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D4.6 State-of-the-art reports emerging from WP4

Abstract:
This document, which updates previous AMI deliverables D4.3, 4.4, and 4.5, de-

scribes the state-of-the-art in AMI areas related to audio and vido processing. The fields
covered are conversational speech recognition with remote microphones, localization and
tracking, and recognizing attentional cues.
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State-of-the-art overview
Conversational multi-party speech recognition using remote

microphones



1 Introduction

The focus in large vocabulary automatic speech recognition research has been devoted to the tran-
scription of speech found in natural environments for quite some time. The recorded speech is rarely
planned but spontaneous or even conversational which contributes to relatively poor performance
on these tasks. More recently more attention was devoted to the automatic transcription of confer-
ence room meetings. This interest is partly driven by the direct demand for transcripts of meetings.
Moreover these transcripts can form the basis for higher level processing such as content analysis,
summarisation, analysis of dialogue structure etc. This increased interest is manifest in yearly evalu-
ations of speech recognition systems by the U.S. Institute for Standards and Technology (NIST) (e.g.
[1]) or the existence of large scale projects such as AMI or CHIL1. Initial work on meeting transcrip-
tion was facilitated by the collection of the ICSI meeting corpus and the NIST meeting transcription
evaluations in 2002. Further meeting resources were made available by NIST [24] and Interactive
System Labs (ISL) prior to the 2004 NIST RT04s Meeting evaluations[1]. In these evaluations the
meeting domain was considered to cover so-called conference style meetings only, i.e. meetings with
participants sitting around a meeting table. In the RT05s evaluations lecture-style meetings were
added. Here a person presents material and answers questions from the audience.

As work in this domain is new many questions relating to fundamental properties of the data are yet
unanswered. It is evident that the data varies greatly with the acoustic environment, the recording
conditions and the content. A variety of recording configurations using speaker associated or remote
microphones poses additional challenges. Overlapped speech or reverberation in the meeting room
are a further cause degradation in recognition performance. This is especially present in lecture type
scenarios where rooms may be large and the distance of the speaker to recording equipment is far
greater than in conferences rooms.

1.1 Remote microphone recordings

Meetings typically take place in rooms with non-ideal acoustic conditions in the presence of signifi-
cant background noise, and may contain large sections of overlapping speech. In such circumstances,
headset microphones have, to date, provided the best recognition performance, however they have a
number of disadvantages in terms of cost and ease of use. The alternative is to acquire the speech
from one or more distant microphones, however, such ‘remote microphone recordings’ generally re-
sult in reduced ASR performance. A large body of research is concerned with techniques to enhance
recordings from distant microphones with the goal of improving ASR performance. We describe a
number of these techniques and subdivide them based on the amount of prior knowledge we have
about the microphones.

1.2 Structure

This overview of state of the art in conversational multi-party speech recognition using remote micro-
phones has a strong focus on developments made in the AMI and M4 projects2 and hence does not

1Computers in the Human Interaction Loop, an EC IP project
2At the time of writing the AMI project has participated in the NIST evaluation in 2005 and 2006 [26, 28].
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claim completeness in all associated areas. However the authors aim to show the range of topics and
techniques as well as highlight the issues that are important for work in this domain.

In the rest of the paper we discuss the state-of-the-art for front-end processing, acoustic and language
modelling as well as general system architecture. Automatic speech recognition systems are very
complex and consist of many components to achieve competitive performance. Many of the methods
used for meeting transcription are generic or work on general conversational speech. Hence the
focus of the remaining sections is on meeting specific components and thus naturally front-ends are
discussed in greater detail.

2 Front-end Processing

On of the main problems in this domain is the robust acquisition of the speech signal given the adverse
conditions (in terms of ASR performance) in which most meetings are held. Meeting rooms are often
reverberant (e.g., the instrumented meeting room at the University of Edinburgh has a reverberation
time in the region of 0.7s); they suffer from significant background noise (e.g., from projectors and
computers within the room) and activities outside the room; and meetings often contain periods in
which several people are speaking concurrently. Close-talking microphones alleviate many of these
problems and give the highest accuracy from current ASR systems, however they have a number
of practical limitations concerning their use. Advanced processing techniques for multiple distant
microphones, such as microphone array processing, offer an increasingly viable alternative which
overcome many of the disadvantages of close talking microphones. In this section we first describe
the problems associated with the capture of speech in meetings, even when using close talking micro-
phones. We then describe the practical limitations of headset microphones, and present a number of
distant microphone systems which can overcome these limitations.

