 Audio-visual localization and tracking

6.6.1 Introduction

The goal of this research is to produce a system capable of localising and tracking one or more speakers
using both audio and video cues in a neurobiologically plausible manner. Specifically, we are interested
in using binaural cues from a manikin in conjunction with visual cues to determine the spatial location
of an individual speaker.

6.6.2 Audio cues

The acoustic inputs to each ear of the binaural manikin are sampled at 48 kHz and are processed by
a model of the auditory periphery. The frequency selectivity of the basilar membrane is modelled by
a bank of 64 gammatone filters [72] whose centre frequencies are spaced on the equivalent rectangular
bandwidth (ERB) scale [37] between 50 Hz and 8 kHz. The auditory nerve response is approximated by
half-wave rectifying and square root compressing the output of each filter [75].

Interaural time difference (ITD) is the main localisation cue used by the human auditory system
[12] (see also [61] for a review). The conventional technique for estimating the lateralisation of a signal
is by calculating a cross-correlation function using the left and right channels. This technique can be
considered to be equivalent to the neural coincidence model of Jeffress [43].

Computing the cross-correlation for each channel gives a cross-correlogram, which is computed at 40
ms intervals resulting in a frame rate of 25 fps to match the video input. Since there may be small time
differences between sounds reaching the two ears, channels dominated by a particular source will exhibit
a peak at a correlation lag related to the physical azimuth of the source.

When the sound source dominates a number of frequency channels, a characteristic ‘spine’ can be
observed at the source azimuth. For example, Fig. 14 shows the cross-correlogram for a 155 Hz complex
tone which has been lateralised to the right by 45 degrees.
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Figure 14: Cross-correlogram of a 155 Hz complex tone lateralised to the right by 45 degrees. The vertical
line indicates the position of the ‘spine’.

6.6.3 Video cues

Since the meetings are conducted in a relatively unchanging environment (i.e., the cameras are stationary
and the lighting is consistent), a number of simple (and computationally efficient) techniques have been
used.

Objects are detected by calculating the difference between the current frame and a reference frame
(usually found at the beginning of a recording when the room is still empty) and motion is detected by
calculating the difference between adjacent frames. These difference images are thresholded to produce
binary masks. In order to produce a binary mask for face regions, we identify those pixels whose RGB
values satisfy a given function [96]:

R > 95 ∧ G > 40 ∧ B > 20 ∧ (1)

maxR, G, B − minR, G, B > 15∧

|R − G| > 15 ∧ R > G ∧ R > B

In each of the three masks, spurious pixels are discarded by using a region growth algorithm in which
a pixel is only kept if its eight immediate neighbours are also ‘on’. These candidate regions can still,
however, be of any size and shape. To eliminate small regions, all groups whose area is less than a
given figure are discarded (300 pixels for faces and 3000 pixels for other objects). An additional stage is
included to produce the final face mask. To ensure only face-shaped (oval) regions remain, the length to
breadth ratio is determined and used to discard non-oval regions.

6.6.4 Audio-visual integration

Two neural oscillator networks represent visual (2D network) and audio azimuth activity (1D network).
The audio network has 181 nodes each representing an integer azimuth from -90 degrees to 90 degrees;
the video network consists of a grid of 720x576 nodes in which each node represents a particular pixel of
the binary input mask. The three video features are combined to produce a single binary input mask. If
a face region is found to coincide with an object region then the face region is included in the final mask
and the object region is discarded. All remaining regions are included in the input mask. Fig. 15 shows
a schematic of the system.

Each network consists of an array of oscillators based upon LEGION [107]. Within LEGION, oscil-
lators are synchronised by placing local excitatory links between them. Additionally, a global inhibitor
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Figure 15: System schematic. The cross-correlogram (CCG) provides azimuth input to the audio network
and a combination of the three video features provide input to the video network. The audio-visual object
locations are then used as input to the inertia-based tracker.

receives excitation from each oscillator, and inhibits every oscillator in the network. This ensures that
only one block of synchronised oscillators can be active at any one time. Hence, separate blocks of syn-
chronised oscillators (segments) arise through the action of local excitation and global inhibition. Thus,
within-network segmentation emerges as a property of network dynamics.

In order to fuse related audio and video activity, the two networks are linked by a number of weights
(placed between azimuth nodes and video columns). These A-V mapping weights are generated using a
two-stage process. The first stage uses a Hebbian learning rule during a training phase in which repeated,
simultaneous video activity at column V and audio azimuth A strengthens the link between audio network
node A and video network column V . However, since it is unlikely that the training phase will contain
enough activity to generate weights for every possible audio-video pair, the second phase fits a sigmoidal
function to the sparse A-V mapping data using the simplex search method [47].

Following a short period of time required for the networks to converge on a stable segmentation result,
the individual A-V groupings can be determined. Any audio and video network activities which occur
at the same time (their oscillators are synchronised) are said to be grouped (forming ‘A-V objects’).
Remaining audio or video activity which occurs independently is said to be ungrouped. Any A-V objects
are candidates for object tracking.

6.6.5 Object tracking

Object tracking is implemented using an inertia-based system in which a leaky integrator models the
velocity of an object. An inertia-based model ensures the tracking focus continues to move when position
information of a moving tracked A-V object has been lost (possibly by visual occlusion or incomplete
data). Provided the occlusion is brief and that the tracked A-V object continues at a steady velocity, the
tracking focus will be close to the object when position information becomes available again.

