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1 Introduction

One of the major goals in AMI is the deeper understanding of the structure and content of meetings and ways
to make this information accessible. Building on the work inWP4 which is mainly concerned with signal-level
analysis, this report summarizes the work in WP5 on higher level analysis in the first eighteen months of the AMI
project. Analysis is done on multiple levels with an emphasis on segmentation, structuring and indexation. Based
on the information extracted from meetings, we have also started work on accessing the indexed documents and
generating extractive as well as abstractive summaries.

This deliverable attempts to summarize a multitude of work done in close cooperation across a large number
of topics and project partners. Some of the work has been published already and is included here with appropriate
editing to integrate it into the deliverable. The document is organized as follows:

1.1 Overview

The first sections () on segmentation and structuring detailthe work done on

• dialog acts,

• addressing information,

• dominance detection,

• topic detection,

• named entity recognition,

• propositional content,

• argumentative structure,

• chunking and

• meeting group actions

On most levels, the two aspects of segmentation and classifications (or recognition) go hand in hand. For each
level, we have already worked out approaches for the evaluation of our components, these mentioned in section
12. Access to information in meetings is supported in two different ways in WP5: information retrieval methods
and summaries. Information retrieval is based on indexing and keyword spotting approaches which are reported in
section 13. Further work on retrieval is published in [20]. Summaries are generated with two different approaches:
extractive (see section 14) and abstractive (see section 15). Multimodal summaries will eventually be supported
by methods for automatic video editing, see section 16.
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2 Dialog Acts

The set of dialog acts used in AMI was developed in WP3. Beyondthe definitions, the annotation manual1

addresses many possible misunderstandings and provides detailed guidance for determining the correct dialog act
and segment boundaries. Details on the discussion can be found on the AMI project’s Wiki2.

The following sections (2.1—2.6) are an adaptation of the paper “Towards a Decent Recog-
nition Rate for the Automatic Classification of a Multidimensional Dialogue Act Tagset” by
Stephan Lesch, Thomas Kleinbauer and Jan Alexandersson which was presented at the “4th WS
on Knowledge and Reasoning in Practical Dialogue Systems” at IJCAI 2005 in Edinbourgh (see
http://www.csse.monash.edu.au/˜ingrid/IJCAI05dialog ueCFP.html ).

The paper presents some ideas and examinations on statistical dialogue act classification using multidimen-
sional dialogue act labels, based on the ICSI meeting corpusand the associated MRDA tag set. Some statistics of
this corpus and preliminary results of a statistical taggerfor the dialogue act labels are shown. Finally, a proposal
for a more realistic interpretation of these results is presented. The work is motivated by the need for a (statistical)
dialogact classificator for the knowledge-based summarization performed in WP 5. Due to the initial lack of AMI
data, it has been agreed to use the ICSI meeting corpus.

2.1 Introduction

A crucial capability of automatic speech processing systems is to determine the type of an utterance – question or
statement or backchannel, etc. A common way to formalise this kind of information is to compile a categorisation
of dialogue acts[3, 11] into a set of tags that meets best the requirements of the underlying task. With such a tagset
it is possible to annotate a corpus of sample dialogues whichcan then be used as training material for a statistical
classifier.

The ICSI3 meeting recorder project [6], has developed a corpus containing roughly 72 hours of recordings of
actual meetings. The corpus is fully annotated with a multidimensional tagset, which we will refer to as the MRDA
tagset in this paper. A dialogue act in the MRDA set consists of a general tag, e.g.statement(s) and up to seven
special tags that provide additional facets. For example, the labelqyˆrt stands foryes-no questionwith rising
tone.

A straight-forward way to use the MRDA tagset for automatic recognition would be to treat each possible label
as a monolithic unit, i.e. ignore the underlying multidimensional structure and instead understand a label merely as
a string of characters. Then, after choosing a set of features and training the classifier, one can evaluate the quality
of the classifier using traditional metrics like e.g. recalland precision.

Such a view, however, implies discarding useful structuralinformation for both the classification process as
well as for the evaluation. It is clear for instance that the dialogue actsqy andqyˆrt are related. Therefore, if a
qyˆrt -utterance is misclassified, it makes a difference if it was classified asqy or ass - the latter did not even get
the general tag correct. This effect is not reflected by traditional recall and precision measures where a classification
is either correct or incorrect. Conversely, one expects an informed classifier which utilises the multidimensional
properties of the MRDA tagset to yield better recognition rates than one that does not.

To verify this hypothesis, we take a closer look at the ICSI corpus. An initial investigation shows that only
82 labels occur more than 100 times and that the vast majorityof the total 2050 labels occur just a few times (see
figure 1). Consequently, it is very hard to use these rare actsfor classification.

We have made some preliminary classification experiments and trained a maximum entropy classifier using
20000 utterances from the corpus and different variations of the tagset. This classifier was tested on a set of
14512 different utterances. We achieved 51.3% correct classifications. However, a more detailed analysis of the
classification results reveals that there are another 20.2%of classifications which are assigned a less specific label,

1The current version can be found athttp://wiki.idiap.ch/ami/DialogueActs?action=Attach File&do=get&target=dialogue-
act-manual.07jul05.2220.pdf

2http://wiki.idiap.ch/ami/DialogueActs
3International Computer Science Institute at Berkeley, CA
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rank dialogue act count percent
1 s 25684 23.03
2 b 14467 12.97
3 fh 6160 5.52
4 sˆbk 5674 5.08
5 sˆaa 4626 4.15
...

...
...

29 b.% 511 0.46
30 % 460 0.41
...

...
...

42 h 263 0.24
...

...
...

50 h|s 193 0.17
...

...
...

83 sˆm 100 0.09
...

...
...

1057 qyˆbuˆcsˆdˆrt 2 0.000018
1058 sˆarˆbd|% 1 0.000009

...
...

...
2049 qyˆqˆcsˆdˆrt 1 0.000009
2050 s:sˆbk|sˆrt 1 0.000009

Table 1: An excerpt from the dialogue act frequencies for theICSI meeting corpus (Version 040317).

i.e., the correct general tag, but some special tags are missing. Additionally, 3.6% of the classifications are too
specific, i.e., some special tags were assigned which are notpresent in the human annotation. Another 5.8% were
“neighbours”, which means they share a common supertype (for instance, the general tag) with the correct label.

We conclude that there is on the one hand room for improvements of the classification and the metric for
evaluation could be developed to account for the “almost-hits”.

In our efforts to enhance the classification results, we present an algorithm that automatically prunes the number
of classes. The usage of such an algorithm is only then valid if requirements from the application at hand are
incorporated, i. e., , if the application relies on the presense of a certain (additional) tag, this tag cannot be pruned.

The paper is organised as follows: the next section describes the MRDA tagset and a simplification thereof—
the MALTUS tagset. In section 2.3, we discuss some of the characteristics of the ICSI meeting corpus and show
how a classifier improves as the amount of training data increases. Section 2.4 details the measures used for the
evaluation of classifiers and proposes a new measure. The next section describes the classification experiments.
Finally, in section 2.6 we conclude the paper and provide some future directions.

2.2 Multidimensional Tagsets

The labels of a dialog act tagset are not necessarily multidimensional. The Verbmobil System, for example [1],
used a small set of roughly 30 tags tailored to its particularapplication, the automatic translation of telephone
negotiations. Examples of the Verbmobil tags are greet, bye, introduce, request, suggest.

Multidimensional tagsets, on the other hand, allow to annotate several aspects of an utterance. The DAMSL4

tagset, for instance, defines four aspects: the communicative status, the information level and the forward and

4Dialogue Act Markup on Several Layers, [2]
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backward looking function of the utterance. A variant of theDAMSL tagset, the SWBD tagset [5], was used for
annotation in the Switchboard project; the SWBD tagset, in turn, served as the basis for the MRDA tagset [9].

The MRDA Tagset

The “Meeting Recorder Dialogue Act” tagset was used to annotate the ICSI meeting corpus.5 Labels consist of a
general tag, which may be followed by one or several special tags and a disruption mark, or of a disruption mark
only. The general form is

(<general tag>(ˆ<special tag>)?) (.<disruption mark>)?
with the following tags:

• General tags are statement (s), questions (qy/qw/qr/qrr/qo/qh), backchannel (b) and floor management
(fg/fh/h).

• There are 40 special tags describing backchannels, positive, negative or uncertain responses, restatements
(repetitions or corrections), politeness mechanisms and other functions.

• Disruption forms are “interrupted by other speaker” (%−) and “abandoned by speaker” (%−−). Two other
tags, “indecipherable” (%) and “non-speech” (x), are included in this group.

Furthermore, there are two kinds ofcompound labels. Some utterances consist of two closely adjoining parts
which constitute two DAs: e.g., a floor grabber followed by a statement can be annotated by a compound label
fg |s. The other case is quoted speech, where labels are combined using a colon (e.g.s:s ).

s h

sˆm sˆbk sˆrt sˆaa h|s

s:sˆbk

s:sˆbk | sˆrt

b qy fh %

b.% qyˆbu qyˆcs qyˆd qyˆrt

qyˆbuˆcs qyˆbuˆd qyˆbu ˆrt qyˆcsˆd qyˆcsˆrt qyˆdˆrt

qyˆbuˆcsˆd qyˆbuˆcsˆrt qyˆbuˆdˆrt qyˆcsˆdˆrt

qyˆbuˆcsˆdˆrt

Figure 1: The lattice formed by the MRDA labels shown in table1. Labels are ordered by the subset relation.
Compound labels, i. e., , two labels combined with “|” or “:”, are daughters of the two separate labels. Note that
only the parts of the compound labels| were used in the classification experiments.

The MALTUS Tagset

MALTUS, introduced in [9], is an attempt to abstract from theMRDA tagset in order to reduce the huge number of
possible labels. Several groups of MRDA tags were grouped into one MALTUS tag, and some MRDA tags were
dropped altogether. An utterance is marked either as uninterpretable (U), or with one general tag (tier 1 tag, T1)
and zero to five special tags (tier 2 tags, T2). Also, a disruption mark (D) may be appended. The general form of a
MALTUS label is

5Seehttp://www.icsi.berkeley.edu/Speech/mr/
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(U | T1 ˆ T2)? (.D)?
with the following tags:

• tier 1 tags are statement (S), questions (Q), backchannel (B) and floor holder (H).

• tier 2 tags are response types (RP/RN/RU) attention (AT), actions (DO), restated information in corrections
or repetitions (RIC/RIR) and politeness (PO).

2.3 Some Corpus Characteristics

The experiments presented are based on the the ICSI meeting corpus [7], a collection of 75 meetings of roughly
one hour each.

The corpus is available as text files. Each line describes oneutterance: the transcribed text, the start and end
times of the utterance, the time alignments of each word in the transcription, the DA label, the channel name and
(optionally) adjacency pair annotation. However, the filesdo not contain syntactical or semantic information, POS
tags or any phonological features.

The MRDA tagset theoretically allows up to several million different labels, but only some thousand of them
actually occur in the corpus: the 04/03/17 version of the corpus contains 112027 utterances with 2050 different
DA labels. Some of these labels are compound labels of the form a|b; we split these utterances and obtain 118694
utterances with 1256 different labels. Some utterances areexplicitly marked as non-labelled (z), and some are not
labelled at all; these utterances and their successors are ignored, leaving 116097 utterances from which we take
the training and testing material.

Distribution of general categories over the ICSI corpus

When we map the MRDA labels to the five basic categories (statements, questions, backchannels, floor man-
agement and disruptions) in what we call “classmap 1”, we seethat the frequencies of these categories are very
unevenly distributed - statements make up more than half of the material (See table 2). Note the descending order
in the number of training examples for statements, backchannels, floor managements and questions, and how this
order is reflected in the recall for these classes in a five-wayclassification experiment using classmap 1, see figure
4.

Category gen. tag % classm.1 %
Statement 76073 64.09 66640 56.14
Backchannel 15178 12.79 14624 12.32
Floor 12276 10.34 12235 10.31
Question 8522 7.17 7374 6.21
Disruption 4113 3.47 15289 12.88
Z(nonlabeled) 2442 2.06 2442 2.06
X(nonspeech) 90 0.08 90 0.08
Σ 118694 100% 118694 100%

Table 2: Distribution of the main classes over the corpus.

Words and bigrams

We counted the number of words and bigrams over excerpts fromthe corpus with different sizes (with 8-fold
averaging, using raw words without stemming). The logarithmic plot (see figure 2) shows that the numbers of
word and bigram features keep increasing with the number of utterances examined. There is also a constant
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relation between the number of words and the number of utterance-initial words—there are about five to eight
times as many words as initial words. A similar relation holds between bigrams and utterance-initial bigrams.
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Figure 2: The number of words and bigrams for different numbers of utterances

How much training data do we need for a classifier?

With the specification of a new (MRDA-like) tagset for a corpus of meetings in mind, we were also interested in
how much hand-annotated training material is needed to obtain “decent” classification using a statistical model.
We found that the learning curve begins to flatten out at roughly 10000 utterances, but keeps rising with more
training data. This observation (see figure 3) holds for the full set of MRDA labels, as well as when we map them
to MALTUS labels, or to the five basic classes (using the “classmap 1”).
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Figure 3: Recall (percent) for MRDA and MALTUS labels, and MRDA mapped with classmap 1, with different
sizes of the training set. (linear and log scale, using 4-fold cross-validation, 2-fold for MRDA with 101584 training
utterances)
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Figure 4: Recall (percent) for statements, questions, floors, backchannels and disruptions (classmap 1, linear and
log scale, 4-fold cross-validation)

2.4 A New Metric for the Evaluation of Classification Results

Usually, classification tasks are evaluated using the precision and recall metrics:

Precision(l) :=
correct(l)
tagged(l)

Recall(l) :=
correct(l)
occurs(l)

whereoccurs(l) is the number of times the labell occurs in the human annotation of the test corpus,tagged(l)
is the number of times it was assigned by the classifier, andcorrect(l) is the number of times it was correctly
assigned.

The recall values given in the experiments are the total recall over all labels:

Recall:=
∑l correct(l)

∑l occurs(l)

However, these are binary metrics which do not consider the case that the assigned label is incorrect, but very
similar to the correct label. For instance, the labelsˆrt marks a statement with rising tone; we can hardly recog-
nise this properly as we do not use phonological features. However, many such utterances will be tagged ass
(statement). By defining a similarity metric between dialogue acts, we can include such cases in the evaluation of
the classifier.

One way to define such a similarity metric is to order the labels in a hierarchy according to the sets of tags
which make up the labels. For MRDA labels, this means we have several hierarchies with a general tag at the top
(see fig. 1). Using such hierarchies, we can check if the “true” label and the classifier output have a least upper
bound (lub). If there is one, there is at least some relationship between the labels. As we found in our experiments,
in most cases where the lub exists, the classifier output is underspecific, i.e., some special tags are missing. Using
this concept, we define a distance metric between two labelsDAT (a true label) andDAC(a classifiedlabel):

SCORRE(x,y) :=







1− δT+δC

2×depth if DAlub exists

0 otherwise
(1)

minPath(x,y) := shortest path between x and y (2)

δC := |minPath(DAC,DAlub)| (3)

δT := |minPath(DAT,DAlub)| (4)
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For our experiments with MRDA and MALTUS labels, we setdepthto 5 (with the current ordering of the labels in
the ICSI corpus as shown in figure 1, the maximum distance between alub and a label is 5); thus the denominator
is 10, and a SCORREof 0.9 means that the shortest path between two labels in the hierarchy has length 1.

For a test of a classifier withn utterances, true labelsDAT
i and classified labelsDAC

i , we define

SCORRACY =
∑n

i=1 SCORRE(DAT
i ,DAC

i )

n

We motivate SCORREby its similarity tofScorebetween two multi-dimensional labels (see also [8]). Consid-
ering labels as sets of tags (e.g. sˆrt as{s, rt}) allows us to define precision and recall for a true labelDAT and a
classified labelDAC by using their intersection. Let

DAI := DAT ∩DAC (5)

δC := |DAC|− |DAI | (6)

δT := |DAT |− |DAI | (7)

For the normal labels in fig. 1,DAI is equivalent toDAlub, and the set-differencesδT andδC are equivalent to the
distances defined in (3) and (4). Now we can defineprecision, recall andfScorefor a pair of labelsDAT andDAC:

precision :=
|DAI |

|DAC|
= 1−

δC

|DAC|

recall :=
|DAI |

|DAT |
= 1−

δT

|DAT |

fScore :=
2∗ precision∗ recall

precision+ recall

= 1−
δT + δC

|DAT |+ |DAC|

Note the denominators: the distances are normalised to the sizes of the true and the classified labels. Con-
versely, SCORREsimply normalises to a constant chosen to ensure that it always yields a value between 1 and 0.
Consequently,precision, recall andfScoredetermine which fraction of the output of a classifier is correct, while
SCORREand SCORRACY tell us how much it deviates from the ground truth.

In the following example, testing a classifier on 14512 utterances has resulted in 7823 correct and 4038 ap-
proximately correct classifications:

utterances ∑Scorre avg.
correct 7823 53.9% 7823 100%
approx.correct 4038 27.8% 3542.3 88%
all 14512 100% 11365.3 70%

Since each correct classification contributes 1 to the totalSCORRE, and incorrect classifications do not con-
tribute at all, the 4038 approximately correct classifications contribute 3542.3, or 88% on average, i. e., the average
distance to the correct label in these cases is 1.

It is clear that this metric is highly dependent on the hierarchy of labels. Measuring the difference between
labels by the length of the minimal path between them impliesthat we consider the edges in the hierarchy as
representing equal differences between the content of labels. Without this assumption, one might introduce weights
for the edges and defineδC andδT as the sum of the weights on the cheapest path.
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2.5 Classification Experiments

In this section, we report some classification experiments with the complex MRDA/MALTUS labels (that is,
without regard to the internal structure of the labels), using an off-the-shelf maximum entropy classifier package
for Java.6

A maxent model is trained from a set of examples, which consist of the features of an input utterance and
its DA label (the class of the input). The resulting model maps ( f eature, label) pairs to weights indicating how
strongly the presence off eaturepredictslabel.

We used the following features:

• word features: the words occurring in the utterance, the initial and final words, and the initial words of the
following utterance

• word bigrams: the bigrams occurring in the utterance, and the utterance-initial/final bigrams

• the length of the utterance

• temporal relation features indicating whether there is a pause, no pause or an overlap between the current
utterance and the preceding/following one

• features indicating whether the current utterance is the beginning, or ending, or in the middle of a speaker
turn

• the DA label of the preceding utterance

Note that some of these features are forward-looking. We would not want to use such features in a dialogue
system which is required to react to a user’s input; in a meeting-processing application, however, we can expect to
be able to use at least the immediate context of an utterance.Note that we did not use any phonological features.
Features, like stemming and part-of-speech information would be desirable.

We ran a series of classification experiments using the original MRDA labels, mapping the MRDA labels to
MALTUS labels, and finally mapping the MRDA labels to the five categories “statement”, “question”, “backchan-
nel”, “floor management” and “disruptions” (the “classmap 1”).

With MRDA and MALTUS labels, we find that only the most frequent labels occur frequently enough to be
recognised reliably, or to have a significant influence on testing results.

Out of the 1256 MRDA labels, there are only 80 which occur morethan 100 times. However, these 80 labels
make up 111496 of all 118694 utterances (94%). There are 265 which occur 10 times or more. This means that
about 80% of the labels occur only one to nine times; these labels are almost never correctly recognised. Table 3
shows results of one classification experiment: by simply using the labels as-is, we get approximately 51% correct
classifications, and another 29% approximate classifications.

With MALTUS labels, we have significantly less labels (81), and their distribution over the corpus is less
uneven: there are 23 labels which occur more than 100 times, and 42 which occur more than 10 times. When we
train a classifier for these labels, we see that mostly those which occur more than 100 times are reliably recognised.
Table 3 shows the results using the same training/testing set, but with the labels mapped to MALTUS labels. We
can see that more utterances are correctly classified (67.1%) than with MRDA labels, and the sum of correct and
approximately correct classifications is higher as well. (83.2%).

[4] reports a similar classification experiment without disruption marks and with a slightly different version of
the MALTUS tag set and different features, achieving 73.2% accuracy.

The maximum generalisation of the tagset which can still be considered useful is to map all labels to one out
of five classes: statements, questions, backchannels, floormanagement and disruptions. (Actually, there is a sixth
class, “X” for non-speech noises. However, it is very rare.)We tried two variants of such a mapping:

6The Maximum Entropy Classifier by the Stanford NLP Department, available fromnlp.stanford.edu/downloads/classifier.shtml
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event type MRDA MALTUS
correct 51.0% 67.1%
overspecific 3.6% 2.7%
underspecific 19.2% 11.2%
neighbour 5.9% 2.1%
approx.correct 28.8% 16.1%
total 79.8% 83.2%

Table 3: Classification results using 20000 utterances as training material and 14512 for testing, 4-fold cross-
validation

• One variant (the “classmap 1”) comes with the documentationto the ICSI meeting corpus: this mapping
prefers disruptions in some cases - for instance, a disrupted statement is mapped to D, not S. In this case, we
only get a recall of 78.7%. A similar result—77.9%—was reported in [4].

• By mapping each label to one of the five classes according to its general tag, we have more instances of
statements. The most frequent class which is recognised very well, with a recall of 91%. This leads to an
increase of the total recall to 83.8%.

• For a four-way classification experiment—discriminating utterances between statements, questions,
backchannels and floor management, and ignoring disruptions—[4] reports 84.9% correct classifications.

An algorithm for the Reduction of the Tagset

The uneven distribution of class frequencies has some disadvantages when we choose to model monolithic labels.
The size of the model, and the time required to train it, are rather large, although most of the classes are almost
never recognised. Therefore, we used the following approach to reduce the set of classes.

We define the entropy of a set of DA labels and an annotated corpus as

H := − ∑
l∈labels

p(l)log2p(l)

p(l) :=
number of occurrences of l

corpus size

and for a mother-daughter pair of DAs(m,d), the loss in entropy whend is mapped tom:

∆H(m,d) := p(m)log2p(m)+ p(d)log2p(d)

−(p(m)+ p(d))log2(p(m)+ p(d))

Then we find the pair(m,d) in the current set which minimises∆H, and map all occurrences ofd to m. This step
is repeated until the set is reduced to a given size.

This method differs from simply choosing then most frequent classes in that it considers collapses the selected
pair (m,d) to m, no matter which one has the higher frequency (for instance,the labelqyˆrt occurs 1022 times,
qy only 368 times). Also, the limitation to mother-daughter pairs means that the labels at the top of a hierarchy
(e.g.qy ) are never removed.

The most frequent classification error is that an instance ofa more specific label (e.g.,sˆbk ) is assigned a
less specific label (s), which is counted as an approximately correct classification. When this pair is collapsed
to the less specific one, the same classification would be considered correct. This is what happens when we go
from MRDA to MALTUS labels, or even to the 5-way-mapping: we can see a shift from approximately correct to
correct classifications, while the sum remains the same or improves slightly (in the range between 80% and 85%).
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#das correct approx total SCORRACY

16 81.5% 0.0% 81.5% 82%
20 73.4% 8.2% 81.4% 81%
25 63.5% 17.7% 81.2% 79%
50 53.4% 27.1% 80.5% 77%
60 52.3% 28.0% 80.3% 77%
70 51.8% 28.4% 80.2% 77%
80 51.6% 28.6% 80.2% 77%
90 51.4% 28.7% 80.1% 76%

100 51.4% 28.8% 80.2% 76%
150 51.3% 28.8% 80.1% 76%
200 51.1% 29.0% 80.1% 76%
300 51.0% 29.1% 80.1% 76%
400 51.0% 28.9% 79.9% 76%
500 51.0% 29.0% 80.0% 76%
750 51.0% 29.0% 80.0% 76%

Table 4: Results (4-fold cross-validation) when the set of MRDA labels is simplified using the entropy-based
mapping.