2.1 Close talking microphones

Recordings made using close talking microphones have the advantage of high signal-to-noise ratio
and implicit knowledge of the number of speakers as a single speaker is associated with each chan-
nel. Despite these advantages, there still remain significant challenges when carrying out ASR on
these recordings in realistic environments, such as are encountered in meeting room scenarios. These
challenges are often not dissimilar to that encountered in the far field.

The most serious problems typically encountered are the presence of cross-talk and the poor relia-
bility of speech end-point detection. Cross-talk occurs when speech from neighbouring individuals
is captured. While this is predominantly a problem for lapel based-recordings, it can also occur
with head mounted microphones. When cross-talk occurs in the absence of speech activity from the
target speaker, the effect can be reliably suppressed by a comparison between channels using cross-
correlation and/or energy based analysis [46, 60, 36]. A more complex situation arises when cross-talk
is overlapping with target speaker activity. Detection of such cases is possible through the use of ex-
tended statistics [60], but this does not deal with the fundamental problem that overlapping segments
are likely to result in lower speech recognition performance. Speech end-point detection is a trivial
problem in ideal recording conditions, but in meeting room recordings this becomes a challenging
task, also because of the great variability in recording conditions and the presence of high-energy,
non-speech sounds in the recording. These sounds are often produced by the target speaker (the most
prevalent source of such noise is breathing onto a headset microphone worn too close to the mouth).
Previous work in this domain has looked at statistical approaches for speech activity detection us-
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ing HMM/GMM based classifiers with additional components to control cross-talk between channels
[46, 60, 36].

Partners in the AMI project have undertaken similar approaches, demonstrating significant perfor-
mance improvements over previous efforts [9, 20]. In comparing results between the AMI system
submissions for the NIST Rich Transcription 2005 and 2006 Spring evaluations, the increase in WER
due to automatic speech segmentation was reduced from 6.4% (20.9% relative) to 3.1% (12.8 % rel-
ative) [26, 28]. Thus, while there is still room for further improvement, a large component of the
problem has been addressed in the AMI project.

Aside from the issues concerning ASR on close talking microphones, there are also more practical
limitations that arise in realistic meeting scenarios it is impractical to provide every participant in a
meeting with a headset microphone since the cost of such devices is prohibitive. Participants also
find them obtrusive and feel self-conscious wearing them, and unless radio microphones are used,
participants are effectively tethered to one location, unable to act or move naturally. The multiple
distant microphone processing techniques described below address these problems since they remove
the need for individual participant microphones.

2.2 Microphone arrays

Microphone arrays offer a principled approach to recovering a particular person’s speech from a mix-
ture of distant microphone signals [45]. A microphone array consists of multiple omni-directional
microphones arranged in purposeful geometries in a room. Microphone arrays filter the received sig-
nals according to the spatial configuration of speech sources, noise sources and microphones, and
are thus able to focus on sound originating from a particular location. The capabilities of such mi-
crophone arrays include location of sources in reverberant enclosures, identification and separation
of the sources, enhancement of speech signals from desired sources, and separation of speech from
non-speech audio signals [55]. A body of previous work, e.g. [45, 42], has shown that arrays can be
an effective alternative to close-talking microphones for single speaker ASR in noisy environments.
In addition, in a multi-speaker environment, the directional nature of the array allows discrimination
between speakers leading to improved ASR performance for overlapping speech [44].

Microphone array speech enhancement generally involvesbeamforming, which consists of filtering
and combining the individual microphone signals in such a way as to enhance signals coming from
a particular location. The simplest beamforming technique is delay-sum beamforming, in which a
delay filter is applied to each microphone channel before summing them to give a single enhanced
output channel. Each channel delay (with respect to some reference channel) is calculated to align
the speech signal arriving from a particular source location, ensuring constructive in-phase addition
of the desired signal during the summation. As the noise components in the signal are combined out
of phase, this procedure leads to a relative increase in the signal level (i.e. speech from the desired
direction) with respect to the noise level.