During the lifetime of an object track, it is unlikely that audio localisation information will always be
available: for example, binaural audio localisation is not robust (especially in reverberant environments)
and speakers tend to make frequent pauses during speech. In this situation, the tracking algorithm ‘backs
off’ to tracking the nearest video feature until audio information (and hence an A-V object) becomes
available.
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6.6.6 Conclusions

The system can extract video and audio features and successfully group video and audio activity when
at the same position and segregate incongruous audio and video data (frame-based). A-V objects are
tracked using an inertia-based mechanism so that sources can be tracked through brief visual occlusions.
We are currently working on the tracking algorithm to allow objects to be tracked in complex multi-object
environments. We will subsequently investigate the ability to track multiple objects simultaneously and
incorporate psychophysically-motivated tracking competition behaviour. We are also investigating the
enhancement of the audio azimuth estimation algorithm by using the visual motion estimates in particular
frame regions to alter the degree of temporal integration at different azimuths.

6.6.7 Particle Filtering based audio-visual tracker

We proposed a multi-object audio-visual tracker using particle filters (PFs) [34]. We use an approach in
which a person’s head is represented by its silhouette in the image plane. The state-space is defined as a
joint multi-object representation, where both the location and the speaking activity of each participant
are tracked. We employ a mixed-state formulation, where in addition to continuous variables for head
motion, a discrete variable is included to model the speaking status of each participant.

Our methodology exploits the complementary features of the AV modalities. Audio localization
information in 3-D space is first estimated by an algorithm that reliably detects speaker changes with low
latency, while maintaining good estimation accuracy. Audio, color, and shape information are jointly used
in the observation likelihood. We also use an AV calibration procedure to relate audio estimates in 3-D
and visual information in 2-D. The procedure uses easily generated training data, and does not require
precise geometric calibration of cameras and microphones. We have dealt with the dimensionality of the
multi-object state space by combining Markov Chain Monte Carlo (MCMC) and PF, which provides
efficient sampling in a formalism that is naturally suitable for interaction modeling.

We have tested the method on a set of sequences from the IDIAP meeting room. After manual
initialization, the four meeting participants can be simultaneously tracked, and their speaking status
inferred at each time. An objective evaluation procedure involved the computation for each participant
of tracking success rate, and the F-measures (which combines precision and recall) for location and
speaking status, over 20 runs of the trackers. As reported in [34], the results show that our proposed
approach outperforms a basic multi-object PF in both ability to track and estimation of the speaking
status.
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7 Gestures and Actions

7.1 Objectives

Several alternative systems for gesture and action recognition using both video only and combined audio-
video input will be developed and ported to the AMI domain and evaluated.

7.2 Introduction

In the initial phase of the AMI project we focused on recognising gestures and actions which involve
body and hand positions These include standing/sitting down, leaning forward/back and pointing. To
facilitate algorithm evaluation TNO has contributed to the task of manually labelling ground-truth data
for head positions.

Computer vision methods for analysing human behaviour have been divided into the following cate-
gories [35]; 2-D approaches without explicit shape models, 2-D approaches with explicit shape models
and 3-D approaches Our research follows two complimentary approaches to gesture recognition which fall
into the first of these categories.

1. Model-based gesture/action recognition using deformable templates.

2. Motion analysis using keypoints

The two approaches are described in more detail below. In the long term, these approaches will
be combined in order to address the following problems; building shape models (semi-)automatically,
adding anatomical context to interpret the motions of local image regions and making gesture/action
classification more robust with classifier fusion techniques.

7.3 Model-based gesture/action recognition using deformable templates

Our approach matches shape information from image edges and/or segmented foreground objects to
previously learned deformable templates. We have begun by using an Active Shape Model [19], or ASM,
to describe body shapes. An ASM uses a set of labelled training images in order to build a statistical
model of a shape which is described by a compact set of model parameters; an ASM can only generate
shapes similar to those found in the training set. Previously, Baumberg and Hogg [10] have used a single
ASM to track pedestrians in lower-resolution surveillance images and more recently Baker et al [8] have
used Active Appearance Models (closely related to ASMs) to interpret facial gestures. To describe the full
range of shape variations for the gestures and actions found in AMI data with a single shape model would
require a complicated model with many, difficult to constrain, degrees of freedom. Instead we intend to
take a modular approach in which multiple simple shape/appearance models compete to fit the data
and a probabilistic framework is used to choose between the competing models. When different models
correspond to different gestures and actions, making the right model choice corresponds to recognising
a gesture/action. This approach has similarities to the hierachical template matching approach taken
by Gavrila [36] for pedestrian detection but whereas Gavrila uses classes of similar discrete templates to
facilitate matching, we will use classes of template model instances to enable classification.

Figure 16 shows an example in which an ASM tracks a subject who is leaning back in his chair. A
leaning forward motion corresponds to the model ’losing lock’ and signals the transition from one posture
class to another. Work to efficiently build gesture/action specific models and implement a decision-making
framework is in progress.
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Figure 16: Example in which an ASM tracks a subject who is leaning back in his chair

7.4 Motion analysis using salient regions

Various algorithms exist for automatically detecting keypoints (salient points) in images and transform-
ing local image regions around these keypoints to feature vectors. In recent years much interest has
surrounded this approach to image processing and it has proved to be a powerful method of match-
ing objects in a way that is robust to the effects of scale, rotation, occlusion, background clutter and
changes in viewpoint. Keypoints-based methods have recently been applied to matching objects in video
streams [94] and in this setting temporal information has been used to link information from moving
objects and facilitate object-level matching. Until now, the potential of exploiting keypoints for ges-
ture/behaviour analysis has not been explored. Our research focuses on exploiting the ability of keypoint
matching to robustly match objects between frames in order to analyse human motion and recognise
gestures and actions in AMI data.