#das correct approx total SCORRACY

10 71.5% 11.9% 83.4% 82%
20 67.2% 16.1% 83.3% 81%
30 67.1% 16.2% 83.3% 81%
40 67.1% 16.2% 83.3% 81%
50 67.1% 16.1% 83.2% 81%
60 67.1% 16.1% 83.2% 81%
70 67.1% 16.1% 83.2% 81%
81 67.1% 16.1% 83.2% 81%

Table 5: Results (4-fold cross-validation) after mapping MRDA labels to MALTUS labels, and then simplifying
using the entropy method. 81 is the full set of labels.

When we use the entropy-based method to define mappings to smaller subsets of the MRDA or MALTUS
labels, we observe a similar effect; it only becomes visiblewhen we reduce the set of labels to a very small size
(e.g. 25 MRDA or 10 MALTUS labels). We also observe a small improvement in the SCORREmetric. We ascribe
this to the uneven distribution of the the labels over the corpus. Therefore, this way of shrinking the set of labels
does not seem very useful in improving the classification accuracy; however, it significantly reduces the time
needed to train a classifier, and the space occupied by the model.

2.6 Discussion and Outlook

We have discussed the task of dialogue act classification fora multidimensional tag set. In particular, we have
focussed on the MRDA tag set and the ICSI meeting corpus. We introduced a novel forgiving evaluation metric
which utilises a hierarchical view of the tag set. The intuition behind SCORRE is that not hitting the correct tag
can be viewed as more or less wrong. We thus depart from the monolithic view of classification results which has
been used up until now, e.g., [96, 12].

We also presented a method to gradually reduce the tag set. Weshowed that, for our classifier, the overall
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recognition rate does not change much unless the initial setof labels is reduced drastically, to 50 for the MRDA
set, or 10 for MALTUS).

Future work includes the following topics:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Sum
1 qr 1 . . . . . . . . 6 . 1 . . . . 1 . . . 9
2 sˆaa . 338 . . 24 . . 4 40 62 . . . . . . 12 494 . . 974
3 qo . . . . . . . . . . . . . . . . 1 . . . 1
4 % . 2 . . 2 . . 11 3 53 . . 30 1 2 . 3 3 2 . 112
5 sˆbk . 89 . . 412 . . 1 36 42 . . . 1 . . 15 287 . . 883
6 qh 1 . . . . 4 . . . 26 . 5 . . . . 5 . 9 . 50
7 x . . . . . . . . . 7 . 2 1 . . . . 2 . . 12
8 fh . 7 . . 3 . . 659 41 40 . 11 31 3 23 2 1 57 . . 878
9 fg . 70 . . 28 . . 72 105 16 . 1 14 3 . . . 21 . . 330
10 s 1 54 . . 29 3 . 7 7 6148 . 104 12 . 4 1 37 37 9 576510
11 qoˆrt . . . . . . . . . 1 . . . . . . . . . . 1
12 s.%– 1 . . . . . . 1 . 340 . 102 2 . 1 1 3 . . 3 454
13 %- . . . . 1 . . 26 6 109 . 12 140 . 8 2 7 2 3 . 316
14 h . . . . . . . 18 10 1 . . . 19 . . . 2 . . 50
15 %– . 1 . . . . . 26 3 59 . 23 39 . 29 4 . . . . 184
16 qrr . . . . . . . . . 13 . . 3 . . 16 1 . 1 . 34
17 qy 2 5 . . 4 . . . 1 245 . 10 1 . . 1 245 47 1 2 564
18 b . 78 . . 89 . . 2 . 26 . . . . . . 8 2189 1 . 2393
19 qw . . . . . . . . . 47 . 4 1 . . . 2 2 97 . 153
20 sˆdf . . . . . . . . . 447 . 9 . . . . 3 . 1 144 604

Sums 6 644 . . 592 7 . 827 252 7688 . 284 274 27 67 27 344 3143 124 206
x=y 1 338 . . 412 4 . 659 105 6148 . 102 140 19 29 16 245 2189 97 144
x6=y 5 306 . . 180 3 . 168 147 1540 . 182 134 8 38 11 99 954 27 62

Table 6: A confusion table for 20 MRDA tags. The labels in the rows are the correct labels, those in the columns
are the classifier outputs. E.g., line 2 column 18 (494) meansthatsˆaawas misclassified asb 494 times—more
often than it was correctly recognised.

Examining confusion matrices

In our classification experiments based merely on transcriptions of the ICSI meetings, there are some dialogue acts
that are often mixed up. In the confusion matrix (table 6), wehave highlighted three such dialogue acts:sˆaa
(statement and accept),sˆbk (statement and acknowledgement) andb (backchannel). These acts are among the
most frequently confused ones, and have been shown before tobe hard to distinguish, e.g., [96]. This is partly
because they share much of their vocabulary (“u-huh”, “yeah”, “right”, “okay”, “absolutely”...). To a degree,
they can be distinguished by their acoustic and temporal properties. For instance, accepts and acknowledgements
usually occur after another speaker has completed a phrase or utterance, while backchannels can occur in the
middle of a phrase of another speaker.

When we find such a pair or group of easily confused labels, we should, on the one hand, try to compare
the definitions of these labels, or the tags in them, in order to find new features which we can extract from our
training data and which help discriminating between the labels. On the other hand, collapsing these acts would
possibly enhance the quality of the classification as well, whereas such a decision has to be taken according to the
requirements from the consumers of the classification.

Classifying aspects separately

In the experiments reported, we train a single classifier forcomplex labels which are actually combinations of tags
representing different aspects of an utterance. This way, most of the rare combinations are nearly impossible to
recognise.
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A different approach would be to use several separate classifiers, one for each aspect of an utterance. For
MRDA labels, we might use one classifier to decide on the general class of an utterance (statement, question, etc.),
additional classifiers for groups of tags (e.g., to determine the type of a question), and binary classifiers to check
for the presence of independent properties (e.g. rising tone). Using separate classifiers for the different aspects, we
might be able to recognise rare combinations of tags more reliably; in particular, it would enable us to recognise
combinations which did not occur in the training material.

On the other hand, however, we would lose information about correlations between tags which is included “for
free” in a single classifier for the complex labels. In [4], a single classifier for complex MALTUS labels (which
reached an accuracy of 73.2%) was compared to a combination of classifiers, which reached only 70.5%.

Feature analysis

The results in [4] were obtained by using roughly the same kinds of features as in this article—words, bigrams
and features indicating the previous dialogue act and temporal overlap between utterances. Especially for words
and bigrams, further research is necessary, as their numberis almost unlimited. It may prove worthwhile to further
investigate to which degree different features add to the overall recognition result. Not only is the memory needed
to store these features reduced, the same argument also applies to the time needed to train the classifier. One
preliminary result is that ignoring words and bigrams with low frequencies (< 10) has almost no influence on the
classification results.

Adding features

The features we use currently are those which are easy to obtain from the transcriptions available to us; however,
they are suboptimal for recognising certain types of utterances. As fig. 4 shows, questions are the type with the
worst recall, and we expect an improvement if phonological features were included. Also, we would like to include
part-of-speech information.

Improving the modelling

Although our classifier evaluation takes similarities between labels into account, the maxent classifier package
does not. The training procedure classifies the training data according to the current feature weights and adjusts
the weights to minimise an error function. This function is based on the number of incorrect classifications and
does not recognise partly correct ones. We are going to research whether the quality of the models can be improved
by using an error function which is aware of similarities between labels.
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3 Addressing

In this section we present preliminary results on automaticpredication of the addressee of dialogue acts in four
participants face-to-face meetings using Bayesian Networks and Naive Bayes classifiers. For training and testing
classifiers, we have developed a small multi-modal corpus ofhand-annotated meeting dialogues. The corpus
contains several meetings from the M4 and the AMI pilot data collections. Due to the limitation of the available
amount of training and testing data, our focus in the experiments presented in this section is not to build a high
performance classifier. The focus is to find appropriate models for addressee classification that can be applied on
the large AMI data set. Our goals are (1) to find relevant features for addressee classification using information
obtained from multi-modal resources, (2) to explore to whatextent the performances of addressee classifiers can be
improved by combining different types of features and (3) tocompare the performances of the Bayesian Network
classifier and the Naive Bayes classifier for the task of addressee prediction.

3.1 Addressees and addressing behavior

When speakers design their utterances they assign different hearers to different roles. Goffman [45] distinguished
three basic kinds of hearers to talk: those who overhear, whether or not their unratified participation is unintentional
and whether or not it has been encouraged; those who are ratified but are notspecificallyaddressed by the speaker
(also called ”unaddressed” recipients Goffman [47] or side-participants Clark and Carlson [31]); and those ratified
participants who are addressed. Ratified participants are participants that are allowed to take part in conversation,
that ”have declared themselves open to one another for purposes of spoken communication and guarantee together
to maintain a flow of words” [46].

Goffman [45] definedaddresseesas those ”ratified participants () oriented to by the speakerin a manner to
suggest that his words are particularly for them, and that some answer is therefore anticipated from them, more
so than from the other ratified participants”. According to this, it is the speaker who selects his addressee; the
addressee is the one who is expected by the speaker to respond, who is invited by the speaker to take the floor.
Addressing is a form of orienting or directing performed by aspeaker.

In meeting conversations, a speaker may address his utterance to the whole group of participants present in the
meeting, or to a particular subgroup of them, or just to one single participant in particular. Sometimes the speaker
just thinks aloud or mumbles to himself without really addressing anybody. Examples of self addressed speech
include utterances such as ”Oops!” (after spilling water onthe table) or ”What else do I want to say?” (while trying
to evoke more details about the issue that he is presenting).We excluded self-addressed speech from our study.
In a group discussion, many of the dialogue acts are simply addressed to the group as a whole. However, when
a speaker shows by verbal or non-verbal behavior that he intends to affect one selected participant or a subgroup
of participants in particular, and to whom therefore he is giving primary attention in the present act then we see
that participant or that group of participants as the addressee of the dialogue act that the speaker performs. The
Goffman’s definition cited above fits the initiatives like questioning or suggesting rather than the responses like
answering or accepting. In our definition of addressing, adirect response to a request of a previous speaker who
requested some information or opinion to be provided primarily to him is addressed to that speaker. Sometimes
the questioner may request from the current speaker that he provides a response to the group (e.g.What do you
think about current proposal?). Responses to these types of requests are mostly addressedto the group. In some
cases, the speaker can understand a previous request as a stimulus to say something more i.e. to clarify, elaborate
or explain the raised issue, addressing the whole group.

In conversations involving more than two people, most utterances are intended to be understood not only by the
people being addressed but also by others. By saying ”What doyou think of this John?” the speaker not only ad-
dresses his question to John, he alsoinformsall hearers about the act that he is simultaneously performing towards
John. According to Clark and Carlson [31], the speaker performs two acts with each utterance in conversation
involving more than two people. One is the traditional kind directed to the addressee (addressee-directed illocu-
tionary act), and the other, calledinformativeis directed to all ratified participants in the conversation(participant-
directed illocutionary act). All addressee-directed actsare performed by means of informatives [31]. Consider the
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following example:

A to B in front of C Did you like the book?

B to A in front of C yes, very much

A to C in front of B and you?

C to A in front of B I liked it too

When A asks B his question, A must also be informing C what he isasking B, otherwise A cannot be certain that
C will understand the questionand you?.

When a speaker A addresses B saying ”I think John can tell you this” while it is known by the speaker that
John is present and listening, we say that John isindirectly addressedby speaker A. The deictically used second
person pronoun ’you’ refers to B, the addressee of A’s utterance.

Addressing behavioris behavior that speakers show to express to whom they are addressing their speech. It
depends on the course of the conversation, the status of attention of participants, their current involvement in the
discussion as well as on what the participants know about each others’ roles and knowledge, whether explicit
addressing behavior is asked for. If the speaker knows that his addressee is already attentive to what he says he
does not have to call his attention. Using a vocative is the explicit verbal way to address someone. Addressees can
be designated in partially by gestures. In some cases the speaker identifies the addressee of his speech by looking at
the addressee, sometimes accompanying this by deictic handgestures. A speaker can also exclude certain people
as addresses by turning his back to them. Addresses can also be designated by the manner of speaking. For
example, by whispering, a speaker can select a single individual or a group of people as addresses, letting everyone
else know that they are not addressed. Addresses are often designated by the content of what is being said. For
example,”We have to decide together about the conceptual design”is a suggestion addressed to the whole group.

3.2 Gaze behavior and addressing

Most studies into the function of gaze behavior in conversational interaction were based on dyadic conversations.
Analyzing dyadic conversations, researchers in conversational analysis observed that gaze in social interaction
is used for several purposes: to control communication (e.g. turn-taking), to provide feedback on the reaction
of others, to communicate the nature of relationships (e.g.dominant relationship or dependent relationship), to
communicate emotions and to avoid distraction through avoiding excess input of information [64, 8].

Recent studies into multi-party interaction, addressed the question about functions of gaze in addressing be-
havior. [120] investigated to what extent the focus of visual attention might function as an indicator for the focus of
”dialogic attention” in four-participants face-to-face conversations. ”Dialogic attention ” includes attention while
listening to a person as well as attention while talking to one or more persons. The empirical findings show that
when a speaker is addressing an individual, there is 77% chance that the gazed person is the addressed individual.
When addressing a triad, speaker gaze seems to be evenly distributed over listeners in the situation where conversa-
tional participants are seated around the table. It is also shown that on average a speaker spends significantly more
time gazing at an individual when addressing the whole group, than at others when addressing a single individual.
When addressing an individual, people gaze 1.6 time more while listening (62%) than while speaking (40%). In
the situation when a triad is addressed, the amount of speaker gaze increases significantly to 59%. According to
all these estimates, we can expect that gaze directional cues are good indicators for addressee prediction.

However, these findings cannot be generalized in the situations when some objects of interests are present in the
conversational environment, since it is expected that the amount of time spent looking at the persons will decrease
significantly. As shown in [11], in a situation when a user interacts with a multimodal information system and in
the meantime talks to another person, the user looks most of the time at the screen, both when talking to the system
(94%) and when talking to the user (57%). Also, another person looks at the system in 60% of cases when talking
to the user. This indicates, that gaze is a less powerful cue for addressee predication in the situation when objects
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of interests are present in the environment. [11] also showed that some improvement in addressee detection can be
achieved by combining utterance duration with facial orientation.

In meeting conversations, the contribution of the gaze direction for addressee prediction is also dependent on
the current meeting activity. For example, when giving a presentation, a speaker most probably addresses his
speech to the whole audience, although he may only look at a single individual in the audience.

Since it is very difficult to record eye gazing of meeting participants, the information about visual focus of
attention can be automatically induced from head orientation [106, 63].

We explored not only the effectiveness of the speaker’s gazedirection, but also the effectiveness of the listeners’
gaze directions as cues for addressee prediction in two situations: (1) when using only gaze to identify who is
addressed and (2) when combining gaze information with other sources of information.

3.3 Data collection

To train and test addressee classifiers, we developed a smallcorpus of hand-annotated meeting dialogues. The
meetings were recorded in the IDIAP meeting room in the research program of the M4 and AMI projects (AMI
pilot meetings). The corpus contains hand-annotated dialogue acts, adjacency pairs, addressees and gaze directions
of meeting participants. Each type of annotation is described in detail in [59].

Our dialogue act tag set is based on the MRDA (Meeting Recorder Dialogue Act) set [36]. It is a MRDA
”classmap”, made by grouping the MRDA tags into 17 categories. In contrast to MRDA, where each functional
utterance is marked with a label compound of one or more tags from the set, each functional utterance in our DA
schema is marked as Unlabeled or labeled with exactly one tagfrom the set that is presented in Table 7.

DA tag set MRDA

Statements
s Statement s Statement
Questions
q Information-Request Wh-question, Y/N question, OR-

question, Or Clause After Y/N
question

qo Open-ended Question Open-ended questions
qh Rhetorical Question Rhetorical Questions
Backchannels and Ack.
bk Acknowledgement Acknowledgment,Backchannel
ba Assessment/Appreciation Assessment/Appreciation
Responses
rp Positive response (Partial)Accept, Affirmative An-

swer
rn Negative response (Partial)Reject, Dispreferred and

Negative Answer
ru Uncertain response Maybe , No Knowledge
Action Motivators
al Influencing-listeners-action Command, Suggestion
as Committing-speaker-action Commitment,Suggestion
Checks
f ”Follow Me” ”Follow Me”
br Repetition Request Repetition Request
bu Understanding Check Understanding Check
Politeness Mechanisms
fa Apology Apology
ft Thanks Thanks
fo Other polite Downplayer,Sympathy, Welcome

Table 7: Dialogue act tag set

Labelling of adjacency pairs consists of marking dialogue acts that occur as their a-part and b-part. If a dialogue
act is an a-part with several b-parts, for each of these b-parts, a new adjacency pair is created.

Since all meetings in the corpus consist of four participants, addressee of a dialogue act is labeled asUnknown
or with one of the following addressee tags: individualPx, a subgroup of participantsPx,Py or the whole audience
Px,Py,Px.
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Labeling gaze direction denotes labeling gazed targets foreach meeting participants. For addressee identifica-
tion, the only targets of interests are meeting participants. Therefore, the tag set contains tags that are linked to
each participant (Px) and theNoTargettag that is used when the speaker does not look at any of the participants.

Annotators involved in the corpus design were able to reproduce the gaze annotation reliably (segmentation
80.40% (N=939); classificationκ = 0.95). Annotators involved in dialogue act, adjacency pairs and addressee
annotations were divided into two groups; each group annotated different sets of meeting data. Table 8 shows
reliability of dialogue act segmentation as well as Kappa values for dialogue act classification and addressee anno-
tation for each annotation group.

Group Segmentation (%) N DA(κ) ADD(κ)
B&E 91.73 377 0.77 0.81
M&R 86.14 367 0.70 0.70

Table 8: Inter-annotator agreement on DA and addressee annotation: N - the number of agreed segments

3.4 Addressee classification

This section presents preliminary results on addressee classification in four-persons face-to-face conversations
using Bayesian Network and Naive Bayes classifiers.

In a dialogue situation, which is an event that lasts as long as the dialogue act performed by the speaker in
that situation, the class variable is the addressee of the dialogue act performed by the current speaker (ADD).
Since there are only few instances of subgroup addressing present in the data, we removed them from the data set
and excluded all possible subgroups of meeting participants from the set of class values . Therefore, we define
addressee classifiers to identify one of the following classvalues: individualPx wherex ∈ {0,1,2,3} andALLP
which denotes the whole audience.

3.4.1 Features

To identify the addressee of a dialogue act, we used three sorts of features: contextual features, utterance features
and gaze features.

Contextual features provide the information about the preceding utterances. We experimented with using the
information about speaker, addressee and dialogue act of the immediately preceding utterance on the same or a
different channel (SP-1, ADD-1, DA-1) as well as the information about the related utterance (SP-R, ADD-R, and
DA-R). A related utterance is the utterance that is the A partof an adjacency pair with the current utterance as the
B part. The information about the speaker of the current utterance (SP) has also been included in the contextual
feature set.

As utterance features, we used a set of lexical features thatare based on our intuition on which words are the
most informative for indicating whether the utterance is single or group addressed. The set includes the following
features:

• does the utterance contain personal pronouns we or you, bothof them, or neither of them?

• does the utterance contain possessive pronouns or possessive adjectives (your/yours or our/ours), their com-
bination or neither of them?

• does the utterance contain indefinite pronouns such as somebody, someone, anybody, anyone, everybody
and everyone?

• does the utterance contain the name of speakerPx?
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Utterance features include also the information about the utterance’s conversational function (DA tag) and the
information about utterance duration i.e. whether the utterance is short or long. In our experiments, an utterance is
considered as a short utterance, if its duration is less or equal to 1 sec.

We experimented with a variety of gaze features. In the first experiment, for each participant (Px) we defined a
set of features in the formPx− looks−Py andPx− looks−NT wherex,y∈ {0,1,2,3} andx 6= y; Px− looks−NT
represents that participantPx does not look at any of the participants. The value set represents the number of times
that speakerPx looks atPy or looks away during the time span of the utterance: ”zero” for 0, ”one” for 1, ”two”
for 2 and ”more” for 3 or more times. In the second experiment,we defined a feature set that incorporates only
the information about gaze direction of the current speaker(SP− looks−Px andSP− looks−NT) with the same
value set as in the first experiment.

3.4.2 Results

To train and test the Bayesian Network and Naive Bayes classifiers, we used the hand-annotated M4 data. After
we had discarded the instances labeled withUnknownor subgroup addressee tags, 781 instances left available for
the experiments.

For learning the Bayesian network structure, we applied theK2 algorithm [33]. The algorithm requires an
ordering on the observable features; different ordering leads to different networks structures. We conducted exper-
imenters with several orderings. The obtained classification results for different orderings were nearly identical.
For learning conditional probability distributions, we used the algorithm implemented in the WEKA toolbox7 that
produces direct estimates of the conditional probabilities.

The performances of the classifiers are measured using different features sets. First, we measured the perfor-
mances of classifiers using utterance features, gaze features and contextual features separately. Then, we conducted
experiments with all possible combinations of different types of features. For each classifier, we performed 10-fold
cross-validation. Table 9 summarizes the accuracies of theclassifiers for different feature sets (1) using the gaze
information of all meeting participants and (2) using only the information about speaker gaze direction (with 95%
confidence interval).

BN NB
Feature sets Gaze All Gaze SP Gaze All Gaze SP
All Features 81.05%(±2.75) 82.59%(±2.66) 78.10%(±2.90) 78.49%(±2.88)

Context 73.11%(±3.11) 68.12%(±3.27)
Utterance+SP 52.62%(±3.50) 52.50%(±3.50)

Gaze+SP 66.45%(±3.31) 62.36%(±3.40) 64.53%(±3.36) 59.02%(±3.45)
Gaze+SP+Short 67.73%(±3.28) 66.45%(±3.31) 65.94%(±3.32) 61.46%(±3.41)

Context+Utterance 76.82%(±2.96) 72.21%(±3.14)
Context+Gaze 79.00%(±2.86) 80.03%(±2.80) 74.90%(±3.04) 77.59%(±2.92)

Utterance+Gaze+SP 70.68%(±3.19) 70.04%(±3.21) 69.78%(±3.22) 68.63%(±3.25)

Table 9: Classification results for Bayesian Network and Naive Bayes classifiers using gaze information of all
meeting participants(Gaze All) and using speaker gaze information (Gaze SP)

The results show that the Bayesian Network classifier outperforms the Naive Bayes classifier for all feature
sets, although the difference is significant only for the feature sets that include contextual features.

For the feature set that contains only the information aboutgaze behavior combined with the information about
the speaker (Gaze+SP), both classifiers perform significantly better when exploiting the gaze information of all
meeting participants. In other words, when using solely thefocus of visual attention to identify the addressee
of a dialogue act, the focus of attention of non-speaking participants provides valuable information for addressee
prediction. The same conclusion can be drawn when adding theinformation about utterance duration to the gaze
feature set (Gaze+SP+Short), although for the Bayesian Network classifier the difference is not significant. For all
other feature sets, the classifiers do not perform significantly different when including or excluding the listeners

7http://www.cs.waikato.ac.nz/ ml/weka/
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gaze information. Even more, both classifiers perform better using only the speaker gaze information in all cases
except when combined utterance features and gaze features are exploited (Utterance+Gaze+SP).

The Bayesian network and Naive Bayes classifiers show the same changes in the performances over different
feature sets. The results indicate that the selected utterance features are less informative for addressee prediction
(52.50%) compared to contextual features (BN:73.11%; NB:68.12%) or features of gaze behavior (BN:66.45%,
NB:64.53%). The results also show that adding the information about the utterance duration to the gaze features,
slightly increases the accuracies of the classifiers (BN:67.73%, NB:65.94%), which confirms findings presented
in [11]. Combining the information from the gaze and speech communication channels improves significantly
the performances of the classifiers (BN:70.68%; NB:69.78%)in comparison to performances obtained from each
channel separately. Furthermore, higher accuracies are gained when adding contextual features to the utterance
features (BN:76.82%; NB:72.21%) and to the features of gazebehavior (BN:80.03%, NB:77.59%). As it is ex-
pected, the best performances are achieved by combining allthree types of features (BN:82.59%, NB:78.49%),
although not significantly better compared to combined contextual and gaze features.