Other more sophisticated beamforming techniques exist which calculate the channel filters to optimise
a particular criterion - such as gain with respect to an isotropic noise field or a set of particular noise
locations. These techniques can be broadly categorised as being fixed (data-independent) or adaptive
(data-dependent) beamformers. In general, fixed beamformers have the advantage of providing less
distortion to the desired speech signal, while adaptive beamformers tend to yield greater reduction of
the noise level. In the robust speech recognition literature the most commonly used fixed beamform-
ing techniques are delay-sum and superdirective beamforming [17, 16], while adaptive techniques
have generally been variations of the Generalised Sidelobe Canceller (GSC) [25].

In practise, the beamformer seldom exhibits the level of improvement that the theory promises and
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further enhancement is desirable. One method of improving the system performance is to add a
post-filter to the output of the beamformer. The use of a post-filter has been shown to improve the
broadband noise reduction of the array [56], and lead to better performance in speech recognition
applications [42]. Most approaches are based upon the post-filter proposed by Zelinski [62], which
uses the input channel auto- and cross-spectral densities to estimate a Wiener post-filter to be applied
to the beamformer output. The use of such a post-filter with a standard sub-array beamforming
microphone array was thoroughly investigated by Marro et al [39], and has been used successfully
in a number of speech enhancement and robust speech recognition applications. Other post-filter
formulations better suited to more complex diffuse or non-stationary noise environments have been
proposed in e.g. [40, 15].

With the increasing interest in using microphone arrays for speech recognition, an emerging research
direction has been closer integration of the beamforming stage with statistical speech models. The
motivation behind such approaches is the fact that traditional array processing is formulated to max-
imise the signal-to-noise ratio (SNR), rather than necessarily minimise the error rate of the eventual
speech recognition. In fact traditional microphone array processing techniques enhance the signal
based purely on geometrical information rather than any knowledge of the speech spectrum. Re-
cent techniques that attempt to incorporate some form of speech model in the enhancement include,
e.g., a likelihood-maximising beamformer (LIMABEAM) [53], a range of new speech-specific source
separation algorithms [49, 52], and a beamformer based on a dual excitation speech model [10].

All of the above techniques assume the location of the desired speaker is known. In some situations,
such as known seating configurations around a table, this assumption may be realistic. More gener-
ally, however, beamforming should be preceded by a step that locates (and potentially tracks) each
speaker, e.g. [19]. Recent research has started to investigate the integration of speaker tracking with
beamforming for speech recognition [58, 41, 7].

2.3 Table-top microphones

The simplest alternative to close-talking microphones is to use individual omnidirectional micro-
phones located on the meeting table, each in front of one or more participants. Although table-top
microphones remove the need for individual microphones, their performance for ASR is significantly
worse, primarily as a result of the decay of sound energy with distance. As described above, close-
talking microphones capture speech from the wearer at a higher level than other sound sources from
the environment (other speakers, background noise sources). For distant microphones however, the
differences in distance travelled from each source to the microphone are not as substantial. The re-
ceived signal contains a variable mixture of all sources, and background noise, room reverberation
and crosstalk also severely effect the quality of the received signal. Recognition experiments car-
ried out on the ICSI meeting corpus [22] have shown that the word error rates (WER) for individual
table-top microphones were double those of the close-talking microphones.

The performance of table-top microphones can be improved by employing well known noise reduc-
tion (e.g. those using Wiener filtering) and echo cancellation techniques (e.g. those using adaptive
filtering) that attempt to recover the original speech from the noisy signal. In addition, if multiple
table microphones are available, then the beamforming techniques described above may be used to
enhance the output and perform localisation of speakers, even if the microphone locations are un-
known. Such techniques have been widely used in speech recognition systems developed for recent
NIST evaluations [1, 2]. For example, the following processing steps were used for multiple distant
microphone processing in the AMI system [27, ?]:

• First, gain calibration was performed by normalising the maximum amplitude level of each of
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the individual microphone channels

• Wiener filter was applied to each channel to remove the stationary background noise

• Delay vectors between each channel pair were calculated for every frame using the normalised
cross correlation between channels

• Relative scaling vectors were measured corresponding to the ratio of frame energies between
each channel and the reference channel

• The delay and scaling vectors were then used to calculate beam-forming filters for each frame
using the standard super-directive technique

• The beamformed output was used as input to the ASR system

The above processing steps significantly improved the recognition performance and reduced the gap
between close-talking microphones and table-top microphones. In 2005 the AMI system achieved
word error rates of 30.6% for close talking microphones and 42.0% for the above system in the rt05s
evaluation.