Figure 17 shows an example where keypoints are used to track a persons hand. Note that a keypoints-
based approach has advantages over standard template-based approaches because initialisation is handled
implicitly as are several types of image transformation. This results in robust tracking and fewer tunable
parameters.

7.5 Body pose estimation and action recognition

From a framework where video data and knowledge about the background is combined, silhouettes of
persons can be extracted. Skin color information is used to find head and hands. An estimation of the
joint angles of the body was obtained by fitting a body model to the silhouette. A first application was to
estimate poses of a presenter. A 16 degree of freedom (DOF) human body model was used, see table 7.5.
Since no ground truth about joint angles could be inferred from real video data, four synthetic movies
have been made using Curious Labs Poser. Tests with a human body that matched the 3D character
yielded an average joint angle estimation error below 10 degrees.

The second application was estimating body poses from the Scripted Meeting Recordings, recorded at
the IDIAP smart room. A 10 DOF body model was used, as can be seen in the right column of table 7.5.
A frame from one of these recordings, with the estimated body pose superimposed is shown in Figure 18.
The estimated joint angles can be used to mimic the poses on an avatar, allowing for 3D evaluation of
the estimation. Also, a virtual meeting room is constructed where the meetings can be replayed. Motion
smoothing is applied to filter out noise.
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Figure 17: Example where keypoints are used to track a persons hand

For the estimated angles, individual actions can be recognized. From the dimensions described in
appendix B head actions can’t be recognized since only elevation of the head is measured. Similar,
because no orientation of the hands is measured, not all hand actions can be recognized. Neural networks
were used to classify actions on a per-frame basis. Table 7.5 shows the results for this classification, both
using the 10-dimensional joint angle input vector and the 6-dimensional vector that contains (x, y) pairs
of coordinates of the head and hands centers. Note that not enough training data was annotated to
estimate location based actions. Current research efforts focus on recognition of individual actions using
sequential machine learning techniques.

Presenter Participant
Left shoulder 3 3
Left elbow 1 1
Right shoulder 3 3
Right elbow 1 1
Left hip 3 -
Left knee 1 -
Right hip 3 -
Right knee 1 -
Back bend forward - 1
Neck bend forward - 1
Total 16 10

Table 32: Degrees of freedom within human body model for presenter and participant application
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Figure 18: Example frame with superimposed body pose estimation.

Joint angles Face & hand coords
Hand actions 91 % 89 %
{writing, no gesture}
Body actions 86 % 83 %
{lean forward, lean backward,
no gesture}

Table 33: Action classification results using neural networks

7.6 Meeting Event segmentation and recognition

This section encompasses the analysis and of meetings for a segmentation into sub-genres, so called
meeting events (see also [84],[85]). The data for this work consists of the 53 scripted meetings, recorded
in the IDIAP Smart Meeting Room. Each recorded meeting consists of a set of predefined meetings in a
specific order. The events that were discriminated were

• Monologue (one participant speaks continuously without interruption)

• Discussion (all participants engage in a discussion)

• Note-taking (all participants write notes)

• White-board (one participant at front of room talks and makes notes on the white board)

• Presentation (one participant at front of room makes a presentation using the projector screen)

7.7 Feature extraction

This section illustrates in short the low level algorithms that provide the single actions of each meeting
participant like speaker turns and various individual actions.

7.7.1 Speaker turn detection

The results of the speaker turn detection have been taken over from another partner in this project. A
generic, short-term clustering algorithm is used that can track multiple objects for a low computational
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Figure 19: Video frame marked with action regions and center of the head provided by the tracking
algorithm

cost. In [53] the three-step algorithm consisting in frame-level analysis, short-term analysis and long-term
analysis is presented in detail.

7.7.2 Gesture recognition

Actions can be defined as movements in a certain surrounding of any person. In order to recognize actions
one approach will be to extract features representing the motion in those surrounding areas. In [112],
global motion features have turned out as suitable features to recognize gestures. For every single person
in a so called action region Ai the individual actions are detected (cf. Fig. 19).

The video stream is divided into segments by a special algorithm. Then these segments are fed to a
HMM based recognizer which has been trained on roughly 1000 gestures consisting of writing, pointing,
standing up, sitting down, nodding and shaking head. In Table 34 the recognition results are shown for a
continuous HMM with 6 states and 4 mixtures.

7.8 Classification of Meeting Events

The results of the recognizers described above can now be used to classify a temporal segment of a
meeting into a meeting event as mentioned in Section 7.6. Thus, using this information, a static feature
vector can be derived that contains the relative percentage of the various individual actions. We use for
example the length of writing of a single person with respect to the whole considered time window. The
same procedure applies for the remaining features like talking, nodding and so on.
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writing 471 19 0 0 42 18 85.64
pointing 0 68 1 0 3 0 94.44
standing up 1 1 9 0 0 0 81.82
sitting down 0 0 2 7 0 0 77.78
nodding 8 7 7 0 225 43 77.59
shaking head 3 0 2 0 22 16 37.21

Table 34: Confusion matrix of single person action recognition

For the classification of the meeting events we chose the following classifiers:

• a simple hybrid Bayesian Network (BN) consisting of a discrete node as parent with five states
(one for each meeting event) and nine continuous nodes directly connected to the parent node,
representing the nine dimensions of the feature vector,

• Gaussian Mixture Models (GMM) with various numbers of Gaussians depending on the number of
training material,

• a Neural Net with Multilayer Perceptrons (MLP) with 3 layers,

• a Radial Basis Network (RBN)with maximum 10 neurons,

• Support Vector Machines (SVM) with RBF-Kernel.