We also explored how well the addressee can be predicted excluding information about the related utterance
(i.e. AP information). The best performances are achieved using speaker gaze information in combination with
contextual and utterance features (BN: 79.39%; NB: 76.06%). A small decrease in the classification accuracies
when excluding AP information (about 3%) indicates that remaining contextual features, utterance features and
gaze features capture most of the useful information provided by AP.

3.4.3 Evaluation of the addressee classifiers on the AMI pilot data

We investigated how well the classifiers trained on the M4 data perform on the AMI pilot data. Two AMI pilot
meetings were used for the evaluation, although only one of them has been annotated with visual focus of attention.
After discarding utterances labeled withUnknownand subgroup addressee tags from the data set, we had 291
instances available for testing the performances of the classifiers using the complete feature set and 673 instances
for testing the performances of classifiers using combined contextual and utterance features.

The results presented in Table 10 show a significant decreasein the performances of classifiers for both feature
sets in comparison to the performances on the M4 data. The accuracies decrease about 10% in all cases, except for
the Naive Bayes classifier when visual information is used (more than 13%).

BN NB
Feature sets Gaze All Gaze SP Gaze All Gaze SP
All Features 70.65% 72.35% 63.14% 65.87%

Context+Utterance 66.41% 63.45%

Table 10: Classification results for the M4 classifiers on theAMI pilot data

This decrease in the performances can be due to several reasons. First, there are more single-addressed utter-
ances in the AMI meetings than in the M4 meetings. Second, single-addressed utterances in the M4 meetings are
almost equally distributed over all participants, whereasin the AMI meetings the distribution is dependent on the
roles participants play in a meeting: a participant with thedominate role (i.e. project manager) has been addressed
more than the others (40.19%). Third, participants in the AMI meetings show different gaze behavior, since their
attention is focused part of the time at the task object i.e. the remote TV control that is present in the meeting
room, especially when the remote control is relevant for thetopic of conversation. As discussed in Section 3.2, the
presence of the object of interest decreases the effectiveness of the gaze as an indicator of who is being addressed.

From this we can conclude, that including the background knowledge about participants’ roles in a meeting as
well as the information about the topic of conversation may improve addressee prediction on the AMI data.
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4 Dominance detection

In many cases it is beneficial for the effectiveness of a meeting if people assume a cooperative stance. Grice [50]
formulated four maxims that hold for cooperative conversations. The maxims of quantity, quality, relevance and
manner state that one should say nothing more or less than is required, speak the truth or say only things for which
one has enough evidence, only say things that are relevant for the discussion at hand and formulate the contribution
such that it can be easily heard and understood by the interlocutors. These maxims are all formulated from the
perspective of producing utterances in a conversation. Onecould define similar maxims for cooperative behavior,
more generally. One can also think of several tasks of chairpersons in meetings as being guided by such maxims.
The chair should facilitate the participants to have their say, to cut off people who make their contribution too
long or to intervene when contributions are not relevant to the discussion at hand. Discussions should be properly
organized to have arguments develop, so that all positions are put to the fore, and all relevant pros and cons are
raised. People that are too dominant in meetings may violateone or more of the cooperative maxims and are
thereby frustrate the process of collective decision making for which many meetings are intended. The chair of the
meeting should avoid this from happening or intervene when it does.

Nowadays, in order to maximize the efficiency, meetings can be assisted with a variety of tools and supporting
technologies [97]. These tools can be passive objects such as microphones facilitating better understanding or
semi-intelligent software systems that automatically adjust the lighting conditions. In the near future, meetings
will be assisted with various similar sorts of active, and perhaps even autonomous, software agents that can make
sense of what is happening in the meeting and make certain interventions [41]. An example of such meeting
assisting agents could be an agent that signals possible violations of cooperative maxims in the decision making
process to the chairperson. One of the major issues to be addressed in this case is how the agent can detect that
there is such a disturbance.

4.1 Dominance

According to Hoffmann [56], there are three types of behavioral roles that can be identified in groups or teams.
These roles can be classified as task-oriented, relation-oriented and self-oriented. Each group member has the
potential of performing all of these roles over time.Initiators, Coordinatorsand Information Giversare task-
oriented roles that facilitate and coordinate the decisionmaking tasks. The Relations-Oriented role of members
deals with team-centered tasks, sentiments and viewpoints. Typical examples are :Harmonizers, Gatekeepersand
Followers. The Self-Oriented role of members focusses on the members’individual needs, possibly at expense of
the team or group. Examples here areBlockers, Recognition SeekersandDominators. The Dominator is a group
member trying to assert authority by manipulating the groupor certain individuals in the group. Dominators may
use flattery or proclaim their superior status to gain attention and interrupt contributions of others. According to
Hellriegel et al. [55], a group dominated by individuals whoare performing self-oriented sub-roles is likely to be
ineffective.

In psychology, dominance refers to a social control aspect of interaction. It involves the ability to influence
others. One can refer to it as a personality characteristic -the predisposition to attempt to influence others - or one
can use the term to describe relationships within a group. Dominance is a hypothetical construct that is not directly
observable. However, there appear to be certain behavioralfeatures displayed by people that behave dominantly
that make it possible for observers of these behaviors to agree on judgments of dominance. In Ellyson and Dovidio
[42] the nonverbal behaviors that are typically associatedwith dominance and power are investigated. In several
of the papers in that volume, human perceptions of dominanceare discussed as well.

In “A System for Multiple Level Observation of Groups” (SYMLOG), [13], Bales distinguishes three structural
dimensions in group interactions: status, attraction and goal orientation. Goal orientation refers to the way people
are involved with the task or rather with socio-emotional behaviours. This dimension was already present in Bales’
earlier work on Interaction Process Analysis [12]. The attraction dimension concerns friendly versus unfriendly
behaviours. The status dimension has to do with dominant versus submissive behaviours. Bales developed a
checklist that observers can use to structure their observations of groups. He has also developed a number of self-
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report scales that group members can use to rate themselves (and other group members) on these three dimensions.
SYMLOG presents a questionnaire containing 26 questions from which 18 relate to the concept of dominance. The
factors involved in these questions provide a frame for the meaning of the concept. An overview of these factors
in their most general form are shown in Table 11.

Positive contributions Negative contributions
active, dominant, talks a lot passive, introverted, said little
extraverted, outgoing, positive gentle, willing to accept responsibility
purposeful, democratic task-leader obedient, worked submissively
assertive, business-like, manager self-punishing, worked too hard
authority, controlling, critical depressed, sad, resentful, rejecting
domineering, tough-minded, powerfulalienated, quit, withdrawn
provocative, egocentric, showed-off afraid to try, doubts own ability
joked around, expressive, dramatic quietly happy just to be in group
entertaining, sociable, smiled, warm looked up to others, appreciative

Table 11: Aspects of dominance according to SYMLOG

When we look at this scale we see that it is very hard to operationalize many factors - such as ‘purposeful’ and
‘alienated’, for instance. They depend on human interpretative skills. What we need are automatically detectable
features that can be quantified and transformed as a series ofdigits into our system.

To train a classifier that can determine who is the person thatdominated a meeting, we need a corpus of meeting
recordings with the relevant features that the classifier isusing either extracted or annotated and also we need to
know how the participants of the various meetings scored on the dimension of dominance. We will provide more
details on the corpus and the features used by the classifier in Section 4.3. Now, we will first describe how we
established the dominance ranking for the meetings we used.

4.2 Dominance judgements

We used a corpus of eight four-person meetings8. The meetings varied in length between 5 and 35 minutes. We
collected 95 minutes in total. We used different kinds of meetings, including group discussions where statements
had to be debated, discussions about the design of a remote control, book club meetings and PhD. evaluation
sessions.

We asked ten people to rank the participants of the meetings.Each person ranked four, i.e. half of, the meetings.
We thus had a total of five rankings for every meeting. We simply told people to rate the four people involved in
the meeting on a dominance scale. We did not tell the judges anything more about what we meant by that term.
The results are shown in Table 12. The first cell shows that in the first meeting (M1), judge A1 thought that the
most dominant person was the one corresponding to the fourthposition in this list, second was the first person in
this list, third the second person in the list and least dominant was the third person in the list: 2,3,4,1. If one looks
at the judgements by the other judges for this meeting (A2 to A5), by comparing the different columns for this first
row, one can see that A3’s judgments are identical to A1’s. All but A4 agree that the fourth person on the list was
most dominant. All but A5 agree that the third person was least dominant. All but A2 agree that the first person
was the second dominant person. This seems to suggest that onthe whole judgements were largely consistent
across judges.

To establish the degree of agreement, we compared the variance of the judgements with the variance of random
rankings. If the variance of the annotators is smaller than the variance of the random rankings, we have a strong
indication that people agree on how to create a dominance ranking.

8Five of these were recorded for the M4 project (M4TRN1, M4TRN2, M4TRN6, M4TRN7 and M4TRN12) and three for the AMI project,
two of them were pilot meetings (AMI-Pilot 2 and AMI-Pilot 4)and the third one was a meeting from the AMI spokes corpus (AMI-FOB 6).
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A1 A2 A3 A4 A5 ‘Average’ ‘Variance’
M1 2,3,4,1 3,2,4,1 2,3,4,1 2,1,4,3 2,4,3,1 2,3,4,1 8
M2 2,3,4,1 2,3,4,1 2,3,4,1 2,3,1,4 3,2,4,1 2,3,4,1 8
M3 2,1,3,4 3,1,2,4 2,1,4,3 3,1,2,4 1,2,3,4 2,1,3,4 8
M4 2,4,3,1 2,4,3,1 1,4,2,3 2,3,4,1 1,4,3,2 1,4,3,1 4

A6 A7 A8 A9 A10 ‘Average’ ‘Variance’
M5 4,3,2,1 4,3,1,2 3,4,1,2 4,3,1,2 3,4,1,2 4,3,1,2 6
M6 1,3,2,4 1,4,3,2 3,1,4,2 3,1,4,2 1,3,4,2 1,3,4,2 12
M7 1,4,3,2 2,4,3,1 3,2,1,4 2,4,1,3 1,4,3,2 1,4,2,3 14
M8 1,2,4,3 1,4,2,3 2,1,3,4 2,1,3,4 1,2,4,3 1,2,3,4 12

Table 12: Rating of meeting participants for all the annotators per meeting.

If we add up the dominance scores for each person in the meeting, this results for the first meeting in scores 11,
13, 19 and 7, with results in an overall ranking of 2, 3, 4, 1. Wecall this the ‘average’ ranking. In case of similar
scores, we scored them an equal rank, letting the other two ranks behind. For each of the judges we compare how
they differ for each person from this average.

As a measure for the variance we calculated the sum of all the (absolute) differences of each of the annotators
judgments (Ai) with their corresponding average. The difference with theaverage was calculated as the sum of the
pairwise absolute differences for all the annotators values of the meeting participantsAp with their corresponding
average valueAveragep. See Table 12 for the results.

‘Variance’= ∑5
i=1 ∑4

p=1 |A
i
p−Averagep|

In this case A1 and A3 judgments are identical to the average.A2 made different judgments for the first person
(scoring him as 3 instead of 2) and the second person (scoringhim as 2 instead of 3). So this results in a variance
of 2 adding up the variance 4 and 2 of judges A4 and A5 respectively this ends up in an overall variance of 8 for
judgements on the first meeting.

When comparing the variance of the judges with the variance resulting from randomly generated rankings, the
distribution of the variance of the annotators (µ = 9, σ = 3.38,n = 8) lies far more left of the distribution coming
from randomly generated rankings. (µ = 17.8,σ = 3.49,n = 1.0∗ 106). The two distributions appeared to be
statistically significant (p< 0.001) according to the 2-sided Kolmogorov Smirnov test. Itthus appears that judges
agree very well on dominance rankings. We may have to be conservative to generalize this though as we have only
a small (n=8) amount of real samples.

These results support our initial thoughts, where we expected humans to agree (to a reasonable extent) on the
ranking of meeting participants according to their conveyed dominance level.

4.3 Features used by the classifier

Dominance can be regarded as a higher level concept that can may be deduced automatically from a subset of
lower level observations ([93]), similar to the assignmentof the value for dominance by humans on the basis of the
perception and interpretation of certain behaviours.

For our classifier we considered some common sense features that possibly could tell us something about the
dominance of a person in relation to other persons in meetings. For each person in the meeting we calculated
scores for the following features.

• The person’s influence diffusion (IDM)

• The speaking time in seconds (STS)
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• The number of turns in a meeting (NOT)

• The number of times addressed (NTA)

• The number of successful interruptions (NSI)

• The number of times the floor is grabbed by a participant (NOF)

• The number of questions asked (NQA)

• The number of times interrupted (NTI)

• The ratio of NSI/NTI (TIR)

• Normalised IDM by the amount of words spoken. (NIDF)

• The number of words spoken in the whole meeting (NOW)

• The number of times privately addressed (NPA)

The Influence diffusion model[81] generates a ranking of the participants by counting thenumber of terms,
reused by the next speaker from the current speaker. The person who’s terms are re-used the most is called the
most influential.

Most of the features appear as simple metrics with variations that measure the amount to which someone is
involved in the conversation and how others allow him/her tobe involved. These are all measures that are easy to
calculate given a corpus with appropriate transcriptions and annotations provided. Metrics used in the literature,
as in SYMLOG, depend on the interpretation of an observer.

After the judges that rated our corpus had finished their ratings, we asked them to write down a list of at least
five aspects which they thought they had based their rankingson.

Dominant is the person: who speaks for the longest time, who speaks the most, who is addressed the
most, who interrupts the others the most, who grabs the floor the most, who asks the most questions,
who speaks the loudest, whose posture is dominant, who has the biggest impact on the discussion,
who appears to be most certain of himself, who shows charisma, who seems most confident.

From the features identified by the annotators we can see thate.g. charismaandconfidenceare again typical
examples of features that are very hard to measure and to operationalize. Most of this is again due to the fact that
a proper scale does not exist, and as a result the valuation becomes too subjective and values from one annotator
might not correlate with the values from another annotator.Several of these features are similar to the ones we are
exploring for their predictive power in our classifier.

4.4 Acquiring and preprocessing the data

For each of the eight meetings ranked by our annotators, we calculated the values for the measures identified in
the previous section. This was done on the basis of simple calculations on manual annotations and on the results
of some scripts processing the transcriptions9. With respect to addressee annotation 25% of the data was not
annotated due to the cost involved10.

In order to make the values for the same feature comparable, we first made the feature values relative with
respect to the meeting length. This was done in two steps. First the fraction, or share, of a feature value was
calculated given all the values for that feature in a meeting.

9All transcriptions used were created using the official AMI and M4 transcription guidelines of those meetings [76, 39].
10Addressee information takes over 15 times real time to annotate [59].
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The share of a feature value (F
′

Pn) = FPn
∑FP1..FP4

Then, according to the value of the fraction, the results were binned in three different bins. As we are dealing
with four person meetings the average value after step 1 is 0.25 (=25% share). The features were grouped using
the labels ‘High’ (F

′

Pn > 35% ), ‘Normal’ (15%< F
′

Pn < 35%), and ‘Low’ (F
′

Pn < 15%).

As a consequence, apart from the fact that features were now comparable between meetings, the feature values
that originally had ‘approximately’ the same value now alsoended up in the same bin. This seemed intuitively
the right thing to do. Table 13 shows the value of the NOW feature (‘The number of words used’ per participant
per meeting) before and after applying the process. If we look at the number of words used for person 2 (P2) and
person 4 (P4) we see that they both end up labelled as ’High’. Although they did not speak the same amount of
words, they both used more than 90000 words, which is a lot in comparison with P1 (38914) and P3 (26310), both
ending up classified as ‘Low’.

NOW before NOW after
preprocessing preprocessing

P1 P2 P3 P4 P1 P2 P3 P4
M1 38914 93716 26310 98612 low high low high
M2 33458 11602 14556 37986 high low low high
M3 3496 7202 8732 2774 low high high low
M4 2240 1956 4286 7642 low low normal high
M5 4470 1126 9148 1974 normal low high low
M6 2046 17476 1828 4058 low high low high
M7 4296 6812 8258 1318 normal high high low
M8 1586 13750 1786 1540 low high low low

Table 13: The feature ‘Number of Words’ before and after preprocessing for person 1,2,3 and 4 respectively for
each meeting.

Now, as the feature values were made comparable, we were almost ready to train our model. The only step
left was to define the class labels determining the dominancelevel. For this we decided to use the same technique
as for the features, labelling them also as ‘High’, ‘Normal’and ‘Low’. We calculated the shares of each of the
participants by dividing the sum of the valuations of all judges for this participant by the total amount of points the
judges could spend (5∗ (1+2+3+4)= 50).

The results were then again binned using the same borders of 15 and 35 percent. Where a share was smaller
than 15% the dominance level was labelled as ‘High’; if the share lay between 15% and 35% the dominance level
was labelled ‘Normal’ and where it was higher than 35 % the label ‘Low’ was used. This way, also the persons
who received more or less similar scores ended up in the same bin.

This resulted in a data-set of 32 samples with twelve samplesreceiving the class label ‘High’, ten ‘Normal’
and ten ‘Low’. We define our baseline performance as the shareof the most frequent class label (‘High’) having a
share of 37.5% of all labels.

4.5 Detecting dominance

We wanted to predict the dominance level of the meeting participants with the least possible features, in accordance
with Occam’s razor [19], trying to explain as much as possible with as little as possible. The fewer features we
required, the easier it would be to eventually provide all information to the system. This way we reduced the risk of
over fitting our model to the data as well. To decrease our amount of features we applied dimensionality reduction
using principal component analysis.
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We obtained the best performance by training a Support Vector Machine (SVM) using the two most discrim-
inative features: NOF and NOT. These features appeared together with the NSI as being the most discriminative.
Ten-fold cross validation resulted in a performance of 75%,which is much higher than our 37.5% baseline. This
means, that given the number of times the meeting participants are privately addressed and given the number of
times they grab the floor, our classifier is in 75 % of the cases able to correctly classify the behavior of the par-
ticipants as being ‘Low dominant’, ‘Normal dominant’ or ‘High(ly) dominant’. The confusion matrix is shown in
Table 14.

Low Normal High
Low 9 0 1

Normal 3 5 2
High 0 2 10

Table 14: Confusion matrix using the features NPA and NOF. The rows are showing the actual labels and the
columns the labels resulting from the classifier.

From the confusion matrix it can be seen that our classifier performs better on the classes ‘Low’ and ‘High’
than on the class ‘Normal’. This seems in line with our intuition that people showing more extreme behavior are
easier to classify.

The 90% confidence interval for our classifier lies between a performance of 62% and 88%. This confidence
interval is important due to the relatively small sample of data. The lower bound is still much higher than the
37.5% baseline. The fact that we would over fit our classifier when using all the features appeared when we trained
on all the features. Ten fold cross validation resulted in that case in a performance of 50%.

Aware of the fact that our sample size is relatively small andthat not all meetings follow the same format,
we do think that our results suggest that it is possible to have a system analyzing the level of dominance of the
meeting participants. If we look at the features used by our model, and the fact that their values should be just as
informative during the meeting as after the meeting, we expect these systems not to function just after the meeting,
but just as well in real time.

4.6 Transferring our knowledge

We used the information from our classifier to create a modulefor the Twente Meeting Browser where the domi-
nance levels of meeting participants is calculated in real-time and graphically visualized in a graph.

As revealed by the SVM attribute evaluator, the features NOT, NOF and NSI were the most important. We
used these to calculate a measure which we calledthe dominance level. This value is calculated as follows: We
keep track of four bins, one for each participant and add points as the meeting proceeds. We decided to add one
one point to the score of a participant, and in case he or she takes a turn, and add one extra point, if this turn either
was obtained after a silence longer than two seconds, or by interrupting the previous speaker. At the end of the
meeting, the resulting levels should match the hierarchiesused to train the classifier. At the moment of writing
we cannot yet confirm this for all meeting. Preliminary results however indicate that this indeed will happen. A
visualization of the AMI-FOB6 meeting in the Twente MeetingBrowser, including the relative dominance values
is shown in figure 5. For more information about the Virtual Meeting Room, the reader is referred to Reidsma et al.
[92].

4.7 Conclusions and future work

We showed that in the future systems might be extended with modules able to determine the relative dominance
level of individual meeting participants. We were able to reach an accuracy of 75%. This classification appeared
mainly dependent on the number of floorgrabs and the number ofturns someone took. Also the number of times a
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Figure 5: A view at the Twente Meeting Browser, including a dominance graph

person is privately addressed seems a good indicator in combination with the number of times the floor is grabbed
by that person. As all the features are made relative to the total value of all participants, one should be able to
apply the model both during as well as after the meeting

Possible directions for opportunities to improve our modelcould be to extend the feature set with more seman-
tically oriented features, such as ‘Who is using the strongest language?’, or ‘Who gets most suggestions accepted?’.
Although these features seem very intuitive and might increase the performance, one does have to realize that being
able to measure these, costly and complex inferencing systems have to be developed.

Another possible thing to look at is to use more samples, thiswill be more expensive on one side, but also
decreases the confidence interval, further increasing the reliability of the performance on the other side.

Typical applications of systems that track the dominance levels of participants are other systems using the
dominance information in order to inform the meeting participants or a meeting chairman about this. With this
information a chairman could alter his style of leadership in order to increase the meeting productivity. Combined
with other information, recommender systems could be created that directly suggest how to change the leadership
style. The next thing one could think of is a virtual chairmanas mentioned in Rienks et al. [97] which is able to
lead a meeting all by itself, giving turns, keeping track of atime-line and most important: keeping the meeting as
effective and efficient as possible.
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5 Topics

Further work on hierarchical topic detection by Trieschnigg is reported in [112].

5.1 Introduction

Text segmentation, i.e., determining the points at which the topic changes in a stream of text, plays an important
role in applications such as topic detection and tracking, summarization, automatic genre detection and information
retrieval and extraction [87]. In recent work, researchershave applied these techniques to corpora such as newswire
feeds and transcripts of radio broadcasts or spoken dialogues, in order to facilitate browsing, information retrieval,
and topic detection.[7, 118, 102, 35, 18, 30]

In this report, we focus on segmentation of multiparty dialogues, in particular recordings of small group meet-
ings as in the AMI corpus. We compare models based solely on lexical information, which are common in ap-
proaches to automatic segmentation of text, with models that combine lexical and conversational features. Because
tasks as diverse as browsing, on the one hand, and summarization, on the other, require different levels of granu-
larity of segmentation, we also explore the performance of our models for both predicting all subtopic segments
and predicting only top-level segments.

In addition, because we do not wish to make the assumption that high quality transcripts of meeting records,
such as those produced by human transcribers, will be commonly available, we require algorithms that operate
directly on automatic speech recognition (ASR) output. Compared to read speech and two-party dialogue, multi-
party dialogues typically exhibit a considerably higher word error rate (WER) [77]. Experience with segmentation
of broadcast news has shown that using ASR output degrades the performance of topic segmentation models
[118, 102, 18]. Therefore, it is important to understand theeffect on the accuracy of the different probabilistic
models we have developed for segmenting meetings.

This report is divided into 6 sections. In Section 2, we discuss previous work and its relation to our work.
Section 3 describes two implemented models for automatically predicting segment boundaries for both topics and
subtopics, as well as our evaluation procedure. In Section 4, we investigate how machine learning techniques can be
used to cope with the highly skewed class distribution inherent in the topic organization of multiparty dialogues. In
Section 5, we report the experimental results of evaluatingthe two implemented models on human transcripts and
ASR output. In Section 6, we summarize the findings and analyze possible causes for the performance degradation.
In Section 7, we briefly conclude and describe areas for future work.