Table top arrays of microphones currently provide the best compromise between ASR performance
and ease of use, since they do not require dedicated calibrated arrays within the room. [21] also
shows that table-top arrays consisting of inexpensive conventional electret microphones can achieve
similar recognition results to that of a single expensive sensor and as such, these arrays provide a cost
effective alternative to calibrated arrays.

In NIST evaluations (e.g. [3]) recordings from many different meeting rooms are used and each room
has its own configuration specifics in terms of number of microphones, their location in relation to the
speakers, the room geometry etc. However, so far no particpant has worked with the specific room
geometry. In the case of very low number of microphones and wide spacing none of the above tech-
niques was found to be robust and simple energy based selection of microphones proved to be more
efficient and the performance gap between close talking and table-top microphone array recordings
could be narrowed substantially[28].

2.4 Dynamic microphone networks

While microphone array techniques, including those based on uncalibrated arrays of table top sen-
sors provide enhanced output compared to the output of individual distant microphones, they have
several strong requirements constraining their application: they generally assume a fixed number of
microphones, strictly simultaneous sampling between channels, calibrated microphone gain levels,
and a known, static microphone placement. Such stringent requirements cannot be guaranteed in
most practical situations.

With the increasing prevalence of networked devices containing microphones an alternative to fixed
arrays, based on the concept of distributed sensor networks [14, 4] is becoming available. So called
’dynamic’ or ’ad-hoc’ microphone networks comprise a group of individual devices such as PDAs
or mobile telephones which, communicating via wireless network, act as elements in a microphone
array. Requiring little or no pre-installed infrastructure and capable of using readily available sensors,
such a system would allow high quality speech acquisition for ASR from groups of people at low
cost, without the need for close talking microphones.

Such systems present a number of challenges compared to fixed arrays many of which are currently
being addressed. Strict synchronisation between channels cannot be guaranteed in ad-hoc arrays. This
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is being addressed using a number of techniques based on the transmission of a global clock signal to
each device [38, 34, 8]. The location of the microphones must be determined automatically in the case
of ad-hoc arrays. Work on such ’self locating’ microphone arrays has recently been reported in the
literature [57, 48, 51, 50, 13], however these algorithms present some limitations, such as requiring a
calibration signal to be played, or that close initial estimates of the microphone locations be provided.
Differing devices will also have variable channel gains and this will also need to be addressed for
such arrays to be used effectively as elements in an array.

While research on ad-hoc arrays is still in its infancy, and a fully functional audio acquisition system
providing beamformed output from a dynamic array is still some way off, such a system has clear
benefits over a conventional array.

2.5 Speaker Diarisation

Diarisation is the task to find outwho spoke whenin a multiple speaker scenario. This relates to a
combination of speech activity detection and speaker clustering where the relevance of the former
was outlined above. Speaker clustering is important for systems that adapt to speakers. Diarisation is
a difficult task requiring complex systems for optimal performance (e.g. [6]). Experience reported at
meeting workshops [1, 2] so far indicates that optimisation of diarisation criteria does not coincide
with optimal ASR performance.

In 2006 NIST introduced the scoring of overlapped speech, i.e. words spoken by multiple speakers
at the same time. Hence, ideally a diarisation system is capable of handling such overlap. In the
upcoming RT’07 evaluations a joint speech recognition/diarisation performance will be measured.
This new metric is called “speaker attributed word error rate” and will count correctly recognised
words as wrong if the associated speaker label is incorrect.

2.6 Feature extraction

Most techniques mentioned above are enhancement based, i.e. the objective is to improve the audio
quality prior to recognition. This has the advantage that later stages in the speech recognition process
are allowed to operate in a standard way. Hence systems in meeting transcription make use of standard
features such as Mel Frequency Cepstral Coefficients (MFCC) [18] or Perceptual Linear Prediction
(PLP) coefficients [32] or derivatives thereof (e.g. [27, ?, 43]).