Each of the classifiers has been trained with the meeting events of the 30 training meetings. For evaluation
purposes the remaining 23 meetings were used. For the recognition task alone, where the segment
boundaries are given, the MLP performs best and achieves a recognition rate of 95.90%. Two classifiers
(RBN and SVM) yield a quite good result with 95.08% whereas the GMMs seem not to be able to adapt
well enough and achieve a recognition rate of 70.61%. The Bayesian Network is somewhere in between
with 93.44%. One cause of this difference may be the relatively small amount of training material
available.

7.9 Segmentation of Meeting Events

While segmentation of individual actions has been done manually as outlined in Section 7.7.2, an attempt
has been made to automatically perform the segmentation of the meeting data into meeting events.

7.9.1 Integrated approach

The integrated approach combines the detection of the boundaries and classification of the segments in
one step. The strategy is similar to that one used in the BIC-Algorithm [102] and is illustrated in Figure
20. Two connected windows with variable length are shifted over the time scale. Thereby the inner
border is shifted from the left to the right in steps of one second and in each window the feature vector
is classified. If there is a different result in the two windows, the inner border is considered a boundary
of a meeting event. If no boundary is detected in the actual window, the whole window is enlarged and
the inner border is again shifted from left to the right. This procedure can be described by the following
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a b c

Figure 20: Two connected windows are shifted over the time scale to produce potential boundaries.

algorithm (a is the left border, b is the inner border, c is the right border of the window, L is the minimum
length of a meeting event, K(a, b) is the classification result of the interval [a, b]):

(1) initialize interval [a, c]:
a = 1; b = a + L; c = a + 3L;

(2) if K(a, b) 6= K(b, c) then

save b as boundary

a = c; b = a + L; c = a + 3L;
else

b = b + 1;
(3) if (c − b) < L

c = c + 1; b = a + L;
goto (2)

else

goto (2)

This algorithm is run until the right border c has reached the end of the video file.

7.9.2 Dynamic programming approach

Here the segmentation task is performed in two steps. At first, potential segment boundaries are searched;
in the second step from all these possible boundaries those are chosen that give the highest overall score.

First the possible boundaries have to be found. Again two connected windows are shifted over the
time scale as shown in Figure 20. This time the length of the windows remains fixed at 10 seconds each.
Inside these two windows the feature vector is calculated and classified. If the results differ a potential
segment boundary is assumed. In the same step a clustering of all found boundaries is performed. As
long as the classification result K(a, b) in the left window remains equal, the new assumed boundary is
appended to the existing cluster G{i}. Otherwise a new cluster G{i+1} is created. After that all clusters
that contain less than three possible boundaries are discarded so that only important boundaries remain.
Now we have a collection of arrays G{i}, i = 1, . . . , N , where N is the number of clusters, consisting in
the potential boundaries.

Having found all boundaries that come into question, in each cluster G{i} the in some sense ’best’
boundary has to be chosen. This is accomplished via Dynamic Programming (DP). This approach
assumes that the meeting events are mutually independent. So each boundary of a meeting event can
be found if only the direct predecessor is known. The first and the last boundary are known a priori
(beginning and end of the meeting), so the task is to choose the remaining inner boundaries that give
the highest overall score. The score of a meeting event is calculated as the pseudo-probability that the
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Figure 21: Finding the optimal boundaries: the path with the highest overall score is found through
backtracking. The abscissa denotes the clusters of potential boundaries, the ordinate the number of the
boundary.

classifier returns for the examined interval. This could be for example the normalized probability of the
GMM or the normalized output of the neural net. As additional constraint only those boundaries could
be chosen that ensure a minimum length of a meeting event of 15 seconds.

In Figure 21 the procedure for finding the optimal segment boundaries is illustrated. For each bound-
ary x ∈ G{i} the score sx(y) to each boundary y ∈ G{i − 1}, i = 2, . . . , N is calculated. Then the
maximum score smaxfor each x is chosen.

sx,max = max sx(y); (2)

The sum of this score and the overall score until i − 1 is calculated and saved in a score-matrix SG{i}
together with the predecessor y.

SG{i} =









...
...

...
x sx,max + SG{i − 1}y,2 y
...

...
...









; (3)

This is done for all clusters G{i}. Afterwards the best path through all score matrices is found through
backtracking. Starting with the last score matrix SG{N}, which contains only one boundary, and fol-
lowing the indices in the third column those boundaries are chosen that produce the best overall score.
In a completing step two segments that contain the same meeting event are merged.

This approach has the advantage of being computationally much less expensive, since there are much
less segments to test due to the fixed length of the sliding windows.