5.2 Previous Work

Much of the prior research on segmentation of spoken “documents” uses approaches that were developed for
text segmentation, and that are based solely on textual cues. These include algorithms based on lexical cohesion
[43, 107], as well as models using annotated features (e.g.,cue phrases, part-of-speech tags, coreference relations)
that have been determined to correlate with segment boundaries [44, 15]. Blei et al. [18] and van Mulbregt et
al. [118] use topic language models and variants of the hidden Markov model (HMM) method to identify topic
segments. In fact, recent systems achieve good results for predicting topic boundaries when trained and tested on
human transcriptions. For example, Stokes et al. [107] report an error rate (Wd) of 0.253 on segmenting broadcast
news stories; Galley et al. [43] report an error rate (Pk) of 0.264 (when the number of segments is given) and 0.319
(when the number of segments unknown) for the task of predicting top-level segments in meetings.11

Although recordings of dialogue lack the distinct segmentation cues commonly found in text (e.g., headings,
paragraph breaks, and other typographic cues), they contain acoustic and conversation-based features that may be
of use for automatic segmentation. Acoustic information includes prosodic features [102] and speaker-specific
pitch activity [9]. Conversation-based features include those obtained statistically, such as silence, overlap rate,

11For the definition of Pk and Wd, please refer to section 3.5.
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speaker activity change [43] and cross-speaker linking information such as adjacency pairs [128], as well as those
obtained empirically, such as control shift [122]. Becausemany of these features can be expected to be com-
plimentary, researchers have explored approaches to select and combine features into an integrated model. For
two-party dialogue, Shriberg et al. [102] have shown that combining prosodic information and lexical cues yields
better results than using either alone. With respect to spontaneous multiparty dialogue, Galley et al. [43] have
shown that a model integrating lexical and conversation-based features outperforms the model using only lexical
features.

However, as noted above, we expect the high WER of ASR output to degrade performance of segmentation
models that were developed on either human or ASR transcriptions. In particular, we expect that incorrectly rec-
ognized words will impair the robustness of text-based approaches and extraction of conversation-based discourse
cues. However, no prior study has reported directly on the extent of this degradation on the performance of au-
tomatic topic segmentation in spontaneous multiparty dialogue. Past research on topic segmentation in broadcast
news using ASR transcription has shown performance degradation from 5% to 38% using different evaluation
metrics [118, 102, 18]. In this report, we extend prior work by providing quantitative results of applying our seg-
mentation models to both the topic prediction and subtopic prediction tasks, and also report the results of the effect
of using ASR output on models using text-based approaches and models integrating text-based and conversation-
based features. For practical reasons, we leave implementation of models that integrate acoustic features to future
work.

5.3 Method

5.3.1 Data

In this study, we used the ICSI meeting corpus (LDC2004S02) as a test bed for our analysis and experiments.
Seventy-five natural meetings of ICSI research groups were recorded using close-talking far field head-mounted
microphones and four desktop PZM microphones. The corpus includes human transcriptions of all meetings. We
used ASR transcriptions of all 75 meetings which were produced by Anonymous (2005), with an average WER of
roughly 30%.

Three human annotators at our site used a tailored tool to perform topic segmentation in which they could
choose to decompose a topic into subtopics, with at most three levels in the resulting hierarchy. Annotators were
asked to provide a free text label for each topic segment; they were encouraged to use keywords drawn from the
transcription in these labels, and we provided some standard labels for non-content topics, such as ”opening” and
”chitchat”, to impose consistency,

To establish reliability of our annotation procedure, we calculated kappa statistics between the annotations of
each pair of coders. Our analysis indicates human annotators achieveκ = 0.79 agreement on top-level segment
boundaries andκ = 0.73 agreement on all subtopic boundaries. The level of agreement confirms good replicability
of the annotation procedure.

5.3.2 Fine-grained and coarse-grained topic organization

We characterize a dialogue as a sequence of topical segmentsthat may be further divided into subtopic segments.
For example, the 60 minute meeting Bed003, whose theme is theplanning of a research project on automatic
speech recognition can be described by 4 major topics, from “opening” to “general discourse features for higher
layers” to “how to proceed” to “closing”. Depending on the complexity, each topic can be further divided into a
number of subtopics. For example, “how to proceed” can be subdivided to 4 subtopic segments, “segmenting off
regions of features”, “ad-hoc probabilities”, “data collection” and “experimental setup”. For our initial experiments
with automatic segmentation at different levels of granularity, we flattened the subtopic structure and consider only
two levels of segmentation–top-level topics and all subtopics.
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Figure 6:The hierarchical topic structure of contents of an example meeting.

5.3.3 Probabilistic models

To investigate the impact of ASR errors on the selection of features and the choice of segmentation models, we
compare segmentation models using different types of features: (1) a model using solely lexical cohesion informa-
tion, and (2) combined models integrating text-based and conversation-based features.

5.3.4 Lexical Modeling

In this study, we re-implemented Galley et al.’s [43] LCSeg algorithm, a variant of TextTiling [54]. LCSeg hypoth-
esizes that major topic shifts are likely to occur where strong term repetitions start and end. The algorithm works
with two adjacent analysis windows, each of fixed size, in ourcase 11 utterances. For each utterance boundary,
we determine a lexical cohesion score by computing the cosine similarity at the transition between the two win-
dows. Low similarity indicates low lexical cohesion, and a sharp change of lexical cohesion score indicates a high
probability of an actual topic boundary. The principal difference between LCSeg and TextTiling is that LCSeg
measures similarity in terms of lexical chains (i.e., term repetitions), whereas TextTiling computes similarity using
word counts.

The first step of lexical modeling is typically to normalize the data by tokenizing, removing speaker identifica-
tion information, lowering all upper case, removing function words, and stemming. However, initial results show
that removing function words and stemming can impair the performance when using a lexical model for predicting
top-level topics, especially on ASR output. Therefore, forthe lexical model used in our experiments, we do not
remove function words and do not perform stemming.

5.3.5 Integrating lexical and conversation-based features

As discussed in Section 2, prior research has shown that combining lexical information with conversation-based
features outperforms a model using lexical features alone.To determine whether this is also the case when we
consider the problem of predicting all subtopic boundariesand when ASR transcriptions are used, we also imple-
mented feature-based models to learn the best indicators oftopic boundaries using decision trees (c4.5), support
vector machines and maximum entropy. To incorporate multiple features in the combined models, we consider
topic segmentation as a binary classification task. Given a feature set and a training set with each potential topic
boundary12 labeled as either positive (POS) or negative (NEG), the classifier learns the posterior probabilities. The
trained model is then used to predict whether each unseen example in the test set belongs to the class POS or NEG.
In Section 5, we analyze the results of the best performing model, which is the one obtained using decision trees.

12In this study, the end of each speaker turn is a potential segment boundary. If there is a pause of more than 1 second within asingle speaker
turn, the turn is divided at the beginning of the pause creating a potential segment boundary.
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For this study, we used features and the optimal window size that have been proven to perform best in prior
work [43]. In particular, the results reported in this studywere obtained using the following features: (1) lexical
features: the raw lexical cohesion score and probability oftopic shift indicated by the change in lexical cohesion
score, and (2) conversation-based features: the number of cue phrases in the analysis windows preceding and
following the potential boundary, similarity of speaker activity (measured as a change in probability distribution
of number of words spoken by each speaker) preceding and following each potential boundary, speaker overlap
rate following each potential boundary, and the amount of silence between speaker turns preceding each potential
boundary.

5.3.6 Evaluation

As a first step, we performed 25-fold leave-one-out cross validation on the set of 25 meetings that were used in the
study performed by Galley et al. [43]. We repeated the procedure to evaluate the accuracy using the lexical and
combined models on both human and ASR transcriptions. In each evaluation, we used the automatic segmentation
model for two tasks: predicting all subtopic boundaries (ALL) and predicting only top-level boundaries (TOP).
The results are reported in Section 5.

5.3.7 Topline and Baseline

To compute a topline for the accuracy of our automatic segmentation models, we examined the agreement of
human annotators on the task of predicting top-level segments. For the 25 meetings that were used in Galley et
al.’s [43] study, we have top-level topic boundaries annotated by coders at Columbia University (Col) and in our lab
(UEDIN). Following Galley et al. [43], we take the majority opinion on each segment boundary from the Columbia
annotators. For the UEDIN annotations, where multiple annotations exist, we choose one randomly. The topline
is then computed as the Pk score comparing the Columbia majority annotation to the UEDIN annotation.

To compute a baseline, we follow Kan [60] and Hearst [54] in using Monte Carlo simulated segments. For the
corpus used as training data in the experiments, the probability of a potential topic boundary being an actual one
is approximately 2.2% for all subtopic segments, and 0.69% for top-level topic segments. Therefore, the Monte
Carlo simulation algorithm predicts that a speaker turn is asegment boundary with these probabilities for the two
different segmentation tasks. We executed the algorithm 10,000 times on each meeting and averaged the scores to
form the baseline for our experiments.

5.3.8 Evaluation metrics

Because precision and recall do not fully capture the near-miss phenomenon important for judging the performance
of a segmentation model, we report our results using the standard metrics of Pk and Wd. Pk [15] is the probability
that two utterances drawn randomly from a document (in our case, a meeting transcript) are incorrectly identified
as belonging to the same topic segment. WindowDiff (Wd) [87]calculates the error rate by moving a window
across the meeting transcript counting the number of times the hypothesized and reference segment boundaries are
different. Choosing Pk and Wd as our metrics allows us to compare our results directly with previous work.

5.4 Coping with an Imbalanced Class Distribution

Previous research demonstrates that probabilistic topic segmentation models can infer high-level topic organization
from low level features. However, in our context of spontaneous multiparty dialogue, the lack of a macro-level
segment unit, such as paragraph or story breaks, makes the task different from the segmentation of text or broadcast
news. For example, for the task of segmenting expository texts, the chance of each paragraph break being a topic
boundary is 39.1% [54], while in the ICSI corpus, the chance of each speaker turn being a subtopic segment
boundary is just 2.2%, and is only 0.69% for top-level boundaries. This imbalance in the class distribution affects
the accuracy of the models which are trained on the imbalanced data set. Therefore, to understand the full potential
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of automatic segmentation of topic boundaries in multiparty dialogue, we must tackle the problem of rare class
prediction.

There have been attempts to tackle the rare class predictionproblem in the fields of fraud detection, network
intrusion, and web mining [29]. In the field of natural language processing, this problem is also commonly en-
countered in text categorization, sentence boundary detection, and disfluency detection [72].

In this study, we investigated a variety of sampling approaches, suggested in Liu et al. [72], on a data set of
25 meetings to identify the most useful approach for this task. Experiments with undersampling, oversampling,
boosting and bagging to re-balance the class distribution,indicated that undersampling provides the most stable
improvement in accuracy. Undersampling is a technique thatremoves negative examples so that the model can
learn more from the positive cases during the training process. We adopted a strategy similar to Zhang and Mani’s
[132] direct undersampling technique, which removes the N negative examples that are closest in time to positive
examples. N varies as the as the desired ratio of negative to positive examples varies. We vary the ratio to provide
insight into what class distribution results in the best accuracy of the classifiers.

Another approach to coping with the rare class prediction problem that does not change the natural class
distribution is to gather more instances of the rare class byincreasing the size of the training set. The statistics
in Table 15 show that for 25 and 75 meetings, the class distribution is roughly the same, and hence by increasing
the number of meetings used in the training set we increase positive instances without distorting the natural class
distribution. To explore how the change of training set sizeimpacts the performance of segmentation models,
we conducted an experiment in which we incrementally increased the training set size by randomly choosing five
meetings each time until all meetings were selected. We executed the process three times and averaged the scores
to obtain the results in Section 5.5.

25 Meetings 75 Meetings
ALL TOP ALL TOP

Training set 35238 108440
speaker turns speaker turns

Total topics 475 149 1717 502
Percentage of
positive cases 2.42% 0.71% 2.20% 0.69%

Table 15:Statistics of the data sets used for predicting the top-level topic (TOP) and all subtopic (ALL) boundaries.
The second column shows statistics for the 25 meetings used in the initial trial. The third gives statistics for all 75
meetings.

5.5 Results

The segmentation models were trained on all 75 ICSI meeting transcripts annotated with topic segment boundaries.
A total of 6 features were used as described in Section 5.3.5.Table 16 shows the performance of the lexical model
and two combined models. CM1 combines the lexical and conversation-based features discussed in Section 5.3.5.
CM2 uses the same features set as CM1, and we apply directed undersampling with a ratio of negative to positive
cases of 1.

As expected, the results show that both the lexical model andthe combined models are more accurate for
predicting segment boundaries from human transcriptions than from ASR output. For the task of predicting top-
level topics from human transcripts, there is little difference in performance of the lexical and combined models.
However, when using ASR output, CM1, the combined model without undersampling, is considerably better than
the lexical model and CM2.

For the task of predicting all subtopics, in general, we observe that the lexical model alone is competitive
with the best performing combined model and achieves accuracy that is comparable with human performance for
segmenting human transcripts. However, using ASR output has a more severe impact on the accuracy of the lexical

38



0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ratio (Negative to Positive)

E
rr

o
r 

R
a

te
 (

P
k)

TRAN−TOP
ASR−TOP
TRAN−ALL
ASR−ALL
Negative Cases (%)

Figure 7:Effect of undersampling on error rate

model than on the combined models. Although none of the segmentation models we considered perform well on
predicting all subtopics when using ASR output, the performance of the lexical model degrades dramatically to the
baseline, while CM1 does not degrade severely.

From these results, we can conclude that when using human transcripts to predict all topic segments, the
lexical model is to be preferred, but when using ASR transcription, the combined model without undersampling
is most accurate. For predicting only top-level segments, there is a slight preference for CM2 when using human
transcripts, but a there is a much stronger preference for using CM1 on ASR output.

Error Rate LM CM1 CM2 Base Top
(Pk) line line

ALL Tran 0.19 0.36 0.23 0.47 0.18
ASR 0.46 0.41 0.46 N/A N/A

TOP Tran 0.32 0.31 0.28 0.48 0.13
ASR 0.48 0.32 0.39 N/A N/A

Table 16: Performance of probabilistic segmentation models in termsof error rate Pk. The topline performance
for predicting ALL topics on human transcripts is obtained by comparing Columbia’s top-level segments with
UEDIN’s all subtopic segments.

Figure 7 shows the results of undersampling for the topic segmentation task. Note that the error rate decreases
as the ratio of negative to positive examples decreases in the training set when using human transcripts. The
improvement in accuracy is especially evident for predicting all subtopic segments, where there is a reduction of
error rate of 37.5%, from 0.36 to 0.23. However, undersampling does not improve accuracy when using ASR
transcription.

Figure 8 shows the effect of training set size on error rate for predicting top-level and all subtopic segment
boundaries, with human and ASR transcriptions, and with andwithout undersampling. We see that increasing
the size of the training set does not improve the accuracy of segment boundary prediction for any of the models.
This is true regardless of whether the task is predicting allsubtopics or just top-level topics, regardless of whether
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Figure 8: Performance of the combined model (measured by error rate Pk) over the increase of the training set
size.

the input is human transcripts or ASR output, and regardlessof whether undersampling is applied. That is, the
accuracy level is quite stable once the training set size reaches 25 meetings.

5.6 Discussion

The purpose of modifying the class distribution of the training set is to improve the accuracy of automatic segmen-
tation models. By using directed undersampling to reduce negative examples, we expected the trained models to be
more accurate when classifying unseen data. Examination ofthe effect of directed undersampling for the combined
models shows that (1) rebalancing the class distribution does improve the accuracy of automatic segmentation mod-
els when using human transcripts, and (2) the improvement ismore evident when the ratio of negative to positive
cases moves from the natural class distribution to 1. An additional advantage of directed undersampling is that it
reduces training time without compromising the results, asthe complexity of the combined model is a function of
the total number of cases. However, directed undersamplingwas not effective when applied to ASR output. We
hypothesize that this is because the undersampling processincreases the relative importance of speech recognition
errors for the negative examples.

Although we expected that including more positive examplesby increasing the size of the training set would
improve the accuracy of prediction, the results show that increasing training set size does not actually increase the
accuracy of the trained models, regardless of whether the natural class distribution is distorted in the training set.
However, the stability of accuracy level after increasing the size to 25 meetings demonstrates a possible minimum
size for effective training.
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5.7 Conclusions

The current study demonstrates that a lexical model alone can achieve competitive results for predicting topic
segment boundaries when using human transcripts, but that amodel that combines lexical and conversation-based
features suffers less degradation in accuracy when using ASR output. The findings confirm that conversation-
based features are more robust to incorrectly recognized words in ASR output. In order to further improve the
accuracy of the combined models, we will explore the use of acoustic and other multimodal features. For example,
Shriberg et al. [102] showed that combining prosodic and lexical information increases the accuracy of automatic
segmentation in two-party dialogue. In addition, in the current study, we only extracted features from within the
analysis windows immediately preceding and following eachpotential topic boundary. In future work, we will
explore models that take into account features of longer range dependencies.
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6 Named Entities

6.1 Task Definition

The named entity (NE) task involves identification of words or word sequences that may be classified as proper
names, or as certain other classes such as monetary expressions, dates and times. This is not a straightforward
problem. While ‘Wednesday 1 September’ is clearly a date, and ‘Alan Turing’ is a personal name, other strings,
such as ‘the day after tomorrow’, ‘ South Yorkshire Beekeepers Association’ and ‘Nobel Prize’ are more ambiguous.
For annotation of AMI data, we essentially follow ‘AMI NamedEntity Guidelines’13, which should be read as an
addendum to the NIST 1999 NE recognition task definition, version 1.414.

The latter specification defined ten classes of named entity:three types of proper name (<location>, <person>

and<organization>) three types of temporal expression (<date>, <time> and<duration>) and four types of numerical
expression (<money>, <measure>, <percentage> and<cardinal>). According to this definition the following NE tags
would be correct:

<date>Wednesday 1 September</date>

<person>Alan Turing</person>

the day after tomorrow
<organization>South Yorkshire Beekeepers Association</organization>

Nobel Prize

‘The day after tomorrow’ is not tagged as a date, since onlyabsolutetime or date expressions are recognised;
‘Nobel’ is not tagged as a personal name, since it is part of a larger construct that refers to the prize. Similarly,
‘South Yorkshire’ is not tagged as a location since it is part of a larger construct tagged as an organisation.

Specially for AMI data, it was decided that meeting participants and other artifacts that might be relevant to the
meeting, such as furniture and recording devices, would be annotated. ‘AMI Named Entity Guidelines’ provides
the full detail.

6.2 Annotation

The NE annotation tool has been implemented by the University of Twente, that supports the task definition de-
scribed above. The annotation work is currently on going at the University of Edinburgh.

6.3 Evaluation

NE identification systems are evaluated using an unseen set of evaluation data: the hypothesised NEs are compared
with those annotated in a human-generated reference transcription. In this situation there are two possible types
of error: type, where an item is tagged as the wrong kind of entity andextent, where the wrong number of word
tokens are tagged. For example,

<location>South Yorkshire</location> Beekeepers Association

has errors of both type and extent since the ground truth for this excerpt is

<organization>South Yorkshire Beekeepers Association</organization> .

These two error types each contribute 0.5 to the overall error count, and precision (P) and recall (R) can be
calculated in the usual way.

Evaluation of spoken NE identification is more complicated than for text, since there will be speech recognition
errors as well as NE identification errors (i.e., the reference tags will not apply to the same word sequence as the

13 http://wiki.idiap.ch/ami/NamedEntities
14 http://www.nist.gov/speech/tests/ie-er/er 99/doc/ne99 taskdef v1 4.ps
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hypothesised tags). This requires a word level alignment ofthe two word sequences, which may be achieved using
a phonetic alignment algorithm developed for the evaluation of speech recognisers. Once an alignment is obtained,
the evaluation procedure outlined above may be employed, with the addition of a third error type,content, caused
by speech recognition errors. The same statistics (P andR) can still be used, with the three error types contributing
equally to the error count.
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7 Propositional Content

While dialog acts (see section 2) provide information aboutcertainfunctionalaspects of an utterance, they do not
tell much about themeaningof these utterances and their contribution to the current discourse. For instance, both
of the following excerpts from a meeting transcription might be annotated with the dialog actquestion :

• A: “How are you doing?”

• A: “What color should the power button have?”

Yet, both question differ greatly with respect to their intended meaning: the first one is a typical human-social
interaction while the second is about some material aspectsof a physical entity. Differentiations like this can not
be delivered by the dialog actquestion alone; to encode the meaning of an utterance, we are in need ofa more
expressive annotation scheme to accompany the dialog act annotation.

Still, the information encoded in the dialog act is valuablefor the understanding of an utterance. The informa-
tion therein can be viewed as on a orthogonal axis. For instance, both of the sentences

• “Is it green?”

• “It is green.”

could be considered to carry exactly the same propositionalcontent. The difference between them is, however,
the function expressed by the corresponding dialog acts: sentence 1 is aquestion , sentence 2 astatement . We
conclude that for a formalization of themeaningof discourse, dialog act annotation and propositional content
annotation complement each other.

A propositional content scheme differs in principle from any other annotation scheme: while usually a scheme
consists of a finite set of annotation labels one of which can be assigned to each observable annotation unit,
the number of different meanings a speaker could convey withan utterance is practically unlimited. In theory, a
propositional content formalism would need to have the expressibility to represent each and every meaning possible
– thereby providing a complete knowledge representation ofthe world. Obviously, this is too ambitious a goal to
be reached. On the same note, it is common for an annotation scheme to contain some sort ofunclassifiable
label because there must be a way to annotate effects that could not have been anticipated by the time the scheme
was designed. The same label could also be used for effects that occur too seldom to be given their own distinct
labels.

It is admissible for an annotation scheme not to cover each effect that might occur in a real meeting; still,
for the case of propositional content annotation the question is legitimate whether it is possible at all to design
a scheme that captures a sufficiently large percentage of possible meaningsto be of any practical value - in an
open domain application, this is at least doubtable. However, AMI hub scenario meetings which are limited to a
restricted domain, the design of a remote control, give reason to expect a feasible implementation.

In order to develop a sufficient formalism for propositionalcontent coding of natural language, we fall back
on analytical philosophers classic knowledge representation mechanisms combined with modern representation
formalisms.

For a long time, traditional AI has used the term ontology as coined by Gruber’s definition “An ontology is a
specification of a conceptualization.” [51]. This constructivistic approach doesn’t commit itself to the representa-
tion of reality, but is restricted to the representation of particular perceptions of some part of reality and therefore
can be seen as solipsitic domain ontology modeling.

In philosophy, ontology is the science of what is, of the kinds of structures of objects, properties, events,
processes and relations in every area of reality. It deals with thea priori nature of reality and tries to provide
a “definitive and exhaustive classification of entities in all spheres of being” [103]. [57] and [58] distinguish
betweenformal ontologies, i.e. universal, domain-independent ontologies andmaterial ontologies, i.e. domain-
specific ontologies.
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7.1 An Ontology for the AMI Hub Meetings

We follow the philosophical approach for several reasons. First, the philosophical underpinnings of formal on-
tologies ensure a framework for the creation of robust and interoperable domain ontologies and secondly, only a
realistic ontology captures all aspects of communication and therefore all possible aspects of meetings.

Currently there exist only few implementations of sophisticated formal ontologies, see e.g. [52]. The most
prominent of these so-called “Upper-Level Ontologies” (or“Upper Models”) are theSuggested Upper Merged
Ontology(SUMO), theCYC upper model, DOLCE, aDescriptive Ontology for Linguistic and Cognitive Engi-
neering, the SUMO-DOLCE hybrid SmartSumo and the Component LibraryOntology CLib.

All of these foundational ontologies support several basicphilosophical assumptions and ontological choices
at different levels of expressivity, e.g. abstract vs. concrete entities, the 3D (endurantist) vs. the 4D (perdurantist)
view or a multiplicative vs. a reductionistic view and they support additional theories like mereology, topology,
granularity and scale.

While SUMO and CYC are considered to be very extensive ontologies with a broad coverage and lots of mid-
and domain-level ontologies, they have weaknesses regarding their axiomatisations and complexity respectively.
Clib adopts some ideas from CYC and combines them with FrameNet and WordNet. Regarding their extend,
SmartSumo and DOLCE are light-weight ontologies. In contrast to SmartSumo which goes without any axioma-
tisation and the other ontologies, DOLCE has a strong philosophical foundation. It’s the only formal or upper
ontology in the strict sense of Husserl’s definition and can be seen as a reference module which can serve as the
starting point for the development of ontologies. Since very recently, there now exists a new modularized OWL-
version of DOLCE Lite Plus, enriched with experimental modules for Plans, Information Objects, Semiotics,
Temporal relations, Social notions, etc.

Current ontologies are represented in a variety of languages (KIF, CycL, RDFS, KM and other proprietary
formalisms); we have opted for OWL, the RDF/XML-based W3C standard for the semantic web, for three reasons.
First, the OWL Ontology Language is a universal medium for the exchange of data where data can be shared and
processed by automated tools as well as by humans. It’s an open standard and widely used for the specification
of ontologies and also there are a large number of development tools and reasoners. And last, the OWL language
supports the open world assumption, which means that information that hasn’t been explicitly added to a knowledge
base is assumed to be “missing” information, which could be added sometime in the future.

Several material ontologies (e.g. communicative acts, meeting room, meeting, product, design, meeting,
project) have been specified for the representation of the AMI hub meetings. Primarily they are based on the
growing AMI corpus with currently about 715.000 words and several domain theories, e.g. theories about commu-
nication, social acting in meetings, project planning, organisations, and contributions from the AMI project, e.g.
the AMI Dialog Act theory, AMI Named Entities, AMI Meeting Acts, etc.

At present the AMI ontology comprises about 2700 concepts and 600 properties, build upon the OWL version
of DOLCE Lite Plus and parts of SUMO, SmartSUMO and CLib, but this may change in future due to the rapid
evolution of formal ontologies. Figure 9 shows an excerpt ofthe AMI ontology as seen with the browsing and
editing tool Protégé.

Currently we concentrate on the identification, collectionand representation of the content bearing parts of
the existing hub meetings, e.g. the material entities in themeeting room (whiteboard, table, chair, human, remote
control, projector, microphone, etc.), the material remote control domain (remote control, button, wheel, DVD,
TV, VCR, etc.), entities in the meeting domain (agenda, agenda item, participants, meeting date, meeting location,
formal meeting acts, etc.) and roles (meeting manager, interface designer, product). On the basis of these domain
entities we’ll continue the elaboration of a generic project ontology and a meeting discourse model.

7.2 Outlook

Since DOLCE Lite Plus is a domain-independent ontology and the universal medium OWL offers the possibility
to refer, share and process all kind of data, it’s possible toinclude and map every kind of information bearing
entity to some corresponding ontology entity. In the context of the AMI meeting scenario all kinds of additional
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Figure 9: Screenshot of the ontology editing tool Protégé, showing an excerpt of the AMI onotology.
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information entities, e.g. gestures, pictures, multimedia, powerpoint slides, handnotes, mimics etc. can be easily
integrated to enrich the representation of a meeting. Another direction is the enhancement of the expressiveness
of the discourse model by adding reifcation or hypostasis orthe inclusion of an sophisticated interpretation theory.
For example DOLCE’s experimental module “Descriptions andSituations” supports the representation of complex
discourses partially.
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8 Structuring Meeting Data with Ontologies

In the meeting domain, ontologies can be used for the annotation of data in order to facilitate replay and navigation
of meeting records, in the context of the use of a meeting browser. The taxonomical structure of the metadata is to
allow users to query the data, at different levels of abstraction, from more generic, physical entities (e.g. meeting
room items, participant roles, design object components),to more abstract entities (e.g. argument network and
decision).

The development of the conceptual model of the meeting ontology for the AMI meeting recordings is based on
the description of the design meeting scenario, in which thetask is the design of a remote control. Several kinds of
knowledge have been captured in the meeting ontology: generic knowledge encoded in concepts from the chosen
upper model - the Component Library (CLib) - in order to ensure a common understanding of the foundational
concepts of the domain. This upper model has been cut down, for our own modelling purposes; general meeting
knowledge (meeting phases, items, participants, goals, actions and decisions); meeting type specific knowledge
(design phases, tasks, roles, methods); domain specific knowledge (remote control physical model).

In the specific context of design meetings, the ontology-based annotated propositional content that identifies,
on the one hand, initial project goals, and, on the other hand, proposals, positions, decisions, should subsequently
allow not only for the recovery of the line of reasoning in thedesign process, but also for the measurement of the
team performance, based on the meeting outcome.

Considering the fact that the argumentation structure can be expressed in different modalities, we have con-
sidered the possibility of relating verbal argumentative elements to other annotated items pertaining to individual
meeting behaviour (hand/head/body gestures, postures, moods, location) for a more meaningful navigation through
meeting capture.
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9 Argumentative Structure

Within organizations the locus of a lot of knowledge production is found in dialogue, discussion, and argument:
people expressing ideas, negotiating deals, arguing viewpoints, pursuing agenda’s and seeking common ground.
The arena where most of this production occurs are meetings.The general visible results of meetings normally are
meeting minutes, and maybe if lucky a list of action plans. Generally, a lot of energy and information that has been
put into the actual outcome is never seen again. Meeting records however can also contain recordings of meetings
where the whole meeting is captured by a number of camera’s and microphones.

Smart meeting rooms have appeared at several institutions in order to record large corpora of meeting data
aiming to eventually build models and systems able to capture the relevant content of the meeting. Once this
content can be transformed into information sources, one will be able to exploit them to gain more knowledge about
decision making, planning, assessment and rationale capturing [85]. This content, also known as organizational
memory, can be made accessible afterwards for further studyby e.g. a browser or a summarizer. For a complete
overview of how technology can support meetings see Rienks et al. [97].

Lisowska [71] lists the kinds of queries people want to ask about records of meetings. Two main groups of
questions are distinguished. The first deals with questionsabout the interaction amongst participants during a
meeting. These are questions such as:Who was in favor of the proposal from X, Where there any objections raised
to the final conclusion?, or, Where there any other solutions debated?. The second type deals with elements from
the meeting domain itself. Examples areHow long did the meeting take?, Who where the attendees of the meeting?,
or What were the issues debated, and which problems are still unresolved?.

We are interested in finding answers to questions dealing with agreement, disagreement, discussions, decisions
and arguments. We try to find an approach that is able to capture the decisions of a meeting as well as the lines of
deliberated arguments. We do not want to formulate an opinion about thecontentsof the argumentation, but we
do want to identify the relations and the forthcomingstructurebetween the arguments. In this paper we introduce
the Twente Argument Schema, which is developed in order to structure textual units by providing an annotation
enabling people as well as automatic systems to find answers to questions related to the decision making process.

As design can be considered an ‘ill-structured’ or ‘wicked problem’, the approach in a collaborative problem
solving process one encounters in these kinds of meetings isgenerally through a lot of argumentative discourse
[24]. We’ve tried to identify the various functions of the argumentative aspects of the different contributions made
by the participants and defined labels to relate these contributions towards each other. The resulting structure pro-
vides extra insight into which issues were debated and whichstatements were put forward. The schema contains
labels for transcript fragments as well as labels for relations between these fragments. The resulting structure
captures the discussions and can be aligned with models structuring arguments developed by argumentation theo-
rists (c.f. Toulmin [111]). The examples used to illustratethe schema are mostly taken from the transcript of the
AMI-FOB6 meeting, in particular the intelligence discussion which is included in Appendix I.

9.1 Argument Diagramming

The primary tool currently in use to give an account of argument structure is the argument diagram. There are
many different kinds of argument diagrams. An argument diagram generally provides a map or snapshot of the
overall flow and structure of the extended chain of reasoningin a given passage of discourse containing argumen-
tation. A typical argument diagram gives a map of the overallstructure of an extended argument. The diagram
generally is a graph containing a set of points or vertices joined by lines or arcs. The points (nodes) are used to
represent statements and conclusions of the argument, the lines (arrows) join the points together to represent steps
of inference.

The first one to represent the structure of argumentation by using diagrams was Beardsley [14]. This consisted
of numbered statements and arrows indicating support relationships. Coherence between various aspects of the
dialogue are in this way revealed.

Argument diagrams often serve as a basis for criticism and reflection of the discussion. A related term in
relation to argument diagramming isdesign rationale, which is a systematic approach to layout the reasons for and
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the reasons behind decisions that led to the design of an artifact [23]. Argument diagrams can be used for various
other purposes. We list them here briefly:

• Argument diagrams provide a representation leading to quicker cognitive comprehension, deeper under-
standing and enhances detection of weaknesses [98, 61].

• Argument diagrams aid the decision making process, as an interface for communication to maintain focus,
prevent redundant information and to saves time.
[126, 119].

• Argument diagrams keeps record and functions as organizational memory.[23, 85]

• The development of argument diagrams may teach critical thinking.[91, 116]

It is obvious that they can serve very similar functions whenapplied to records of meetings.

9.2 Diagramming methods

Several diagramming techniques have been developed, all with their goals in mind and their own ways to create
the diagrams. We discuss three of them : Wigmore’s charting method, Toulmin’s model and the model developed
for the EUCLID project.

Wigmore’s charting method Wigmore [125] developed a graphical method for charting legal evidence and
looks like the traditional diagramming methods one encounters nowadays in logic textbooks (e.g. Govier [49]).
The purpose of his charting mechanism is to represent proof of facts in evidence presented on either side of a trial,
to make sense of a large body of evidence. His charts depict the arguments that can be constructed from this body
of evidence as well as possible sources of doubt with respectto these arguments.

In his model each arrow represents an inference or a provisional force. The nodes are thefactsor the kinds
of evidence that are put afore. Each type of evidence has its own shape. Circumstantial evidence is for example
represented by a square, where as testimonial evidence is represented by a circle. Furthermore there are possibilities
for including a type of relation between facts where one fact‘explains away the other’, whether the evidence was
offered by the defendant, or whether the fact was observed bya tribunal or judicially admitted.

The Toulmin model In the late 1950’s Stephen Toulmin developed a model of wherea schematic represen-
tation of the procedural form of argumentation is presented[111]. Toulmin’s model is only concerned with pro
argumentation and the acceptability of a claim, that is to say the role played by verbal elements in the argumentation
during the justification process.

Toulmin regards an argument as a sequence of interlinked claims or reasons that between them establishes the
content and force of the position for which someone is arguing. He states that an argument consists of six building
blocks: Adatumwhich is a fact or an observation, aclaim related to the datum through a rule of inference which
is called awarrant, aqualifier which expresses a degree of certainty of a claim, arebuttalcontaining the allowed
exceptions and abacking, which can be used to support a warrant.

The EUCLID Model A final model we discuss is the EUCLID model, a hypertext-likemodel of arguments
developed under the EUCLID project. This diagramming method relies on the segmentation of a discussion into
a series of claims. This model is rather simple as the resulting claims can only be related to each other by either
‘support’ or ‘refute’ links [104].

What we see is that these diagrams all have serve their own purpose and show differences in application domain
or level of detail, they have one thing in common. They all have their own labels and with these labels they structure
parts of discourse in a way to facilitate comprehension and point out possible flaws. As our model should be able
to reveal similar structures, but not from evidence used in trials, but from meeting transcripts we are faced with
other limitations. Not all argumentation will be in favor ofa particular issue, neither will all the components as
defined by the Toulmin model be present.

We now consider some software tools that are used for argument diagramming purposes and see what we can
learn from them.
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9.3 Diagramming tools

Nowadays several computer software tools are available that are able to help with the creation of an argument
diagram. These Computer Supported Argument Visualization(CSAV) tools or applications are designed to assist
in sorting and sense making of, information and narratives found in minutes or other forms of discourse weaving
threads of coherence. Users are able to manipulate, annotate and display the structure in various ways. Although
all the tools provide means for the creation of an argument diagram they all have their own underlying model
or method with their own set of components from which in the end the resulting diagrams can be created. The
components, or objects and relations, and the rules for combining them are referred to as the ‘representational
notation’ [109]. We will now describe some features of thesetools and look at their representational notations for
defining their diagrams.

Most of these tools aim to provide a means for both students and scholars in argumentation to analyze the
structure of natural argument. Araucaria [91], named aftera tree, is for example such a tool. In Araucaria argu-
ment premises are to be placed below the conclusions and all nodes (propositions) and the connections between
them can be labelled according to their evaluation. Anothereducational tool aiming to increase critical thinking
is Reason!able [117], which is designed to be used in undergraduate thinking classes. The primary objects in
reason!able are claims, reasons and objections. These components can be used to model argument trees. In the
resulting argument trees, a ‘child’ is always evidence for or against a parent. Similar trees can be constructed with
another software package called Athena15 and Belvedere [108].

There are some differences between the capabilities of these tools. Araucaria is for instance able to handle
argumentation schemes in a way that in case a complex of propositions is joined through an schema, the whole
structure can be labelled and highlighted and has the ability to show counter arguments in a shaded box linked
by an horizontal line to the proposition it counters. It is therefore also used for the creation of a collection of
arguments fitting within typical argument scheme’s (Katzavet al. [62]). In Athena, users are able to manually
assign a relevance value to the relations and to manually evaluate the acceptability of the premises to see how
much strength a parent would derive from its children. With Reason!able one is able to evaluate arguments on
three different levels. The strength of the arguments (on a three level scale: no support, weak support and strong
support), the degree of confidence in their truth and independent grounds for accepting or rejecting (e.g. because
it was stated by an authority). The Belvedere environment allows the nodes to be labelled with labels asPrinciple,
Theory, Hypothesis, Claim, Datawhere as in Reasonable, the nodes can be only of typeClaim.

A somewhat different tool is Compendium [100], which was designed as a tool to support the real time map-
ping of discussions in meetings, collaborative modelling,and the longer term management of this information as
organizational memory. Another difference with the other tools is that the resulting diagram can contain apart from
arguments or conclusions also questions or issue as well as,answers or ideas that have been expressed. Further-
more decisions can explicitly be indicated as well as that references to external data sources can be included such
as notes and spreadsheets.

This shows some of the tools that are used to capture argumentdiagrams. Also for the schema we are devel-
oping an annotation and visualization tool is being constructed. With respect to the representational notations of
the tools, it appeared that the positive (support) and negative (refute) relation between arguments are included in
all of the tools. Only in the Belvedere environment the relations are somewhat finer grained, examples of their
relation set aresupport, explain, undercut, justify, conflict. Another observation is that in all of the tools, except
compendium, the main conclusion or thesis that was debated is represented as the uppermost node.

9.4 Aspects of a dialogue

The argument diagrams discussed above visualize the structure of an argument. In many cases argument diagrams
are constructed to analyze an argument that has been expounded in a text or that has been expressed through a
dialogue. In this case, it is even possible that statements may be put into the diagram that were not expressed
explicitly in the text. The purpose of the schema that we present in the next section is to annotate the statements

15www.athenasoft.org
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from a text or the utterances in a dialogue with labels that indicate their argumentative function in the discourse
or the argumentative relation that holds between them. In this sense, the schema attempts to capture information
closely related to the kind of relations found in argument diagrams, but is in its nature closer to a dialogue act
scheme or a scheme such as that stemming from Rhetorical Structure Theory.

Rhetorical structure theory from Mann and Thompson [74] provides an inventory of relations that hold between
the sentences (roughly speaking) in a text that account for one aspect of coherence: what has a sentence to do with
the preceding or the next sentence. The list of relations posited is open-ended. The set of relations is meant to
be general, though in specific genres of texts some relationsare more likely to turn up than others. Some of the
relations proposed in RST are: evidence, background, elaboration, contrast, condition, motivation, concession,
restatement. Some of these, such as evidence and concessions, will typically occur in argumentative discourse.

In the original set-up by Mann and Thompson [74] rhetorical relations are not considered to be speech acts.
However, it is clear that they are not completely unrelated.Each of the relations could correspond to or constitute
a speech act: provide evidence, give background information, elaborate, contrast, make a conditional statement,
motivate, concede, restate. Asher and Lascarides [10], using rhetorical relations to account for a range of semantic
processes in language, therefore consider rhetorical relations as speech acts that are relational.

For establishing the kinds of speech acts we want to use to mark the argumentative function of utterances, we
have to look at the kinds of dialogues or texts that we want to consider. We are especially interested in dialogues
where participants discuss the pro’s and cons of certain solutions to a problem, providing arguments in favor or
against the various solutions and raising new problems. This is not completely unlike the discussions that are
modelled in the IBIS system. The IBIS model [66] is an approach to fit argumentation in a model in terms of
issues and their alternatives that have been proposed and accepted by the participants. (Note that IBIS is not a
graphical diagramming model) It is based on the principle that the design process for a complex problem is a
conversation between the participants who each have their own area of expertise. In the process the problem is
also called the topic. Within this topic, speakers bring up issues. Whenever speakers have an opinion towards an
issue, they can assume a position to state how they look at theissue. To defend their opinion towards the issue they
can construct arguments until the issue is settled. In this process the participants give their opinion and judgement
about the topic and thus create a more structured look of the topic and its possible solution [32].

Important conversational moves in this kind of dialog are: raising problems, putting forward assertions (solu-
tions), retracting assertions, and putting forward arguments in favor or against a solution. An assertion expresses
a proposition and a form of speech indicating whether the assertor is committing to a specific position in a strong
or a weak way. The schema that we present in detail in Section 9.6 accounts for the basic elements of these kinds
of moves. It distinguishes acts in which issues are raised (questions put forward) and statements for a position that
are made. It allows one to indicate whether a statement is strong or weak. Whether statements agree or disagree
with each other can be marked in the relations. In many cases statements are not simply in favor or against but
variations of each other: restatements, specializations or generalizations. This is something we account for as well
in our schema. Before we present some further details, we will discuss some general issues that we took into
consideration.

9.5 Defining our own diagramming model

As we intended to use an external graphical representation of argumentation, we had to decide on the represen-
tational notation that we could use. According to Bruggen [22] the most important question that needs to be
answered iswhat the representational notation of the external representation must contain before one starts defin-
ing this notation.

Our representation should visualize the structure of our design meeting discussions containing the contribu-
tions from the meeting transcripts in a crisp and coherent way, such that answers to questions asked about the
meeting either follow directly from the schema or can be derived in a straight and easy manner.

Walton and Reed [124] describe five what they call ‘desiderata’ for a theory of argument schemes. Although
they regard argument schemes as form of an argument (structures of inference) representing common types of
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argumentation, the desiderata are also relevant for modelsdescribing the components and the relations these com-
ponents in order to constitute an argumentation diagram andthus relevant for our purpose.

The desiderata are:

1. Rich and sufficiently exhaustive to cover a large proportion of naturally occurring argument.

2. Simple, so that it can be thought in the classroom, and applied by students.

3. Fine-grained, so that it can be useful employed both as normative and evaluative system.

4. Rigorous, and fully specified, so that it might be represented in a computational language.

5. Clear, so that it can be integrated with the traditional diagramming techniques of logic textbooks.

These desiderata also hold for our schema.
The decision making process occurring in our design meetings can be decomposed into several sub processes,

with multiple levels of detail. An example is the nine-step model proposed by Schwartz [99] which mentions the
following phases: the problem definition, the criteria definition to evaluate the solutions, identify the root causes,
generate solutions, evaluate solutions, select the best solution, develop an action plan, implement the action plan
and evaluate the the outcomes and the process. A similar decomposition is presented by Briggs and Vreede [21]
who identify structures such as, diverge, converge, organize, elaborate, abstract and evaluate. So as we want to
capture the decision process of a meeting our model should somehow be able to incorporate these relevant aspects.

With respect to all diagramming models we studied, they generally start with, or work towards a final ‘conclu-
sion’. This does not suit our purpose as it could happen that in our domain of meeting discussions. there might be
no conclusion at all (e.g. due to time constraints). What we would like to do is to capture contributions, or parts of
contributions in the nodes of the diagram that is to be developed. Also the support and object relations with respect
to issues debated seem to be appropriate for our use.

The approach that we took was a so called ‘goal driven design’approach. Based on the literature on argumen-
tation theories and argument diagramming, we started by creating argument diagrams on a small corpus. In several
rounds we tried to reach a consensus on how to label a meeting.When required, the representational notation was
refined. The whole process was repeated until agreement was reached on the labels for the components. The next
section describes the resulting schema and relates it to components of the other models described before as well as
to the structural components inherent to conversations.

9.6 The Twente Argument Schema

The Twente Argument Schema is a Schema that can be used to create argument diagrams from meeting transcripts.
Following most of the diagrams studied, application results in a tree structure with labelled nodes and edges.
The nodes of the tree contain parts of, or even complete speaker turns. The content of the nodes correspond in
granularity to the size of dialogue acts. The edge define the type of the relation between the nodes.

9.6.1 The Nodes

As Newman and Marshall [80] describe, if one is willing to make a decomposition of large and complex spaces, a
separation of issues is required that group arguments with respect to a particular topic they address. (c.f. a meeting
agenda). In the IBIS model issues are represented as questions [66]. This is due to the fact that issues can be seen
as an utterances with a direct request for a response, in the same way as a question is generally followed by an
answer.

Fundamental questions with respect to conversational moves areyes-no questionsandwhy questions[65]. A
Yes-No question admits only two kinds of answers, being it either supportive, or negative. A yes no question rules
out theoption‘I don’t know’ expressing uncertainty. Both types of questions are so called choice questions where
the set of possible options to answer is limited to a defined set of choices. Another type of question one could ask
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is anopen question, this question can be answered in any way without the limitation of a predefined set of choices,
for the progress of the dialogue, the only restriction is that the answer should somehow be related and relevant
to the question [50]. In our Schema we defined three differentlabels for our nodes to represent the issues: The
‘Open issue’, the ‘A/B issue’and the‘Yes/No issue’. As a response to the issues, participants can take positions
with respect to the possible set of options relevant to the issue. These positions are generally conveyed through
the assertion ofstatements. The content of a statement always contain a proposition in which a certain property
or quality is ascribed to a person or thing. A proposition canbe a description of facts or events, a prediction, a
judgement, or an advice (Van Eemeren et al. [115]).

Statements can vary in the degree of force and scope. It can happen that meeting participants make remarks
that indicate that they are not sure of what they say is actually true. Toulmin [111] uses in his model a qualifier
to say something about the force of what he calls ‘claim’. When this qualifier is introduced, it is possible that the
assertion is made with less force. As Eemeren [40] points outthat the force of an argument can also be derived
from lexical cues. To be able to represent this we introduce the label’weak statement’.

So, the nodes in our tree consist of issues and statements. Where statements can be either weak or strong and
issues are distinguished in whether they are open, yes/no orpresent several alternatives.

9.6.2 The Relations

Relations can only exist between nodes. For this we have defined a number of relations that can exist between the
labelled nodes. When engaged in a discussion or debate, the elimination of misunderstandings is a prerequisite in
order understand each other and hence to proceed [79]. Participants in a discussion, according to Neass, eliminate
misunderstandings by clarifying, or specifying their statements. These moves can e.g. be observed in the criteria
definition phase, of the decision making process.

If one clarifies a statement, the new contribution sheds a different light on the same content to increase compre-
hension by the other party. As this occurs regularly in the discussions examined we introduced the‘Clarification’
relation label. It is to be noted that a clarification contribution can also be made by a different person than the
person making the initial contribution. An example of a clarification relation occurs between the following two
contributions in our example ‘Ants are the most intelligentanimals’ and the proceeding contribution of the same
speaker shows why this is the case ‘Ants can build big structures’. The second contribution here is used to clarify
the first one by explaining why the speaker thinks that what was said by his first contribution is true.

A specification occurs in situations where a question is asked by one of the speakers and someone else asks
a question which specializes the first question resulting ina possible solution space with more constraints. The
contribution ‘Which animal is the most intelligent?’ can bespecialized with the following proceeding contribution
‘Is an ant or a cow the most intelligent animal?’ which again can be specialized if one for instance asks ’Are ants
the most intelligent animal?’. The other way around is however also possible. If one is not able to find a solution
for the specific problem, one could enlarge the solution space through generalization. For these occasions we
introduce the labels‘Specialization’and‘Generalization’Both labels can for instance be applied when a particular
issue generalizes or specializes another issue.