61



Classifier Insertion Deletion Accuracy Error

BN 0.1474 0.0622 7.9316 0.3903
GMM 0.2475 0.0233 10.8718 0.4140
MLP 0.0861 0.0167 6.3326 0.3244
RBF 0.0689 0.0300 5.6654 0.3164
SVM 0.1779 0.0083 9.0838 0.3576

Table 35: Segmentation results using the integrated approach (BN: Bayesian Network, GMM: Gaussian
Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial Basis Network, SVM: Support
Vector Machines). The columns denote the insertion rate, the deletion rate, the accuracy in seconds and
the classification error rate (see text).

Classifier Insertion Deletion Accuracy Error

BN 0.1650 0.0467 6.6667 0.3664
GMM 0.2971 0.0250 33.2812 0.4911
MLP 0.1871 0.0317 16.0696 0.3896
RBF 0.1738 0.0083 16.0127 0.3969

Table 36: Segmentation results using Dynamic Programming.

7.9.3 Segmentation results

From the 53 available meetings, mentioned in Section 7.6, 30 were chosen for the training of the classifiers,
the remaining 23 wereused for evaluation purposes.

The results of the segmentation are shown in Table 35 and Table 36 respectively (BN: Bayesian
Network, GMM: Gaussian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial Basis
Network, SVM: Support Vector Machines). Each row denotes the classifier that was used. The columns
show the insertion rate (number of insertions in respect to all meeting events), the deletion rate (number of
deletions in respect to all meeting events), the accuracy of the found segment boundaries (mean absolute
error in seconds) and the recognition error rate (cf. [29]). In all columns lower numbers denote better
results.

As can be seen from the tables, the results are quite variable and heavily depend on the used classifier.
With the integrated approach (cf. Table 35) the best outcome is achieved by the radial basis network.
Here the insertion rate is the lowest. The detected segment boundaries match pretty well with a deviation
of only about five seconds to the original defined boundaries.

The results of the segmentation with dynamic programming were in general slightly worse. Due to
the impossibility to get a score from the SVMs, these were not used here. Remarkable is the difference
of ten seconds in the accuracy of the found boundaries between the Bayesian Network and the Neural
Networks. The Bayesian Networks miss the given boundaries by 6.6 seconds on average. The neural
network approaches make a greater mistake and produce a deviation of approx. 16 seconds.
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8 Focus of attention

8.1 Objectives

The original objective of this part was to study tasks related to either the focus-of-attention (FOA) of
meeting participants, or to the meeting focus-of-attention. However, as the latter we difficult to define,
we decided to first concentrate on the the individual FOA. Moreover, defining the general FOA of people
also appeared to be problematic: first, a person might have multiple FOA (e.g. a person browsing some
notes while listening to the speaker); secondly, as it is related to the mental state of participant, it might
be difficult to ground-truth (e.g. from the audio-video recordings, identifying the current speaker as the
FOA of somebody looking at the table is a matter of interpretation), which would prevent then a proper
evaluation of developped algorithms. As a consequence, we decided to define the focus-of-attention
of people as the spatial locus defined by the person’s gaze.

We identified two research tracks related to the FOA:

• the first track is concerned with the recognition of the FOA. More precisely, given recorded meeting
data streams, can we identify at each instant the FOA of people ? One obvious research direction
for this task is the study and development of gaze estimation algorithms, or, as a surrogate, of head
orientation estimation algorithms.

• in the second track, the objective is to identify the role played by the FOA in the dynamics of
meeting. For instance, can we identify the current speaker if we know the FOA of each participant
? What do the sequence of FOA say about the ambiance in the meeting, i.e. is the meeting boring
or interesting ? can we identify the main character or leader in the meeting from it ? Answering
such questions would thus be useful to understand the relationship between the FOA and other cues
(such as speaker turns) as well as to more precisely identify the interactions between participants
(e.g. by contributing to the recognition of the higher level dialog acts), which in turn could translate
into better FOA recognition algorithms.

In the AMI project, we have started to work in both directions. The next sections will summarize the
work that has been done on head orientation estimation, and the study on speaker identification capability
from head poses. As a proper evaluation of these works requests annotated data, we will first present in
the next section the effort that has been done by the partners along this direction.

8.2 Databases specification, recording and annotation

To achieve the research tasks, we have considered three databases with different annotation schemes.
Two of these databases are already recorded, and are the result of a close collaboration between the
university of Twente (UT) and IDIAP, while the specification for the third one has been written. These
databases along with their purpose and annotation details are described in the next subsections.

8.2.1 Head orientation database

Purpose : evaluation of head pose estimation and head tracking algorithms.
One first step towards determining a person’s FOA consists of estimating its gaze direction. Then, from
the geometry of the room (object, cameras) and the location of meeting participants, the FOA can be
estimated. As estimating gaze is difficult (and requires very close-up views of people), we have developed
as an approximation algorithms for estimating the head pose (see 8.3). These algorithms were first
assessed by visual inspection. However, in view of the limitations of visual evaluation, and the inaccuracy
obtained by manually labeling head pose in real videos, we decided to record a video database with head
pose ground truth produced by a flock-of-birds device. It is important here to mention that we did not
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find any publicly available database on this topic. The closer one in research focus is the POINTING1

database, which contains only static images of people looking to discrete position of the space and with
uniform background.

Specifications : the database is specified by the following elements:

• annotation : head pose with respect to the camera, which is defined by three euler angles (pan, tilt
and roll).

• content : to account for a larger set of situations, we considered two scenario:

– an office scenario: in this case, one person is performing different activities at their desk, such
as typing, reading, calling a person, discussing with somebody, etc...