Whenever the issue is defined, an exchange of ideas about the possible answers or possible solution naturally
occurs in the decision making process. Whenever a statementis made as a response to an open-issue or an A/B-
issue it might reveal something about the position of participant in the solution space. In general he provides an
‘Option’ to settle the issue at hand. For example when a speaker asks ‘Which animal is the most intelligent?’ and
the response from someone else is ‘I think it’s an ant’ the option relation is to be applied. The opposite of the
option relation is the‘Option-exclusion’relation, and it is to be used whenever a contribution excludes a single
option from the solution space.

For a yes/no-issue the contributions that can be made are notrelated to enlarge or to reduce the solution space,
but to reveal one’s opinion to the particular solution or option at hand. In a conversation people can have a positive,
negative or neutral stance regarding statements or Y/N-issues. For this purpose the labels‘Positive’, ‘Negative’and
‘Uncertain’ are introduced. With the aim to reveal whether contributions from participants are either supportive,
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objective, or unclear. We see that the positive and negativelabel are used in many of the models described in
section 9.2 and 9.3.

The positive relation for example can exist between a yes/no-issue and a statement that is a positive reaction
to the issue or between two statements agreeing with each other. When one speaker states that cows can be
eliminated as being the most intelligent animals and the response from another participant is that cow’s don’t
look very intelligent, then the relation is positive. The negative relation is logically the opposite of the positive
relation. It is to be applied in situations where speakers disagree with each other or when they provide a conflicting
statement as a response to a previous statement or a negativeresponse to a Yes/No-issue. In case it is not clear
whether a contribution is positive or negative, but that there exists some doubt on the truth value of what the first
speaker said, one should use the uncertain relation. From experience with the annotations it appears that in most
cases it can easily be seen by the annotator whether the remark is mostly agreeing or mostly showing doubt.

The final relation of our set is to be applied when the content of a particular contribution is required to be
able to figure out whether another contribution can be true ornot. We named this theSubject torelation, which
is somehow related to the concession relation in Toulmin’s model. It is to be applied for example in the situation
where someone states that ‘If you leave something in the kitchen, you’re less likely to find a cow’ and the response
is ‘That depends if the cow is very hungry’. So the second contribution creates a prerequisite that has to be known
before the first contribution can be evaluated. If the cow is very hungry the support could be either positive or
negative. The uncertain label is not to be applied it this case, as the stance of the person in question is clear once
the prerequisite is filled in. The uncertain label is merely to be used when a issue is preceded by a request for
specialization or clarification.

9.7 Preserving the conversational flow

As we are working on transcripts, it is best for our model to beconstructed sequentially in order to follow the line
of the discussion. To preserve the order of the discussion inthe model we decided that, when applying the schema,
the algorithm or annotator should follow a depth first searchalgorithm [34] when extending it. This means that
in principle every next contribution becomes a child of the previous contribution, unless the current contribution
relates stronger to the parent of the previous contribution. This way the resulting tree structure can still be read
synchronously.

9.8 Freedom of the annotator

One of the drawbacks of argument diagramming that is often mentioned is that there is no correct diagram. Walton
[123] for instance showed that various different argument diagrams can be instantiated by one single text. Although
this is true, an interesting point here is the analogy that can be drawn between RST and Argument Diagramming.
As Reed and Rowe [91] point out that Mann and Thompson suggestthat the analyst should makeplausibility
judgementsrather than absolute analytical decisions, it is implicated that there can be more than one reasonable
analysis. This also goes for argument diagramming, where the evaluator is free to interpret and to create that
diagram that he considers the most appropriate according tohis or her perception. As long as the schema is applied
correctly, its purpose anyhow will be apparent. An example of a transcript can be found in Appendix A and the
resulting diagram can be found in Figure 10.

9.9 Conclusions and Future Work

We have developed a method to capture argumentative aspectsof meeting discussions in a way that an argument
diagram can be created that shows how the discussion evolved, how the contributions of the participants relate,
which issues were debated and which possible solutions wereevaluated. The resulting argument maps are a
valuable resource capturing organizational memory, that can aid querying systems and can be directly used in
meeting browsers.
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Figure 10: An argument tree of the intelligence discussion

Currently we are developing a tool to help make annotations of meeting transcripts. This way we want to
construct a corpus from which models are to be trained that hopefully one day will be able to derive the structures
of the argumentation themselves. When the first annotationsare there, reliability analysis amongst annotators will
be investigated as well as a study into automatic recognition of both labels and relations are to be conducted.
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10 Chunking

10.1 Introduction

Steven Abney pioneered the idea ofparsing by chunkssupported by psychological evidence of human parser
[1], where chunks are taken to be some non-recursive cores ofmajor phrases. He also tried partial parsing of
unrestricted text with finite-state cascades [2] in a knowledge-intensive way.

The problem of chunking is further reformulated as a task similar to POS tagging [89], i.e., by adopting a tag
set of{B, I, O} combined with chunk type of XP for those non-overlapping chunks, where:

B: initial word of a chunk

I: non-initial word of a chunk

O: word outside of any chunk

Therefore many learning approaches to POS tagging become directly available for chunking (see, e.g., [83, 84]).
Syntactic chunking (partial parsing) of unrestricted written text have become a relatively well-defined and well-

studied task since the introduction of CoNLL 2000 shared task [110]. But the chunking of spontaneous spoken
langauge has received less attention (except [84]) than that of written language though spoken language is also
suitable (if not more) for such kind of shallow processing. The successful chunking of AMI meetings would serve
the meeting browser in several ways, direct (e.g., to find some meaningful unit larger than words) or indirect (e.g.,
to extract chunk features for further analysis like segmentation, dialogue act tagging, summarization, etc).

In this section we will, on the one hand, try three different classifiers (based separately on maximum en-
tropy/MXPOST, support vector machines/SVMs, and conditional random fields/CRFs) on Penn treebank Wall
Street Journal (WSJ) and switchboard (SWBD) to show state-of-the-art performances of chunking. On the other
hand, we will test AMI meetings with those chunkers to show the effect of the difference training data on chunking
performance. And therefore we propose to apply semi-supervised learning to tackle the annotation problem.

10.2 Data and classifiers

The Penn treebank data used here includes WSJ sections 15-18as training data (wsj.train), and section 20 as test
data (wsj.test); SWBD sections 2 and 3 as training data (swbd.train), sections 4 as test data (swbd.test); AMI
meeting IS1008b as training data, IS1008a as test data. Penntreebank is converted from trees to chunks using the
script for CoNLL task. The evaluation script is the same as CoNLL. The performance is reported inFβ=1 score (%)
unless indicated. AMI meetings are manually chunked in a similar manner to CoNLL task as described in [110].

The classifiers used are MXPOST [90]16, YAMCHA 17, and CRF++18.

16Available fromftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz .
17Available fromhttp://chasen.org/˜taku/software/yamcha/ .
18Available fromhttp://chasen.org/˜taku/software/CRF++/ .
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10.3 Experiments and Results19

Training on WSJ

mxpost svm crf
wsj.train 92.92 99.97 99.32
wsj.test 88.35 87.85 88.55

swbd.test 71.06 70.62 71.49
IS1008a 60.91 57.57 62.01
IS1008b 61.97 58.94 60.91

Training on SWBD

mxpost svm crf
wsj.test 76.70 75.39 77.78

swbd.train 92.34 99.61 97.28
swbd.test 89.93 90.96 91.82
IS1008a 74.39 70.66 72.97
IS1008b 74.20 71.48 71.91

Training on AMI IS1008b with MXPOST

test on IS1008a
Precision Recall Fβ=1

ADJP 30.30 30.30 30.30
ADVP 61.06 55.65 58.23
CONJP 93.55 91.58 92.55
INTJ 95.00 93.66 94.33
NP 81.12 86.19 83.58
PP 81.36 85.71 83.48

SBAR 63.64 63.64 63.64
VP 75.33 77.57 76.43

Overall 81.07 82.93 81.99

test on IS1008b
Precision Recall Fβ=1

ADJP 78.72 65.49 71.50
ADVP 78.77 75.91 77.31
CONJP 91.67 93.77 92.71
INTJ 96.23 97.28 96.75
NP 87.99 91.53 89.73
PP 94.08 91.53 92.78

SBAR 92.00 85.19 88.46
VP 84.67 85.32 85.00

Overall 88.32 89.07 88.69

19Please note: all the experiments here did not make use of POS information, simply to make things simpler. Therefore, the results can not
be compared directly with those reported in most of the chunking papers, e.g., [110], where POS is used. By the way, the sota performance for
chunking is around 94% inFβ = 1.
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10.4 Discussion

From the above experiments, we come to the following conclusions:

• The sota chunking (without POS information) performance (Fβ=1) on annotated Penn treebank data is about
87.85 - 91.82 %.

• Of all the chunkers trained on Penn treebank data, the best performance in chunking AMI meetings is from
the chunker trained with MXPOST, which is also the most computationally efficient. So if we have to find
a best chunker trained on Penn treebank data with any classifier, then we need to choose SWBD data and
MXPOST.

• From further experiments on AMI data, training data of the same genre or domain is the most informative.
But for AMI meeting chunking, we don’t have any chunk-annotated data for training and there won’t be
any large-scale annotation. So, we will need to employ some kind of semi-supervised learning approach.
Actually, annotation of a small data set is ongoing. Once it’s finished, the data will be used as seed data to
bootstrap an AMI meeting chunker with sota performance.
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11 Meeting Group Action Segmentation and Recognition

In this section we address the problem of recognising sequences of human interaction patterns in meetings, with
the goal of structuring them in semantic terms ([3]). The aimis to discover repetitive patterns into natural group
interactions and associate them with a lexicon of meeting actions or phases (such as discussions, monologues,
and presentations). The detected sequence of meeting actions will provide a relevant summary of the meeting
structure. The investigated patterns are inherently group-based (involving multiple simultaneous participants), and
multimodal (as captured by cameras and microphones).

Starting from a common lexicon of meeting actions (section 11.1) and sharing the same meeting data-set
(section 11.2), each site (TUM, IDIAP and UEDIN) has selected a specific feature set (section 11.3) and proposed
relevant models (section 11.4). Then a common evaluation metric (section 11.5) has been adopted in order to
compare several experimental setups (section 11.6).

11.1 Action Lexicon

Two sets of meeting actions have been defined. The first set (lexicon 1, defined in [75]) includes eight meeting
actions, like discussion, monologue, or presentation. Themonologue action is further distinguished by the person
actually holding the monologue (e.g. monologue 1 is meetingparticipant one speaking). The second set (lexicon 2,
defined in [131]) comprehends the full first set, but also has combinations of two parallel actions (like a presentation
and note-taking). The second set includes fourteen group actions. Both sets and a brief description are shown in
table 17.

Table 17: Group action lexicon 1 and 2
Action Lexicon Description

Discussion lexicon 1 and 2 most participants engaged in conversations
one participant speaking

Monologue lexicon 1 and 2
continuously without interruption

Monologue+ contained only one participant speaking continuously
Note-taking in lexicon 2 others taking notes
Note-taking lexicon 1 and 2 most participants taking notes

one participant presenting
Presentation lexicon 1 and 2

using the projector screen
Presentation+ contained only one participant presenting using
Note-taking in lexicon 2 projector screen, others taking notes

one participant speaking
White-board lexicon 1 and 2

using the white-board
White-board+ contained only one participant speaking using
Note-taking in lexicon 2 white-board, others taking notes

11.2 Meeting Data Set

We used a public corpus of 59 five-minute, four-participant scripted meetings ([75]). The recordings took place at
IDIAP in an instrumented meeting room equipped with camerasand microphones20. Video has been recorded us-
ing 3 fixed cameras. Two cameras capture a frontal view of the meeting participants, and the third camera captures
the white-board and the projector screen. Audio was recorded using lapel microphones attached to participants,
and an eight-microphone array placed in the centre of the table.

20This corpus is publicly available from http://mmm.idiap.ch/
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11.3 Features

The investigated individual actions are multimodal, we therefore use different audio-visual features. They are
distinguished betweenperson-specificAV features andgroup-levelAV features. The former are extracted from
individual participants. The latter are extracted from thewhite-board and projector screen regions. Furthermore
we use a small set of lexical features. The features are described in the next paragraphs, for details please refer to
the indicated literature.

From the large number of available features each site has chosen a set, used to train and evaluate their models.
The complete list of features, and the three different sets IDIAP, TUM, UEDIN are listed in table 18.

11.3.1 Audio features

MFCC: For each of the speakers four MFC coefficients and the energy were extracted from the lapel-
microphones. This results in a 20-dimensional vector~xS(t) containing speaker-dependent information.

A binary speech and silence segmentation(BSP) for each of the six locations in the meeting room was ex-
tracted with the SRP-PHAT measure ([75]) from the microphone array. This results in a six-dimensional discrete
vector~xBSP(t) containing position dependent information.

Prosodic features are based on a denoised and stylised version of the intonation contour, an estimate of the
syllabic rate of speech and the energy ([37]). These acoustic features comprise a 12 dimensional feature vector (3
features for each of the 4 speakers).

Speaker activity features rely on the active speaker locations evaluated using a soundsource localisation process
based on a microphone array ([75]). A 216 element feature vector resulted from all the 63 possible products of the
6 most probable speaker locations (four seats and two presentation positions) during the most recent three frames
([37]). A speaker activity feature vector at timet thus gives a local sample of the speaker interaction patternin the
meeting at around timet.

Further audio features: From the microphone array signals, we first compute a speech activity measure (SRP-
PHAT). Three acoustic features, namely energy, pitch and speaking rate, were estimated on speech segments,
zeroing silence segments. We used the SIFT algorithm to extract pitch, and a combination of estimators to extract
speaking rate ([75]).

11.3.2 Global motion visual features

In the meeting room the four persons are expected to be at one of six different locations: one of four chairs, the
whiteboard, or at a presentation position. For each location L in the meeting room a difference image sequence
IL
d (x,y) is calculated by subtracting the pixel values of two subsequent frames from the video stream. Then seven

global motion features ([133]) are derived from the image sequence: the centre of motion is calculated for the x-
and y-direction, the changes in motion are used to express the dynamics of movements. Furthermore the mean
absolute deviation of the pixels relative to the centre of motion is computed. Finally the intensity of motion is
calculated from the average absolute value of the motion distribution. These seven features are concatenated for
each time step in the location dependent motion vector. Concatenating the motion vectors from each of the six
positions leads to the final visual feature vector that describes the overall motion in the meeting room with 42
features.
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Table 18: Audio, visual and semantic features, and the resulting three feature sets.
Description IDIAP TUM UEDIN

head vertical centroid X
head eccentricity X

right hand horizontal centroid X
Visual right hand angle X

right hand eccentricity X
head and hand motion X

Person- global motion features from each seat X
Specific SRP-PHAT from each seat X
Features speech relative pitch X X

speech energy X X X
Audio speech rate X X

4 MFCC coefficients X
binary speech and silence segmentation X

individual gestures X
Semantic talking activity X

mean difference from white-board X
mean difference from projector screen X

Visual
global motion features from whiteboard X

global motion features from projector screen X
Group SRP-PHAT from white-board X

Features SRP-PHAT from projector screen X
Audio speaker activity features X

binary speech from white-board X
binary speech from projector screen X

11.3.3 Skin-colour blob visual features

Visual features derived from head and hands skin-colour blobs were extracted from the three cameras. For the
two cameras looking at people, visual features extracted consist of head vertical centroid position and eccentricity,
hand horizontal centroid position, eccentricity, and angle. The motion magnitude for head and hand blobs were
also extracted. The average intensity of difference imagescomputed by background subtraction was extracted from
the third camera. All features were extracted at 5 frames persecond, and the complete set of features is listed in
table 18. For details refer to [131].

11.3.4 Semantic features

Originating from the low level features also features on a higher level have been extracted. For each of the six
locations in the meeting room the talking activity has been detected using results from [69]. Further individual
gestures of each participant have been detected using the gesture recogniser from [133]. The possible features were
all normalised to the length of the meeting event to provide the relative duration of this particular feature. From all
available events only those that are highly discriminativewere chosen which resulted in a nine dimensional feature
vector.

11.4 Models for Group Action Segmentation and Recognition

11.4.1 Meeting segmentation using semantic features

This approach combines the detection of the boundaries and classification of the segments in one step. The strategy
is similar to that one used in the BIC-Algorithm ([113]). Twoconnected windows with variable length are shifted
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Figure 11: Multi-layer HMM on group action recognition.

over the time scale. Thereby the inner border is shifted fromthe left to the right in steps of one second and in each
window the feature vector is classified by a low-level classifier. If there is a different result in the two windows,
the inner border is considered a boundary of a meeting event.If no boundary is detected in the actual window, the
whole window is enlarged and the inner border is again shifted from left to the right. Details can be found in [95].

11.4.2 Multi-stream mixed-state DBN for disturbed data

In real meetings the data can be disturbed in various ways: events like slamming of a door may mask the audio
channel or background babble may appear; the visual channelcan be (partly) masked by persons standing or
walking in front of a camera. We therefore developed a novel approach for meeting event recognition, based on
mixed-state DBNs, that can handle noise and occlusions in all channels ([4, 5]). Mixed-state DBNs are an HMM
coupled with a LDS, they have been applied to recognising human gestures in [86]. Here, this approach has been
extended to a novel multi-stream DBN for meeting event recognition.

Each of the three observed features: microphone array (BSP), lapel microphone (MFCC) and the visual global
motion stream (GM) is modelled in a separate stream. The streams correspond to a multi-stream HMM, where each
stream has a separate representation for the features. However, the visual stream is connected to a LDS, resulting
in a mixed-state DBN. Here the LDS is a Kalman filter, using information from all streams as driving input, to
smooth the visual stream. With this filtering, movements arepredicted based on the previous time-slice and on the
state of the multi-stream HMM at the current time. Thus occlusions can be compensated with the information from
all channels. Given an observationO and the model parametersE j for the mixed-state DBN, the joint probability
of the model is the product of the stream probabilities:P(O,E j) = PB ·PM ·PG. The model parameters are learned
for each of the eight event classesj with a variational learning EM-algorithm during the training phase. During the
classification an unknown observationO is presented to all modelsE j . ThenP(O|E j) is calculated for each model
andO is assigned to the class with the highest likelihood: argmaxE j∈E P(O|E j). Applying the Viterbi-algorithm
to the model, leads to a meeting event segmentation framework. The mixed-state DBN can therefore easily be
combined with other models presented in this document.

11.4.3 Multi-layer Hidden Markov Model

In this section we summarise the multi-layer HMM applied to group action recognition. For a detailed discussion,
please refer to [131].

In the multi-layer HMM framework, we distinguish group actions (which belong to the whole set of partici-
pants, such asdiscussion and presentation) from individual actions (belonging to specific persons, such aswriting
and speaking). To recognise group actions, individual actions act as thebridge between group actions and low-level
features, thus decomposing the problem in stages, and simplifying the complexity of the task.

Let I-HMM denote the lower recognition layer (individual action), and G-HMM denote the upper layer (group
action). I-HMM receives as input audio-visual (AV) features extracted from each participant, and outputs posterior
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Figure 12: Multistream DBN model (a) enhanced with a “counter structure” (b); square nodes represent discrete
hidden variables and circles must be intend as continuous observations

probabilities of the individual actions given the current observations. In turn, G-HMM receives as input the output
from I-HMM, and a set of group features, directly extracted from the raw streams, which are not associated to
any particular individual. In the multi-layer HMM framework, each layer is trained independently, and can be
substituted by any of the HMM variants that might capture better the characteristics of the data, more specifically
asynchrony ([16]), or different noise conditions between the audio and visual streams ([38]). The multi-layer
HMM framework is summarised in figure 11.

Compared with a single-layer HMM, the layered approach has the following advantages, some of which were
previously pointed out by [82]: (1) a single-layer HMM is defined on a possibly large observation space, which
might face the problem of over-fitting with limited trainingdata. It is important to notice that the amount of
training data becomes an issue in meetings where data labelling is not a cheap task. In contrast, the layers in our
approach are defined over small-dimensional observation spaces, resulting in more stable performance in cases
of limited amount of training data. (2) The I-HMMs are person-independent, and in practice can be trained with
much more data from different persons, as each meeting provides multiple individual streams of training data.
Better generalisation performance can then be expected. (3) The G-HMMs are less sensitive to slight changes in
the low-level features because their observations are the outputs of the individual action recognisers, which are
expected to be well trained. (4) The two layers are trained independently. Thus, we can explore different HMM
combination systems. In particular, we can replace the baseline I-HMMs with models that are more suitable for
multi-modal asynchronous data sequences. The framework thus becomes simpler to understand, and amenable to
improvements at each separate level.

11.4.4 Multistream DBN model

The DBN formalism allows the construction and development of a variety of models, starting from a simple HMM
and extending to more sophisticated models (hierarchical HMMs, coupled HMMs, etc). With a small effort, DBNs
are able to factorise the internal state space, organising it in a set of interconnected and specialised hidden variables.

Our multi-stream model (bottom of figure 12) exploits this principle in two ways: decomposing meeting actions
into smaller logical units, and modelling parallel featurestreams independently. We assume that a meeting action
can be decomposed into a sequence of small units: meeting subactions. In accordance with this assumption the
state space is decomposed into two levels of resolution: meeting actions (nodesA) and meeting subactions (nodes
SF ). Note that the decomposition of meeting actions into meeting subactions is done automatically through the
training process.

Feature sets derived from different modalities are usuallygoverned by different laws, have different character-
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istic time-scales and highlight different aspects of the communicative process. Starting from this hypothesis we
further subdivided the model state space according to the nature of features that are processed, modelling each
feature stream independently (multistream approach). Theresulting model has an independent substate nodeSF

for each feature classF , and integrates the information carried by each feature stream at a ‘higher level’ of the
model structure (arcs betweenA andSF ,F = [1,n]). Since the adoptedlexicon 1(section 11.1) is composed by 8
meeting actions, the action nodeA has a cardinality of 8. The cardinalities of the sub-action nodesS are part of
parameter set, and in our experiments we have chosen a value of 6 or 7.

The probability to remain in an HMM state corresponds to an inverse exponential ([88]): a similar behaviour
is displayed by the proposed model. This distribution is notwell-matched to the behaviour of meeting action
durations. Rather than adopting ad hoc solutions, such as action transition penalties, we preferred to improve the
flexibility of state duration modelling, by enhancing the existing model with a counter structure (top of figure 12).
The counter variableC, which is ideally incremented during each action transition, attempts to model the expected
number of recognised actions. Action variablesA now also generate the hidden sequence of counter nodesC,
together with the sequence of sub-action nodesS. Binary enabler variablesE have an interface role between action
variablesA and counter nodesC.

This model presents several advantages over a simpler HMM inwhich features are “early integrated” into
a single feature vector: feature classes are processed independently according to their nature; more freedom is
allowed in the state space partitioning and in the optimisation of the sub-state space assigned to each feature class;
knowledge from different streams is integrated together atan higher level of the model structure; etc. Unfortunately
all these advantages, and the improved accuracy that can be achieved, are balanced by an increased model size,
and therefore by an increased computational complexity.

11.5 Performance Measures

Since group meeting actions are high level symbols and theirboundaries are extremely vague. In order to eval-
uate results of the segmentation and recognition task we used the Action Error Rate, a metric that privileges the
recognition of the correct action sequence, rather than theprecise temporal boundaries. AER is defined as the
sum ofinsertion(Ins),deletion(Del), andsubstitution(Subs) errors, divided by the total number of actions in the
ground-truth:

AER =
Subs+Del+ Ins

Total Actions
×100% (8)

Measures based ondeletion (Del) and insertion (Ins) andsubstitution(Subs) are also used to evaluate action
recognition results.