– a meeting scenario: recording of groups of 4 people involved in a discussion.

An objective of the database was to have the largest amount of different faces, to better evaluate the
generalization performance of algorithms.

Status : the data have been recorded and annotated. The definition of evaluation protocols are in
progress. More specifically, the database comprises :

• 14 sequences of approx. 5 minutes each for the office scenario.

• 8 meetings of 4 people (duration of each meeting is approx. 6 minutes). The recording took place
in IDIAP’s smart meeting room. However, due to technological constraints (the magnetic field due
to the setup caused distortions on the flock-of-birds readings), we were able to capture the head
ground truth of only two participants.

Groundtruth has been elaborated using flock of birds magnetic sensors attached to the head. Precise
care has been taken to calibrate the spatial transformation between the 3D magnetic readings, and the
camera frames. The precision of the groundtruth is of 6 degrees approximately. A website is currently
built to provide a free access to these data. We expect to release the database at the end of this year.

8.2.2 Focus-of-attention database

Purpose : evaluation of focus-of-attention recognition algorithms.
The purpose of this database is different than the head orientation database. Here, the emphasis is on
the recognition of a finite set of specific FOA locus. Thus, while mapping estimated head orientations
to FOA labels might be one approach to this problem, other methods might also be considered and
need data to be evaluated on. Besides, it might be also important to evaluate how higher head pose
estimation accuracy translates into higher FOA recognition rates.

Specifications : A document has been elaborated to provide the definition of the focus of attention,
the set of visual focus of attention to annotate, and the requirements for the datasets. It is given in
appendix A.

Status : the data specification and annotation protocols are written. The recording of the specific data
sets will be performed in the upcoming months. Annotation will follow.

1http://www-prima.inrialpes.fr/Pointing04
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8.2.3 Discussion database

Purpose : study the role of FOA in meeting situation understanding, behaviour understanding, and
non-verbal communication analysis.
More precisely, we have studied so far differences in head orientation between speakers and non speakers,
and the ability of both humans and machine learning algorithms to predict the current and the next
speaker based solely on the head orientations of meeting participants (see Section 8.4). Other research
directions with this database might be argumention analysis and adressee detection.

Specifications : All the recorded meetings are discussions. People were asked to debate three
statements that were shown one after another on the white board. This resulted in nice discussions with
a lot of argumentation, expressive behaviour and emotional speech.
In addition to the flock-of-birds readings, which provide information on head orientation for display
purposes, the database will be annotated with speech transcription according to the AMI guidelines,
and later, with dialogue acts adressee information.

Status : The Video, Audio and Flock data is available for AMI partners2. There are speech transcriptions
of three of the height meetings, and the rest is to be completed soon. Figure 23 displays an image example
of the setup.

8.3 Joint head tracking and pose estimation

Head pose estimation is often used as a first step for other higher level tasks such as facial expression
recognition or gaze direction estimation. In meetings, head pose can be reasonably used as a proxy for gaze
(which usually calls for close views), and can thus be useful for determination of visual focus-of-attention
and addressees in conversations. Most of the existing work for head tracking and pose estimation defines
the task as two sequential and separate problems: the head is tracked, its location is extracted, and
the head pose is estimated from the head location. As a consequence, the estimated head pose totally
depends on the tracking accuracy. This formulation misses the fact that knowledge about head pose
could be used to improve head modeling and thus improve tracking accuracy.

In our approach, we couple head tracking and pose estimation using a mixed-state particle filter (PF)
[7]. In this paragraph, we first recall the general particle framework. Specific elements then follow.
The Bayesian formulation of the tracking problem is well known. Denoting by Xt the hidden state
representing the object configuration at time t, and by Yt the observation extracted from the image, the
filtering distribution p(Xt|Y1:t) of Xt given all the observations Y1:t = (Y1 . . . Yt) up to the current time
can be recursively computed by:

p(Xt|Y1:t) = Z−1p(Yt|Xt) ×
∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1 (4)

where Z is a normalizing constant. A PF is a numerical approximation to the above recursion in the
case of non-linear and non-Gaussian models. The basic idea behind PF consists of representing the
filtering distribution using a weighted set of samples {Xn

t , wn
t }

Ns

n=1
, and updating this representation as

new data arrives. With this representation, Eq. 4 can be approximated by :

p(Xt|Y1:t) ≈ Z−1p(Yt|Xt)

Ns
∑

n=1

wn
t−1p(Xt|X

n
t−1) (5)

using importance sampling. Given the particle set at the previous time step {Xn
t−1, w

n
t−1}, configurations

2http://hmi.ewi.utwente.nl/AMIMeeting/
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at the current time step are drawn from a proposal distribution q(Xt) =
∑

n wn
t−1p(Xt|X

n
t−1). The

weights are then computed as wn
t ∝ p(Yt|X

n
t ).

Four elements are important in defining a PF:

1. the state space, which defines the elements we are looking for.

2. the dynamical model p(Xt|Xt−1) defines the temporal evolution of the state.

3. the observation likelihood p(Yt|Xt) measures the adequacy between the observation and the state.
This is an essential term, where data fusion occurs, and whose modeling accuracy can greatly benefit
from the additional discrete variables in the state space.

4. the sampling mechanism places new samples as close as possible to regions of high likelihood.