11.6 Experiments and Discussions

11.6.1 Higher semantic feature approach

The results of the segmentation are shown in table 19 (BN: Bayesian Network, GMM: Gaussian Mixture Models,
MLP: Multilayer Perceptron Network, RBF: Radial Basis Network, SVM: Support Vector Machines). Each row
denotes the classifier that was used. The columns show the insertion rate (number of insertions in respect to
all meeting events), the deletion rate (number of deletionsin respect to all meeting events), the accuracy (mean
absolute error) of the found segment boundaries in seconds and the recognition error rate. In all columns lower
numbers denote better results. As can be seen from the tables, the results are quite variable and heavily depend on
the used classifier. These results are comparable to the onespresented in [94]. With the integrated approach the
best outcome is achieved by the radial basis network. Here the insertion rate is the lowest. The detected segment
boundaries match pretty well with a deviation of only about five seconds to the original defined boundaries.
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Table 19: Segmentation results using the higher semantic feature approach (BN: Bayesian Network, GMM: Gaus-
sian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial Basis Network, SVM: Support Vector
Machines). The columns denote the insertion rate, the deletion rate, the accuracy in seconds and the classification
error rate (using lexicon 1 in Table 17).

Classifier Insertion (%) Deletion (%) Accuracy Error (%)

BN 14.7 6.22 7.93 39.0
GMM 24.7 2.33 10.8 41.4
MLP 8.61 1.67 6.33 32.4
RBF 6.89 3.00 5.66 31.6
SVM 17.7 0.83 9.08 35.7

11.6.2 Multi-stream mixed-state DBN for disturbed data

To investigate the influence of disturbance to the recognition performance, the evaluation data was cluttered: the
video data was occluded with a black bar covering one third ofthe image at different positions. The audio data
from the lapel microphones and the microphone array was disturbed with a background-babble with 10dB SNR.
30 undisturbed videos were used for the training of the models. The remaining 30 unknown videos have been
cluttered for the evaluation.

The novel DBN was compared to single-modal (audio and visual) HMMs, an early fusion HMM, and a multi-
stream HMM. The DBN showed a significant improvement of the recognition rate for disturbed data. Compared
to the baseline HMMs, the DBN reduced the recognition error by more than 1.5% (9% relative error reduction)
for disturbed data. It may therefore be useful to combine this approach with the other models presented in this
document, to improve the noise robustness. Please refer to [4, 5] for detailed recognition results, as well as a
comprehensive description of the model.

11.6.3 Multi-layer hidden Markov model

Table 20 reports the performance in terms of action error rate (AER) for both multi-layer HMM and the single-
layer HMM methods. Several configurations were compared, including audio-only, visual-only, early integration,
multi-stream ([38]) and asynchronous HMMs ([16]). We can see that (1) the multi-layer HMM approach always
outperforms the single-layer one, (2) the use of AV featuresalways outperforms the use of single modalities for
both single-layer and multi-layer HMM, supporting the hypothesis that the group actions we defined are inherently
multimodel, (3) the best I-HMM model is the asynchronous HMM, which suggests that some asynchrony exists
for our task of group action recognition, and is actually well captured by the asynchronous HMM.

11.6.4 Multistream DBN model

All the experiments depicted in this section were conductedon 53 meetings (subset of the meeting corpus depicted
in section 11.2) using the lexicon 1 of eight group actions. We implemented the proposed DBN models using the
Graphical Models Toolkit (GMTK) ([17]), and the evaluationis performed using a leave-one-out cross-validation
procedure.

Table 21 shows experimental results achieved using: an ergodic 11-states HMM, a multi-stream approach
(section 11.4.4) with two feature streams, and the full counter enhanced multi-stream model. The base 2-stream
approach has been tested in two different sub-action configurations: imposing

∣

∣S1
∣

∣ =
∣

∣S2
∣

∣ = {6or 7}. Therefore
four experimental setups were investigated; and each setuphas been tested with 3 different feature sets, leading to
12 independent experiments. The first feature configuration(“UEDIN”) associates prosodic features and speaker
activity features (section 11.3.1) respectively to the streamS1 and toS2. The feature configuration labelled as
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Table 20: AER (%) for single-layer and multi-layer HMM (using lexicon 2 in Table 17).
Method AER (%)

Visual only 48.2
Audio only 36.7

Single-layer HMM Early Integration 23.7
Mutli-stream 23.1

Asynchronous 22.2

Visual only 42.4
Audio only 32.3

Multi-layer HMM Early Integration 16.5
Multi-stream 15.8

Asynchronous 15.1

“IDIAP” makes use of the multimodal features extracted at IDIAP, representing audio related features (prosodic
data and speaker localisation) through the observable nodeY1 and video related measures throughY2. The last
setup (“TUM”) relies on two feature families extracted at the Technische Universität München: binary speech
profiles derived from IDIAP speaker locations and video related global motion features; each of those has been
assigned to an independent sub-action node. Note that in theHMM based experiment the only observable feature
streamY has been obtained by merging together both the feature vectorsY1 andY2. Considering only the results
(of table 21) obtained within the UEDIN feature setup, it is clear that the simple HMM shows much higher error
than any other multi-stream configuration. The adoption of amultistream based approach reduces the AER to less
than 20%, providing the lowest AER (11%) when sub-action cardinalities are fixed to 7. UEDIN features seem to
provide a higher accuracy if compared with IDIAP and TUM setups, but it is essential to remember that our DBN
models have been optimised for the UEDIN features. In particular sub-action cardinalities have been intensively
studied with our features, but it will be interesting to discover optimal values for IDIAP and TUM features too.
Moreover overall performances achieved with the multistream approach are very similar (AER are always in the
range from 26.7% to 11.0%), and all my be considered promising. The TUM setup seems to be the configuration for
which switching from a HMM to a multistream DBN approach provides the greatest improvement in performance:
the error rate decreases from 92.9% to 21.4%. If with the UEDIN feature set the adoption of a counter structure
is not particularly effective, with IDIAP features the counter provides a significant AER reduction (from 26.7% to
24.9%). We are confident that further improvements with IDIAP features could be obtained by using more than
2 streams (such as the 3 multistream model adopted in [37]). Independently of the feature configuration, the best
overall results are achieved with the multistream approachand a state space of 7 by 7 substates.

11.7 Summary and conclusions

We have presented the joint efforts of three institutes (TUM, IDIAP and UEDIN) towards structuring meetings
into sequences of multimodal human interactions. A large number of different audio-visual features have been
extracted from a common meeting data corpus. From this features, three multimodal sets have been chosen. Four
different frameworks towards automatic segmentation and classification of meetings into action units haven been
proposed.

The first approach from TUM exploits higher semantic features for structuring a meeting into group actions. It
thereby uses an algorithm that is based on the idea of the Bayesian-Information-Criterion. The mixed-state DBN
approach developed by TUM compensates for disturbances in both the visual and the audio channel. It is not a
segmentation framework but can be integrated into the otherapproaches presented in this section to improve their
robustness. The multi-layer Hidden Markov Model developedby IDIAP decomposes group actions as a two-layer
process, one that models basic individual activities from low-level audio-visual features, and another one that
models the group action (belonging to the whole set of participants). The multi-stream DBN model proposed by
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Table 21: AER (%) for an HMM, and for a multi-stream (2 streams) approach with and without the “counter
structure”; the models have been individually tested with the 3 different feature sets (using lexicon 1 in Table 17)

Model Feature Set Corr. Sub. Del. Ins. AER
UEDIN 63.3 13.2 23.5 11.7 48.4

HMM IDIAP 62.6 19.9 17.4 24.2 61.6
TUM 60.9 25.6 13.5 53.7 92.9
UEDIN 86.1 5.7 8.2 3.2 17.1

2 streams
(∣

∣SF
∣

∣ = 6
)

IDIAP 77.9 8.9 13.2 4.6 26.7
TUM 85.4 9.3 5.3 6.8 21.4
UEDIN 85.8 7.5 6.8 4.6 18.9

2 streams
(∣

∣SF
∣

∣ = 6
)

+ counter IDIAP 79.4 10.0 10.7 4.3 24.9
TUM 85.1 5.7 9.3 6.4 21.4
UEDIN 90.7 2.8 6.4 1.8 11.0

2 streams
(∣

∣SF
∣

∣ = 7
)

IDIAP 86.5 7.8 5.7 3.2 16.7
TUM 82.9 7.1 10.0 4.3 21.4

UEDIN operates an unsupervised subdivision of meeting actions into sequences of group sub-actions, processing
multiple asynchronous feature streams independently, introducing also a model extension to improve state duration
modelling.

All presented approaches have provided comparable good performances, and there is still space for further
improvements both in the feature domain (i.e.: exploit moremodalities) and in the model infrastructure. Therefore
in the near future we are going to investigate combinations of the proposed systems to improve the AER and to
exploit the complementary strengths of the different approaches. Moreover the proposed approaches are easily
generalizable to more elaborate segmentation and structuring tasks. Therefore it is our intention to adopt a richer
set of “group meeting actions”, and to validate the proposedframeworks on a more realist multimodal meeting
corpus like the “AMI meeting corpus” ([27]), that is characterised by real, fully unconstrained meetings.

Another promising direction of research is action clustering, where typical activities can be identified on an
unsupervised basis. Initial work in this direction was presented in [130]. Another direction for action recognition
involves the use of partially labeled data. An initial approach was presented in [129].
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12 Component Evaluation

For many of the areas covered in workpackage 5 and thus this document, we have devised component evaluation
schemes and will perform the individual evaluations in the first half of 2006. The evaluation schemes will be
published this fall as a first draft of deliverable 5.2. The full deliverable, due in month 30 of the project, will also
contain the results of the component evaluations.

Currently, evaluation schemes for the following components are being defined:

• Topic Segmentation

• Meeting acts

• Dialog Acts & Segmentation ICSI

• Addressing

• Named Entities

• Extractive Summaries (on ICSI)

• Abstractive Summaries

• Indexing/Retrieval

• Chunking
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13 Search engine for LVCSR-based keyword spotting in meeting data

13.1 Introduction

One of tasks of Brno University of Technology in AMI is to provide the project with keyword spotting (KWS)
in meeting environment. We are working on several approaches to KWS including searching large vocabulary
continuous speech recognition (LVCSR) lattices, acousticsearch and a hybrid ”phonetic” search [3].

The most straightforward way to search in an output of LVCSR speech recognizer is to use existing search
engines on the textual (“1-best”) output. We can however advantageously use a richer output of the recognizer
– most recognition engines are able to produce an oriented graph of hypotheses calledlattice. On contrary to
1-best output, the lattices tend to be complex and large. Forefficient searching in such a complex and large data
structure, the creation of an optimized indexing system which is the core of each fast search engine is necessary.
The proposed system is based on principles used in Google [4]. It consists of indexer, sorter and searcher [5].

13.2 Input to the system

Word lattices generated by LVCSR are input to the indexing and search engine. The lattices (see example in
Fig. 13) are stored in HTK standard lattice format (SLF) [7].

Figure 13: Example of a word lattice

13.3 The indexer

processes lattices stored in SLF files and stores them into system’s data structures. The indexing mechanism
consists of three main phases:

• creating the lexicon

• storing and indexing lattices, creating the forward index

• creating the reverse index (based on the forward index)

The lexicon provides a transformation from word to a unique number (ID) and vice versa. It saves the used disk
space and also the time of comparing strings (number of bytesfor storing numbers is less than the average length
of word).

Lattices are stored in a structure which differs from the SLFstructure. For each search result it is needed
not only to show the time of found word, but also its context. It means that we need to traverse the lattice from
the found word in both directions (forward and backward) to gather those words lying on the best path which
traverses through the found word. On contrary to SLF, where nodes are separated from links, lattices are converted
to another structure which stores all forward and backward links for each particular node at one place. It is also
needed to assigna confidenceto each hypothesis. This is given by the log-likelihood ratio:

Clvcsr(KW) = Llvcsr
alpha(KW)+Llvcsr(KW)+Llvcsr

beta(KW)−Llvcsr
best , (9)
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Figure 14: Simplified index structure

where the forward likelihoodLlvcsr
alpha(KW) is the likelihood of the best path through lattice from the beginning of

lattice to the keyword and backward likelihoodLlvcsr
beta(KW) is computed from the end of lattice to the keyword.

These two likelihoods are computed by the standard Viterbi formulae:

Llvcsr
alpha(N) = Llvcsr

a (N)+Llvcsr
l (N)+min

NP
Llvcsr

alpha(NP) (10)

Llvcsr
beta(N) = Llvcsr

a (N)+Llvcsr
l (N)+min

NF
Llvcsr

beta(NF) (11)

whereNF is set of nodes directly following nodeN (nodesN andNF are connected by an arc),NP is set of nodes
directly preceding nodeN. Llvcsr

a (N) andLlvcsr
l (N) are acoustic and language-model likelihoods respectively.

The algorithm is initialized by settingLlvcsr
alpha( f irst) = 0 andLlvcsr

beta(last) = 0. The last likelihood we need in Eq.

9: Llvcsr
best = Llvcsr

alpha = Llvcsr
beta is the likelihood of the most probable path through the lattice.

While processing lattices, the indexer stores each hypothesis into the forward index, so that the forward index
is sorted bydocumentID and by time. Such index can be useful for searching in some particular document, but for
global searching we need a reverse index [4].

13.4 The sorter

During the phase of indexing and storing lattices, the forward index is created. It stores each hypothesis (word,
it’s confidence, time and position in lattice file) from lattice into a hit list. Records in the forward index are
sorted bydocumentID (number which represents the lattice’s file name) and time. The forward index itself is
however not very useful for searching for a particular word,because it would be necessary to go through the hit
list sequentially and select only matching words. Therefore the reverse index is created (like in Google) which has
the same structure as the forward index, but is sorted by words and by confidence of hypotheses. It means that all
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occurrences of a particular word are stored at one place. There is also a table which transforms any word from
lexicon into the start position of corresponding list in reverse index.

Searching for one word then consists only in jumping right tothe beginning of it’s list in reverse index, selecting
first few occurrences and getting their context from corresponding lattice. The advantage of splitting the indexing
mechanism into three phases is that the second phase (storing and indexing lattices), which is the most CPU time
consuming one, can be run in parallel on several computers. Each parallel process creates its own forward index.
These indices are then merged together and sorted to create the reverse index.

13.5 The searcher

uses the reverse index to find occurrences of words from queryand then it discovers whether they match the whole
query or not. For all matching occurrences, it loads into thememory only a small part of lattice within which the
found word occurs. Then the searcher traverses this part of lattice in forward and backward direction selecting
only the best hypotheses; in this way it creates the most probable string traversing the found word.

13.6 Experiment

The system was tested on four AMI pilot meetings, each with four speakers and total duration of about 1.9 hours.
The recognition lattices were generated using the AMI-LVCSR system incorporating state-of-the-art acoustic and
language modeling techniques [6].

For testing data of 1.9 hour, the lattices consist of 3,607,089 hypotheses and 36,036,967 arcs. Searching and
looking for the context of 6 hypotheses takes about 3 seconds. Although the system is not yet well-optimized, it
produces search results quite fast. Approximately 95% of time is spent on looking for the context of the found
word. It is possible to optimize this process with expected increase of speed by 70-80%.

13.7 Conclusions

We have presented a system for fast search in speech recognition lattices making extensive use of indexing. The
results obtained with this system are promising, the software has been integrated with the meeting browser JFerret
[2] and presented at several occasions. Currently, we are testing the extension of the system allowing to enter
multi-word queries, and options to narrow search space (limitation only to particular meetings, speakers, time
intervals). We also plan to employ this system in phoneme-lattice based keyword spotting which eliminates the
main drawback of LVCSR — the dependency on recognition vocabulary [3].
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14 Extractive Summaries

Additional work on extractive summarization by Buist, Kraaij and Raaijmakers ist published in [25].

14.1 Introduction

In the field of automatic summarization, it is widely agreed upon that more attention needs to be paid to the
development of standardized approaches to summarization evaluation. For example, the current incarnation of
the Document Understanding Conference is putting its main focus on the development of evaluation schemes,
including semi-automatic approaches to evaluation. One semi-automatic approach to evaluation is ROUGE [70],
which is primarily based on n-gram co-occurrence between automatic and human summaries. A key question
of the research contained herein is how well ROUGE correlates with human judgments of summaries within the
domain of meeting speech. If it is determined that the two types of evaluations correlate strongly, then ROUGE
will likely be a valuable and robust evaluation tool in the development stage of a summarization system, when the
cost of frequent human evaluations would be prohibitive.

Three basic approaches to summarization are evaluated and compared below: Maximal Marginal Relevance,
Latent Semantic Analysis, and feature-based classification. The other major comparisons in this paper are between
summaries on ASR versus manual transcripts, and between manual and automatic extracts. For example, regarding
the former, it might be expected that summaries on ASR transcripts would be rated lower than summaries on
manual transcripts, due to speech recognition errors. Regarding the comparison of manual and automatic extracts,
the manual extracts can be thought of as a gold standard for the extraction task, representing the performance
ceiling that the automatic approaches are aiming for.

More detailed descriptions of the summarization approaches and experimental setup can be found in [78]. That
work relied solely on ROUGE as an evaluation metric, and thispaper proceeds to investigate whether ROUGE
alone is a reliable metric for our summarization domain, by comparing the automatic scores with recently-gathered
human evaluations.

14.2 Description of the Summarization Approaches

14.2.1 Maximal Marginal Relevance (MMR)

MMR [26] uses the vector-space model of text retrieval and isparticularly applicable to query-based and multi-
document summarization. The MMR algorithm chooses sentences via a weighted combination of query-relevance
and redundancy scores, both derived using cosine similarity. The MMR scoreScMMR(i)for a given sentenceSi in
the document is given by

ScMMR(i) = λ(Sim(Si,D))− (1−λ)(Sim(Si,Summ)) ,

whereD is the average document vector,Summis the average vector from the set of sentences already selected,
andλ trades off between relevance and redundancy.Simis the cosine similarity between two documents.

This implementation of MMR uses lambda annealing so that relevance is emphasized while the summary is
still short and minimizing redundancy is prioritized more highly as the summary lengthens.

14.2.2 Latent Semantic Analysis (LSA)

LSA is a vector-space approach which involves projecting the original term-document matrix to a reduced dimen-
sion representation. It is based on the singular value decomposition (SVD) of anm×n term-document matrixA,
whose elementsAi j represent the weighted term frequency of termi in documentj. In SVD, the term-document
matrix is decomposed as follows:

A = USVT

whereU is anm× n matrix of left-singular vectors,S is ann× n diagonal matrix of singular values, andV is
then×n matrix of right-singular vectors. The rows ofVT may be regarded as defining topics, with the columns
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representing sentences from the document. Following Gong and Liu [48], summarization proceeds by choosing,
for each row inVT , the sentence with the highest value. This process continues until the desired summary length
is reached.

Two drawbacks of this method are that dimensionality is tiedto summary length and that good sentence candi-
dates may not be chosen if they do not “win” in any dimension [105]. The authors in [105] found one solution, by
extracting a single LSA-based sentence score, with variable dimensionality reduction.

We address the same concerns, following the Gong and Liu approach, but rather than extracting the best
sentence for each topic, then best sentences are extracted, withn determined by the corresponding singular values
from matrixS. The number of sentences in the summary that will come from the first topic is determined by the
percentage that the largest singular value represents out of the sum of all singular values, and so on for each topic.
Thus, dimensionality reduction is no longer tied to summarylength and more than one sentence per topic can be
chosen. Using this method, the level of dimensionality reduction is essentially learned from the data.

14.2.3 Feature-Based Approaches

Feature-based classification approaches have been widely used in text and speech summarization, with positive
results [67]. In this work we combined textual and prosodic features, using Gaussian mixture models for the
extracted and non-extracted classes. The prosodic features were the mean and standard deviation of F0, energy,
and duration, all estimated and normalized at the word-level, then averaged over the utterance. The two lexical
features were both TFIDF-based: the average and the maximumTFIDF score for the utterance.

For our second feature-based approach, we derived single LSA-based sentence scores [105] to complement
the six features described above, to determine whether suchan LSA sentence score is beneficial in determining
sentence importance. We reduced the original term-document matrix to 300 dimensions; however, Steinberger and
Ježek found the greatest success in their work by reducing to a single dimension (Steinberger, personal communi-
cation). The LSA sentence score was obtained using:

ScLSA
i =

√

n

∑
k=1

v(i,k)2 ∗σ(k)2 ,

wherev(i,k) is thekth element of theith sentence vector andσ(k) is the corresponding singular value.

14.3 Experimental Setup

We used human summaries of the ICSI Meeting corpus for evaluation and for training the feature-based ap-
proaches. An evaluation set of six meetings was defined and multiple human summaries were created for these
meetings, with each test meeting having either three or fourmanual summaries. The remaining meetings were
regarded as training data and a single human summary was created for these. Our summaries were created as
follows.

Annotators were given access to a graphical user interface (GUI) for browsing an individual meeting that
included earlier human annotations: an orthographic transcription time-synchronized with the audio, and a topic
segmentation based on a shallow hierarchical decomposition with keyword-based text labels describing each topic
segment. The annotators were told to construct a textual summary of the meeting aimed at someone who is
interested in the research being carried out, such as a researcher who does similar work elsewhere, using four
headings:

• general abstract: “why are they meeting and what do they talkabout?”;

• decisions made by the group;

• progress and achievements;

• problems described
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The annotators were given a 200 word limit for each heading, and told that there must be text for the general
abstract, but that the other headings may have null annotations for some meetings.

Immediately after authoring a textual summary, annotatorswere asked to create an extractive summary, using
a different GUI. This GUI showed both their textual summary and the orthographic transcription, without topic
segmentation but with one line per dialogue act based on the pre-existing MRDA coding [101] (The dialogue act
categories themselves were not displayed, just the segmentation). Annotators were told to extract dialogue acts
that together would convey the information in the textual summary, and could be used to support the correctness of
that summary. They were given no specific instructions aboutthe number or percentage of acts to extract or about
redundant dialogue act. For each dialogue act extracted, they were then required in a second pass to choose the
sentences from the textual summary supported by the dialogue act, creating a many-to-many mapping between the
recording and the textual summary.

The MMR and LSA approaches are both unsupervised and do not require labelled training data. For both
feature-based approaches, the GMM classifiers were trainedon a subset of the training data representing approxi-
mately 20 hours of meetings.

We performed summarization using both the human transcripts and speech recognizer output. The speech
recognizer output was created using baseline acoustic models created using a training set consisting of 300 hours
of conversational telephone speech from the Switchboard and Callhome corpora. The resultant models (cross-word
triphones trained on conversational side based cepstral mean normalised PLP features) were then MAP adapted to
the meeting domain using the ICSI corpus [53]. A trigram language model was employed. Fair recognition output
for the whole corpus was obtained by dividing the corpus intofour parts, and employing a leave one out procedure
(training the acoustic and language models on three parts ofthe corpus and testing on the fourth, rotating to obtain
recognition results for the full corpus). This resulted in an average word error rate (WER) of 29.5%. Automatic
segmentation into dialogue acts or sentence boundaries wasnot performed: the dialogue act boundaries for the
manual transcripts were mapped on to the speech recognitionoutput.

14.3.1 Description of the Evaluation Schemes

A particular interest in our research is how automatic measures of informativeness correlate with human judgments
on the same criteria. During the development stage of a summarization system it is not feasible to employ many
hours of manual evaluations, and so a critical issue is whether or not software packages such as ROUGE are able
to measure informativeness in a way that correlates with subjective summarization evaluations.

ROUGE Gauging informativeness has been the focus of automatic summarization evaluation research. We used
the ROUGE evaluation approach [70], which is based on n-gramco-occurrence between machine summaries and
“ideal” human summaries. ROUGE is currently the standard objective evaluation measure for the Document
Understanding Conference21; ROUGE does not assume that there is a single “gold standard”summary. Instead it
operates by matching the target summary against a set of reference summaries. ROUGE-1 through ROUGE-4 are
simple n-gram co-occurrence measures, which check whethereach n-gram in the reference summary is contained
in the machine summary. ROUGE-L and ROUGE-W are measures of common subsequences shared between two
summaries, with ROUGE-W favoring contiguous common subsequences. Lin [70] has found that ROUGE-1 and
ROUGE-2 correlate well with human judgments.