These elements along with our model are described in the next paragraphs.
Our approach to the head head tracking and pose estimation consists of coupling both problems using

a mixed-state PF [7]. The state Xt = (xt, lt) is a mixed variable. The continuous variable x = (T, s)
specifies the head location and scale. The discrete variable l specifies an element of the head pose
exemplars set. The pose at given time is obtained by marginalizing over the spatial configuration part of
the state. In the following paragraph, we describe the head pose models, the dynamical model, and the
observation model.

Head pose exemplars are learned using the PIE database. A total of Nθ head poses are defined
by a pan angle ranging from -90 to 90 degrees discretized with 22.5-degree steps. For each head pose
θ, Gaussian and Gabor features are extracted from training images, concatenated into a single feature
vector, and clustered with K-means into Lθ clusters {eθ

l = (eθ
l,j), l ∈ Lθ}, |Lθ| = Lθ. The cluster centers

are taken to be the head pose exemplars. The number of elements of each cluster are used to define
prior distributions πθ

l , and the diagonal covariance matrix of the features σθ
l = diag((σθ

l,j)) is used to
define pose probability models. The pose of an head image is estimated by extracting its feature vector
Y = (Yj), and finding the pose MAP estimate by p(Y |θ) =

∑

l∈Lθ
πθ

l p(Y |l), with

p(Y |l) =
∏

j

1

σθ
l,j

max(exp−
1

2

(

Yj − eθ
l,j

σθ
l,j

)2

, T ) (6)

where T is a bound introduced to tolerate modeling errors.
The dynamical model is a second order autoregressive process p(Xt|Xt−1, Xt−2). Assuming that the

two components xt and lt are independent, and that head pose depends only on the previous pose, the
dynamics factorize as :

p(xt|xt−1, xt−2)p(lt|lt−1).

Finally, the observations are obtained by extracting the features Y (x) from the image region specified
by the spatial configuration x. The observation likelihood is given by p(Yt|Xt) = pT (Yt(xt)|lt), with pT

defined in Eq. 6.

Results. Head pose estimation was tested on PIE database. The best result was obtained with two
exemplars per pose, with a recognition rate of 94.8% while the state-of-the-art obtains around 90% [13].
More details about evaluation can be found in [7]. The joint tracking algorithm was also tested on video
sequences from our meeting room. An example with NS = 100 particles is shown in Fig. 22. Tracking
and head pose estimation are visually quite satisfactory. An objective evaluation of the algorithms on
the database mentionned in the previous section is currently in process.

Open issues. The current features are obtained using gray-level information. While our head tracking
and pose estimation system works well in general, some problems might occur when the background is
highly textured. The use of color information for more robust tracking is under investigation.
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Figure 22: Joint tracking and head pose estimation in meeting room. The green box and red arrow specify the
estimated head location and head pose, respectively. The red circle gives information about the pose value; its
radius corresponds to 90 degrees. The participants are looking at the room entrance.

8.4 Speaker prediction from meeting participants’ head pose

On the data described in Section 8.2.3, we have conducted some initial research dealing with average
speaker turn lengths, average orientation when speaking and listening and more of this limited domain
exploration.

Figure 23: Overview of meeting data.

More precisely, we have setup a distributed experiment environment (see Fig. 24) resulting in a
system where we can conduct experiments at remote sites with one server sending out and collecting
the samples. This environment displays a virtual meeting room with the head of participants avatars
driven by the head orientation of real participants obtained through the flock-of-birds devices attached
to each participant’s head (see Fig. 23). A motivations for using such a setup is the fact that we
examine rich data containing several modalities. In comparison with e.g. the ICSI corpus, our small
corpus contains visual data. Another advantage is that we have exact head orientations. So no
rough estimations are made as e.g. in [98]. A drawback of our approach is that the measured head
orientation does not fully correspond with the actual eye gaze. Studies showed however that the
accuracy of focus of attention estimation based on head orientation data alone is more than 88% [99]
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Figure 24: Virtual setup provided to the experimenters.

[97], [98]. Furthermore this approach enabled us to correct for headmovements contrary to the work
of Vertegaal[104] where a ’chair with very comfortable neck support’ was used to minimise headmovement.

With this environment we have conducted a first set of experiments. We asked persons to judge who
is the current speaker based on ’frames’ of head orientations samples taken from the database. These
results have been compared with machine learning algorithms on the same data.

Algorithm Score
Naive Bayes with discretization 70.3 %

Neural Network 63.3%
Humans 37.7%

Table 37: Classification results for the Naive Bayes classifier with discretization, Neural Networks and
Humans

Table 37 and the following points summarizes some of our findings. Additional results and experi-
mental details can be found in [87].

1. Bayesian networks with discretization can score up to 90% in correctly predicting the speaker based
solely on azimuth information of all the participants when trained and tested on data from a single
meeting using ten fold cross validation.

2. On all samples (more than 64000) a neural network scored on average 63%.

3. As a comparison, humans scored around 38% on 3200 presented samples.
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4. Furthermore, we studied and compared the performances of people that were receiving feedback on
their assignements with people getting no feedback. Results have shown that people with feedback
performed significantly (p < 0.05 with a paired t-test) better than the others. However, when
samples from a different meeting were presented to the people with feedback, their performance
droped significantly below the results from people who never recieved any feedback.
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9 Summary and Future Work

WP4 is concerned with the automatic recognition from audio, video, and combined audio-video streams,
with an emphasis on developing models and algorithms to combine modalities.