Human Evalautions The subjective evaluation portion of our research utilized5 judges who had little or no
familiarity with the content of the ICSI meetings. Each judge evaluated 10 summaries per meeting, for a total
of sixty summaries. In order to familiarize themselves witha given meeting, they were provided with a human
abstract of the meeting and the full transcript of the meeting with links to the audio. The human judges were
instructed to read the abstract, and to consult the full transcript and audio as needed, with the entire familiarization
stage not to exceed 20 minutes.

21http://duc.nist.gov/
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The judges were presented with 12 questions at the end of eachsummary, and were instructed that upon begin-
ning the questionnaire they should not reconsult the summary itself. 6 of the questions regarded informativeness
and 6 involved readability and coherence, though our current research concentrates on the informativeness eval-
uations. The evaluations used a Likert scale based on agreement or disagreement with statements, such as the
following Informativeness statements:

1. The important points of the meeting are represented in thesummary.

2. The summary avoids redundancy.

3. The summary sentences on average seem relevant.

4. The relationship between the importance of each topic andthe amount of summary space given to that topic
seems appropriate.

5. The summary is repetitive.

6. The summary contains unnecessary information.

Statements such as 2 and 5 above are measuring the same impressions, with the polarity of the statements
merely reversed, in order to better gauge the reliability ofthe answers. The readability/coherence portion consisted
of the following statements:

1. It is generally easy to tell whom or what is being referred to in the summary.

2. The summary has good continuity, i.e. the sentences seem to join smoothly from one to another.

3. The individual sentences on average are clear and well-formed.

4. The summary seems disjointed.

5. The summary is incoherent.

6. On average, individual sentences are poorly constructed.

It was not possible in this paper to gauge how responses to these readability statements correlate with automatic
metrics, for the reason that automatic metrics of readability and coherence have not been widely discussed in the
field of summarization. Though subjective evaluations of summaries are often divided into informativeness and
readability questions, only automatic metrics of informativeness have been investigated in-depth by the summa-
rization community. We believe that the development of automatic metrics for coherence and readability should
be a high priority for researchers in summarization evaluation and plan on pursuing this avenue of research. For
example, work on coherence in NLG [68] could potentially inform summarization evaluation. Mani [73] is one of
the few papers to have discussed measuring summary readability automatically.

14.4 Results

The results of these experiments can be analyzed in various ways: significant differences of ROUGE results across
summarization approaches, deterioration of ROUGE resultson ASR versus manual transcripts, significant differ-
ences of human evaluations across summarization approaches, deterioration of human evaluations on ASR versus
manual transcripts, and finally, the correlation between ROUGE and human evaluations.
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Figure 15:ROUGE Scores for the Summarization Approaches

14.4.1 ROUGE results across summarization approaches

All of the machine summaries were 10% of the original document length, in terms of the number of dialogue acts
contained. Of the four approaches to summarization used herein, the latent semantic analysis method performed
the best on every meeting tested for every ROUGE measure withthe exception of ROUGE-3 and ROUGE-4.
This approach was significantly better than either feature-based approach (p<0.05), but was not a significant
improvement over MMR. For ROUGE-3 and ROUGE-4, none of the summarization approaches were significantly
different from each other, owing to data sparsity. Figure 15gives the ROUGE-1, ROUGE-2 and ROUGE-L results
for each of the summarization approaches, on both manual andASR transcripts.

ASR versus Manual The results of the four summarization approaches on ASR output were much the same, with
LSA and MMR being comparable to each other, and each of them outperforming the feature-based approaches.
On ASR output, LSA again consistently performed the best.

Interestingly, though the LSA approach scored higher when using manual transcripts than when using ASR
transcripts, the difference was small and insignificant despite the nearly 30% WER of the ASR. All of the summa-
rization approaches showed minimal deterioration when used on ASR output as compared to manual transcripts,
but the LSA approach seemed particularly resilient, as evidenced by Figure 15. One reason for the relatively small
impact of ASR output on summarization results is that for each of the 6 meetings, the WER of the summaries
was lower than the WER of the meeting as a whole. Similarly, Valenza et al [114] and Zechner and Waibel [127]
both observed that the WER of extracted summaries was significantly lower than the overall WER in the case of
broadcast news. The table below demonstrates the discrepancy between summary WER and meeting WER for the
six meetings used in this research.

Meeting Summary WER/% Meeting WER/%
Bed004 27.0 35.7
Bed009 28.3 39.8
Bed016 39.6 49.8
Bmr005 23.9 36.1
Bmr019 28.0 36.5
Bro018 25.9 35.6

WER Comparison for LSA Summaries and Meetings

There was no improvement in the second feature-based approach (adding an LSA sentence score) as compared
with the first feature-based approach. The sentence score used here relied on a reduction to 300 dimensions, which
may not have been ideal for this data.
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STATEMENT FB1 LSA MMR FB2
IMPORTANT POINTS 5.03 4.53 4.67 4.83

NO REDUNDANCY 4.33 2.60 3.00 3.77
RELEVANT 4.83 4.07 4.33 4.53

TOPIC SPACE 4.43 3.83 3.87 4.30
REPETITIVE 3.37 4.70 4.60 3.83

UNNECESSARY INFO. 4.70 6.00 5.83 5.00

Table 22: Human Ratings for 4 Approaches on Manual Transcripts

STATEMENT FB1 LSA MMR FB2
IMPORTANT POINTS 3.53 4.13 3.73 3.50

NO REDUNDANCY 3.40 2.97 2.63 3.57
RELEVANT 3.47 3.57 3.00 3.47

TOPIC SPACE 3.27 3.33 3.00 3.20
REPETITIVE 4.43 4.73 4.70 4.20

UNNECESSARY INFO 5.37 6.00 6.00 5.33

Table 23: Human Ratings for 4 Approaches on ASR Transcripts

The similarity between the MMR and LSA approaches here mirrors Gong and Liu’s findings, giving credence
to the claim that LSA maximizes relevance and minimizes redundancy, in a different and more opaque manner then
MMR, but with similar results. Regardless of whether or not the singular vectors ofVT can rightly be thought of
as topics or concepts (a seemingly strong claim), the LSA approach was as successful as the more popular MMR
algorithm.

14.4.2 Human results across summarization approaches

Table 14.4.2 presents average ratings for the six statements across four summarization approaches on manual tran-
scripts. Interestingly, the first feature-based approach is given the highest marks on each criterion. For statements
2, 5 and 6 FB1 is significantly better than the other approaches. It is particularly surprising that FB1 would score
well on statement 2, which concerns redundancy, given that MMR and LSA explicitly aim to reduce redundancy
while the feature-based approaches are merely classifyingutterances as relevant or not. The second feature-based
approach was not significantly worse than the first on this score.

Considering the difficult task of evaluating ten extractivesummaries per meeting, we are quite satisfied with the
consistency of the human judges. For example, statements that were merely reworded versions of other statements
were given consistent ratings. It was also the case that, with the exception of evaluating the sixth statement, judges
were able to tell that the manual extracts were superior to the automatic approaches.

ASR versus Manual Table 14.4.2 presents average ratings for the six statements across four summarization ap-
proaches on ASR transcripts. The LSA and MMR approaches performed better in terms of having less deterioration
of scores when used on ASR output instead of manual transcripts. LSA-ASR was not significantly worse than LSA
on any of the 6 ratings. MMR-ASR was significantly worse than MMR on only 3 of the 6. In contrast, FB1-ASR
was significantly worse than FB1 for 5 of the 6 approaches, reinforcing the point that MMR and LSA seem to
favor extracting utterances with fewer errors. Figures 16,17 and 18 depict how the ASR and manual approaches
affect the INFORMATIVENESS-1, INFORMATIVENESS-4 and INFORMATIVENESS-6 ratings, respectively.
Note that for Figure 6, a higher score is a worse rating.
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Figure 17:INFORMATIVENESS-4 Scores for the Summarization Approaches

14.4.3 ROUGE and Human correlations

According to [70], ROUGE-1 correlates particularly well with human judgments of informativeness. In the human
evaluation survey discussed here, the first statement (INFORMATIVENESS-1) would be expected to correlate
most highly with ROUGE-1, as it is asking whether the summarycontains the important points of the meeting.
As could be guessed from the discussion above, there is no significant correlation between ROUGE-1 and human
evaluations when analyzing only the 4 summarization approaches on manual transcripts. However, when looking at
the 4 approaches on ASR output, ROUGE-1 and INFORMATIVENESS-1 have a moderate and significant positive
correlation (Spearman’s rho = 0.500, p< 0.05). This correlation on ASR output is strong enough that when
ROUGE-1 and INFORMATIVENESS-1 scores are tested for correlation across all 8 summarization approaches,
there is a significant positive correlation (Spearman’s rho= 0.388, p< 0.05).

The other significant correlations for ROUGE-1 across all 8 summarization approaches are with
INFORMATIVENESS-2, INFORMATIVENESS-5 and INFORMATIVENESS-6. However, these are negative
correlations. For example, with regard to INFORMATIVENESS-2, summaries that are rated as having a high level
of redundancy are given high ROUGE-1 scores, and summaries with little redundancy are given low ROUGE-1
scores. Similary, with regard to INFORMATIVENESS-6, summaries that are said to have a great deal of unnec-
essary information are given high ROUGE-1 scores. It is difficult to interpret some of these negative correlations,
as ROUGE does not measure redundancy and would not necessarily be expected to correlate with redundancy
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evaluations.

14.5 Discussion

In general, ROUGE did not correlate well with the human evaluations for this data. The MMR and LSA approaches
were deemed to be significantly better than the feature-based approaches according to ROUGE, while these find-
ings were reversed according to the human evaluations. An area of agreement, however, is that the LSA-ASR and
MMR-ASR approaches have a small and insignificant decline inscores compared with the decline of scores for the
feature-based approaches. One of the most interesting findings of this research is that MMR and LSA approaches
used on ASR tend to select utterances with fewer ASR errors.

ROUGE has been shown to correlate well with human evaluations in DUC, when used on news corpora, but
the summarization task here – using conversational speech from meetings – is quite different from summarizing
news articles. ROUGE may simply be less applicable to this domain.

14.6 Future Work

It remains to be determined through further experimentation by researchers using various corpora whether or not
ROUGE truly correlates well with human judgments. The results presented above are mixed in nature, but do not
present ROUGE as being sufficient in itself to robustly evaluate a summarization system under development.

We are also interested in developing automatic metrics of coherence and readability. We now have human
evaluations of these criteria and are ready to begin testingfor correlations between these subjective judgments and
potential automatic metrics.
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15 Abstractive Summaries

The way a human summarizer abstracts a document is usually quite different from extractive summarization ap-
proaches. Where in the latter case, a machine applies statistical methods to select sentences regarded as relevant,
a human summarizer usually proceeds in a less algorithmic way. Typically, she first reads22 andunderstandsthe
document, i.e. she builds up a mental model of the concepts and their interrelations in the source. In a second step
(which is not necessarily performed sequentially, but may happen already by the time of reading), she abstracts this
mental model to a condensed variant by leaving out parts considered irrelevant or by rearranging different parts of
the model to yield simplified information structures. The resulting transformed mental model can be considered a
summarizedversion of the original model, and a verbalization thereof would be the final summary.

15.1 ABSURD – Abstractive Summarization of Real-life Discourse

This rough and oversimplified description certainly falls short of the actual processes in a human mind. Yet, the
above steps can provide a blueprint for an alternative to theextractive summarization approach. For AMI, DFKI
abstractive summarization groupdesigns the architecture of their summarization module ABSURD (see Figure 19),
to resemble these different phases:

1. Understand

2. Abstract

3. Generate

In brevity, phase 1 is performed by the “discourse parser” component, phase 2 by the “information reduction &
reorganization” component and phase 3 by the “document planner” and “realizer”.

Figure 19: Abstract Architecture of ABSURD

22For reasons of simplicity, we assume that the source document is a piece of written text; the outlined approach, however,is not limited to
a certain modality or combination of modalities.
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15.2 Architecture

The design integrates components developed at DFKI (blue boxes) as well as work by other AMI partners (orange
boxes)23. The common representation data structure ofmeaningis a combination of propositional content (see sec-
toin 7) and dialog acts (see section 2) and therefore faces the limitations that come with both annotation schemes,
most notably the domain dependence of the propositional content ontology.

Based on the HALO ontology currently being developed at DFKI, the document parser contains a set of trans-
formation rules to analyze the discourse items of a meeting.For the latter, the speech transcripts (either as ASR
output or as hand annotation) are passed to the discourse parser component in NXT format ([28]). For coherence
of the internal representation of the discourse analysis, the dialog act segment boundaries as derived by the DA
annotation module are also used as atomic units for propositional content annotation. Through application of the
transformation rules, each discourse segment is analyzed and an ontological representation of its propositional
content is created.

Future work will concentrate on methods to tie these context-free atomic units of propositional content to-
gether to form higher level meeting structures. Here, we areaiming to extend and port the work of [6] to mul-
tiparty settings, resulting in structures similar to the game/move graphs in [121]. The result would be a holistic
representations of the propositional content of thewholemeeting.

This data structure is then passed to the “information reduction & reorganization” component. The terms re-
duction and reorganization stand for two different transformation techniques, both of which target the condensing
of the informational graph structure. Reduction techniques attempt to downsize the graph by cutting off subgraphs
that are considered to contain no relevant information. Typically, reduction would be applied to remove the repre-
sentations of utterances like “uh”, “yeah”, etc. This has tobe done with care, however, because dependent on the
focus of summarization, even filler sounds may carry important information. A “yeah” sound, for instance, could
have been uttered by the speaker as an explicit acknowledgment of what his predecessor has said. If the focus of
the summary is to list argumentative structures, such information is not supposed to be missed. However, discourse
extracts like

Speaker-1: Yeah.

Speaker-2: Yeah.

Speaker-3: Yeah.

could be combined toone instance of an ontology concept such as “GroupApproval”. Inthat case, information
would not be dropped, it would rather be aggregated. This technique is expressed by the term “information reor-
ganization”. Here, the internal graph representation is reduced, but without information loss.

The decision, in which case one of the reduction or reorganization techniques can be applied to a certain
subgraph, can only be made on the basis of a given relevance measure. Such a measure can be seen as a parameter
to the component, and allows for different “views” of summarization. For example, the industrial designer might
consider only material related issues relevant while the marketing expert cares for sales and marketing topics.
Therefore, appropriate summaries for these two would differ considerable. ABSURD can cope with different views
or interests when provided with different relevance measures for each type of summary. The resulting structure of
the condensed propositional content representation depends on the underlying relevance measure.

To deliver the information from the internal representation, the “document planner” component works in two
logical steps. First, it prepares the structure of the document together with instructions on how the informational
content of the summary’s internal representation has to be realized. These instructions together with the pre-
structured summary skeleton are then passed to ABSURD’s “realizer” component where the information units
are finally transformed into surface forms, i.e. words and sentences and in the future also multimedia links and
objects. In this process, the Realizer not only asserts thatthe resulting text contains all required information, it is
also responsible for a coherent text flow and high readability.

23The CALO/CLib ontology is being developed in the CALO project http://www.ai.sri.com/project/CALO
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15.3 Outlook

One long-term goal of the project is to enable ABSURD to generate different summaries for different target plat-
forms. Although it may not necessarily be a near-term aspect, this consideration is already integrated in the archi-
tecture. Through the modular pipeline each supported output facility would get a particularly tailored document
planner implementation. For instance, the system could manage one document planner for hypertext output, one
for an electronic slide format, one for a PDA display, and so on. This means that the target platform would become
an input parameter for ABSURD which in turn would select the appropriate document plannerin its pipeline at
run-time to generate the best suited summary.
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16 Automatic Video Editing

The goal of an automatic video editing algorithm is to selectrelevant information from multiple video sources and
present this information in a way that is ”pleasant” to humanobserver. This means that only picture of one camera
or blended picture of several cameras is chosen and shown at the each moment of the meeting. It is also supposed
that it is not necessary to replay the whole duration of the meeting - some kind of summarization can be provided
by the algorithm. However, primary idea is to create output videos that will satisfy qualitative requirements of the
viewers. Some elementary knowledge of film or TV production should be respected. The following criteria have
to be respected for satisfaction of quality of the output videos:

• technical aspects

• aesthetical aspects

• explicit user requirements

Satisfaction of first mentioned aspects ensure that produced video contains as much of the relevant information
as possible, for example following the talking participant. The aesthetical aspects ensure that particular shots are
organized in a suitable form e.g. too long or too short shots are eliminated. Other rules defining how shots can be
combined are known in film theory. Last aspects represent specific requirements of the viewers. For example, the
viewer can prefer certain meeting participant or an activity.

Generated videos should also satisfy some structural features. Similar kind of programmes can have common
structure e.g. the same parts and the order of the parts. A skeleton of given programme type can be defined and then
used for generation of output videos. Specific aspects can bepreferred in different parts of such model. Fig. 20)
shows simple skeleton of the programme that contains meeting.

The proposed video editing algorithm is based on evaluationof activities, which occur in the meeting room.
A simulation of human editor is included for the selection ofthe best camera and effects in given time point.
Currently, the features describing physical activity of meeting participants are evaluated from detected head and
hands positions [1]. Other participants’ activities are deduced from the speaker identification. The problem of
camera selection at given framet from the recording with lengthl can be defined as discrete function:

c(t) = f (t,~a1, ...,~an,~s) (12)

The result of this function determines which camera should be displayed. Measured activities are presented
as vectors~ai (e.g. speech, gestures, ...). Particular elements of such vector represent values of one source feature
(activity) in the appropriate time points.

~ai = (ai(0), ...,ai(m)) (13)

The camera selection function contains in addition a state vector~s. It is clear that result of the camera selection
function depends on previous steps of the evaluation e.g. history of the selected cameras can be stored in this
vector.

~s= (s1, ...,sk) (14)

It is supposed that camera selection process will be appliedsequentially from the beginning to the end of
recorded data. The state vector can be modified in every step of this evaluation. The video editing algorithm can be
used in two basic applications. If activities’ vectors contain data available only till timet (m= t), the output can be
generated on the fly during the recording process, so that themeeting can be broadcasted live. On the other hand,
the offline production of the output videos can use vectors compounded from activities computed during whole
time period of the meetings (m= l ). Better visual results can be achieved in the offline editing, because the camera
can be also selected according to the events, which offer after the evaluated time point.
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Figure 20: Example of programme skeleton
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The camera selection function and the rest of the video editing algorithm are currently implemented using
various rules [2]. Some of these rules describe how to convert source features into data expressing importance
of an appropriate activity. Other rules represent the videoediting methodology that says which cameras and
when should be selected? This means that the camera showing the most important events is selected, but also
the measure of desirability of the continuation of given shots is taken into account. The result of each rule is a
number representing weight of one aspect e.g. activity of one participant or importance of given camera selection
according to video editing methodology. All rules are connected into the network. The total weights describing
importance of every camera are computed and the camera with the highest weight is selected.

Figure 21: Video editing system

In addition to physical cameras, the system works also with so called virtual cameras. Virtual cameras are
defined by position and zoom of selected part of source video.They can be used for example if a detail shot of
certain participant is necessary but only distant shot withthis participant is available. This is for example the case
of omni-directional system where all participants are visible in the view of one common camera. Some viewports
displaying particular participants or neighboring participant can be represented with virtual cameras and video
editing algorithm will be working with this cameras insteadof picture of physical camera [3].

The whole video editing system can produce generic full length cut of the recorded meeting offline. It is also
possible to create video according to specific query given bythe viewer. The selected participants or activities can
be highlighted due to strengthening of an appropriate rule weight. Further, it is possible to produce a shortened
version of the meeting. A summarization method based on skipping of segments with low importance is applied.
In addition, video editing algorithm can be used for live broadcasting of the meetings in real-time.
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A Transcript AMI-FOBM6

P2: Ants are the most intelligent animals in the world.

P0: Well taken as a whole maybe, but individually no

P2: ?? cats

P3: Yeah but there’s an ‘S’ VOC laugh. There is a problem here

P0: Well it’s a species, a species yeah

P3: I would say the most intelligent animal is in singular

P2: Which one?

P3: Or maybe we have to consider we have to consider intelligence as a group maybe?

P0: a ?? a cat, a cow or ??

P0: Um

P3: Cause cow as a group, I would bet on cow VOC laugh. I think wewe can eliminate cow anyway

P3: It doesn’t look very intelligent. You have any clue of vowintelligence? VOC laugh

P0: I think they have some kind of secret manifestation of intelligence.

P2: Oh yes no no no no P0: They hide it very well. Well you can’t because when they’re observed, they instantly hide it. So youcan’t know. P3: When when they

P0: This was a guess I think.

P2: So the mother um I would rate it as ants cats, ants cats and cows

P0: What?

P2: In that in that order I’d rate them as ?? VOC laugh

P3: I would rate cats, cow, ants

P0: I would say ants.

P2: Ants yeah

P0: Yeah

P3: You would say ants first

P0: As a group

P2: Yeah as a group yeah

P3: As a group yeah but that’s not really intelligence that’sorganization

P2: Well

P1: Um yeah yes um as an organization they are very intelligent

P2: Um the cats hardly live together, you know

P3: Yeah but is-t it can be a proof of intelligence if they can um they can have um critique opinion against other cats, whereas ants just agree, so they don’t really

P0: Yeah

P0: What doe-s what does it prove? is it just

P1: Actually an interesting point is that ants have survise/survived o-n on the earth for millions of years without evolution

P0: Well they have a very plastic if it’s English, plastic nature. They can be modified at will the the the quee-n

P1: They can’t

P3: They can

P0: The queen decides what she produces depending on the conditions

P2: That is Bees right?

P0: No I think it’s true for ants

P2: Ants also

P0: So

P3: All- all of this it true, but it this not related to intelligence. Yeah good a good adaptation capacity they have good group behaviour, but they don’t have any initiative or

P0: Well yeah but

P1: What’s intelligence?

P1: What I’m trying to say

P2: Well cats have initiative to steal food for themselves

P3: Yeah if you let something anywhere a cat will try to

P2: Ants
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P2: Ants do have the same instinct you leave your sugar box open anywhere they come there and they make it you know VOC laugh VOC laugh VOC laugh

P0: Yeah

P1: I-f if there’s something, an ant will eventually find it

P3: That’s much more difficult with a cow. VOC laugh If you leave something in a kitchen, you are less likely to find a cow VOC laugh VOC laugh u-

P0: You know you are in trouble yeah?

P1: It depends if the cow is very hungry. P2: Well cow usually,well cows usually, well I don’t know here, but in India the cows usually have a tendency to go into an some others field to eat the green grass if it doesn’t gets it.

Well depending on the situation the cow can also become intelligent

P0: ?? a mad cow maybe VOC laugh

P3: Ok

P3: Um yeah P2: Well it once like

P0: I don’t know I see but ants built, they’re able to built um well they modify our gardens

P2: Yeah

P0: Cats can’t

P0: Yeah ants can built big structure, very complex things

P3: Yeah

P0: High span and

P1: What do you mean by modifying the environment? If you put acat in an environment with a a lot of rats

P1: It will change the ??

P0: Yeah it is not really building

P2: So

P1: So we are still divided I think

P3: I think um that that’s strange too because intelligence as a group group intelligence

P0: Yeah

P0: Well if you look at the brain

P3: Yeah

P0: We could look at it this way

P3: Yeah yeah but that is different individual yeah that can yeah that’s interesting

P0: I don’t think ?? I wouldn’t look at an ant as a brilliant individual of I mean by itself it’s nothing right?

P3: Yeah

P3: Yeah ok

P2: Ah well it is well you should look for that um story of otherthan French

P0: Yeah yeah you’re right

P0: Yeah same

P3: I vote for ant as well

P1: Me too
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