In this report we described the implementation and first evaluations of ported and developed algo-
rithms. Seven main tasks have been identified for WP4:

• Baseline speech recognition system: The automatic speech recognition subgroup is concerned with
the development of a speech recognition system for the use on AMI data

• Event spotting : Acoustic event (mainly keyword) spotting in meetings has the goal to find all
occurrences of entered word in a meeting and sort them according to confidences. This will allow
for Google-like browsing of meetings using acoustics. It also has the goal to verify if a word really
occurred in a particular meeting, which is linked to WP5 summarization work.

• Person segmentation / clustering / identification: Algorithms for face detection, face recognition,
speaker recognition, person segmentation, and clustering will be assembled and transferred to the
common platform. Fusion of audio- and visual methods will be carried out.

• Emotion recognition: Systems for automatic emotion recognition, based on audio, video, and com-
bined methods will be developed. Existing methods will be ported to the AMI domain and evalu-
ated.

• Localization and Tracking : Available audio-visual localization and tracking algorithms will be
ported and combined to multimodal tracking procedures, combining e.g., motion features and acous-
tic sources obtained from microphone arrays.

• Gestures and actions : Several alternative systems for gesture and action recognition using both
video only and combined audio-video input will be developed and ported to the AMI domain and
evaluated.

• Focus of attention: The objective of this task is to study tasks related to either the focus-of-attention
of meeting participants, or to the meeting focus-of-attention

In this report we described several implemented and ported algorithms and methods for each of the
seven tasks. The output of the described procedures can then be used as input for WP5. Currently each
of the sub-groups is defining common evaluation schemes (cf. Milestone M4.3, month 18). This allows to
compare different approaches to a problem on the common AMI data set (cf. Deliverable D4.2, month
24). Furthermore the common evaluation scheme guarantees common interfaces among the involved
partners, and a common, stringent output of the different recognisers. Therefore WP5 has defined inputs
from WP4 - independent of the actual used algorithm. Finally the common interfaces allow the fusion of
several algorithms to a larger system.

Consequently, the next steps in WP4 are: to finalize the definitions of common evaluation schemes
and interfaces (M4.3). Then to evaluate the different approaches in the seven sub-groups according to
the evaluation schemes on the common AMI data set (D4.2). With these results we can improve the
algorithms and methods based on the evaluation results and fuse different algorithms to further improve
the recognition performance.
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A Focus of Attention annotation scheme

A.1 Interpretation

The most important issue is that we stick to Visual focus of attention of individuals, defined by the
head orientation or eye gaze. So if someone is looking at a person but thinking about his upcoming
holiday we will only label where he is looking at, since there is no end in deriving the thought of others.
Ground-truth labeling is also undoable in this sense of interpreted focus of attention.

A.2 Data Set

The data on which annotations are performed is to be split in two groups. The training and the test set.

A.2.1 Training set

Specific recordings to have sufficient training data for all the labels or possible focus items. In particular,
it might be important to have a variety of different people in the training set. For each label, at least 15
occurrences should be annotated, for at least 3 different people. Several parts (30 seconds/1 minute) of
recorded meetings (different than those used in the test set) can be used in addition.

A.2.2 Test set

For validation, a minimum of 5 occurrences of each of the labels would be sufficient. Note however that
some labels will be much more represented (e.g. looking at persons). We aim at labeling approximately
15 minutes of 2 meetings, and around 3 selected minutes of around 8 other meetings (to have evaluation
with more participants).

A.3 Annotation requirements

Most of the focus are smart meeting room dependent. Thus, the geometry of the room can be used as
prior knowledge. (We know for each person under which (pan, tilt combinations) we find which person)
There should be no ambiguities in the annotations and inter annotator agreement.

A.4 Items to be Annotated

This is the proposed list of focuses that are to be labeled for each meeting participant. There is a hierarchy
in this list, so whenever there is an ambiguity (see below), the higher level is to be chosen.

• Other persons in the meeting (in general, 4 labels)

• Objects of interest : own notes, own laptop (2 labels)

• Specific locations of interest : entrance, whiteboard, slidescreen, table except personal notes/laptop
(4 labels)

• Attentively looking at one object/location (different from above) (1 label)

• Unfocused, or none of the above (1 label).

In general, the size of the label set will be 12.
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A.5 Annotation Details

Labeling might sometimes be difficult to assess from the visual data. If there is somebody at the white
board for instance, the label could be either the person or white board. In such cases, and any other
ambiguous cases, the hierarchy as specified above should be followed, which means that in the above
example, the person should be labeled as the FOA since he is higher in the hierarchy.

As tool for annotation the tool will be used that is the best known to the annotators. Anvil, TasX or
the interface developed for video labelling in Twente (Label’a’).

B Gestures and Actions annotation scheme

Within this subgroup, the task definition and the requirements for dataset recording and annotation have
been specified.

Task definition: specificperson activities and gestures relevant to the analysis and understanding of
meeting have been identified. They mainly consist of:

• location based activities

• head gesture/activities

• hand gesture/activities

• body gesture/activities

• miscellaneous activities

Datasets: two types of dataset are necessary. A training datasets:

• specific data with high densities of identified activities/gestures. To be collected at one of AMI
setup

• Excerpts from the AMI core corpus.

and a test dataset: Excerpts from the AMI core corpus, different than the training set.

Annotation: Annotation will be done manually. Beginning and end time points of each gesture/activity
per participant will be annotated. A more elaborate version of the specifications can be found on
http://www.amiproject.org/private/WP03/annotgroups/indact.
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