Recently there is increased interest in feature space representations that cover a long time span. Many
systems now make use of so called posterior based augmentations of the above feature vector. The
AMI 2006 system for example includes features based on phone state posterior probability as com-
puted by an MLP[?]. The LCRC features are derived from Mel frequency log filterbank (FB) coef-
ficients where 23 FB coefficients are extracted every 10ms. 15 vectors of left context are then used
to find the LC state level phone posterior estimates. The same procedure is performed with the right
context. These posteriors are then combined with a third MLP network and after logarithmic compres-
sion the 135D feature vector is reduced to dimension 70 using principal component analysis. Final
dimensionality reduction using heteroscedastic linear discriminant analysis (HLDA)[35] to 25 feature
components is performed and the vector is appended to the standard 39D vector. These techniques
work well for both close talking and far field microphone processing [?].
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3 Acoustic Modelling

Acoustic modelling techniques proposed for meeting transcription in general do not differ greatly
from general acoustic modelling techniques used for transcription of conversational telephone speech.
An important reason for this is the enhancement based front-end that try to eliminate the additional
acoustic variability.

3.1 Resources

As is normal for large vocabulary ASR, in-domain training data is vital for good performance. By
now several corpora of meeting recordings are available amounting to between 150 to 200 hours of
speech.

The ICSI Meeting corpus [33] was originally the largest meeting resource available consisting of
70 technical meetings at ICSI with a total of 73 hours of speech. The number of participants is
variable and data is recorded from head-mounted and a total of four table-top microphones. Further
meeting corpora were collected by NIST [24] and ISL [12], with 13 and 10 hours respectively.Both
NIST and ISL meetings have free content (e.g. people playing games or discussing sales issues) and
number of participants. As part of the AMI project a major collection and annotation effort of the
AMI meeting corpus[5] was undertaken and has finished in June 2006. Data was collected from three
different model meeting rooms in Europe (mostly Edinburgh and IDIAP at the moment). Overall more
than 100 hours of transcribed speech are now available for free download. The meeting language is
English. Each meeting normally has four participants and the corpus is split into ascenarioportion
and individual meetings. The scenario portion involves the same participants over multiple meetings
on one specific task. Further small sets of meeting recordings for testing purpose have been made
available in the context of NIST evaluations.

3.2 Model training procedures

Overall the amount of data available from meeting recordings is minimal compared to other domains
such as Broadcast News (BN) or conversational telephone speech (CTS) where multiple 1000s of
hours of speech are now transcribed. Hence it is not surprising that system developers decided to
make use of these background resources. In systems such as [54, 59, 27] the comparatively large
Switchboard corpora as well as CallHome Corpus where used3 to bootstrap or train models for meet-
ing transcription, on the basis that the target is conversational speech. However, these resources are
recorded over the telephone and hence have different bandwith to that usually available in meetings.
The problem was addressed by downsampling in the case of [54, 59, ?] while in [27] a adaptation
technique was used to map between different bandwidths. In [43] instead the use of BN data was sug-
gested which was verified in [?]. In both cases the use of the additional background material allowed
substantial improvement in word error rates.

For training on multiple remote microphone data again different strategies have been developed. In
[59] training on all microphone channel recordings simultaneously was found to outperform training
on single channels, e.g. by picking the central microphone or prior enhancement (e.g. as in [27]).
The AMI 2006 system [?] has expanded this technique. When using a SAT style training on each
microphone channel (CHAT), i.e. one set of CMLLR transforms per channel, a performance gain of
1% WER absolute can be observed [29].

3Available from the Linguistic Data Consortium
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Apart from these data issues standard acoustic models are based on decision tree state-clustered Hid-
den Markov Models (e.g. [61]) or equivalent forms. Maximum likelihood training schemes are gen-
erally replaced by discriminative training using discriminative criteria such as the minimum phone
error(MPE) criterion [47]. Front-end feature transforms such as heteroscedastic linear discriminant
analysis [35] allow a more effective construction of feature spaces while speaker adaptive training
techniques such as vocal tract length normalisation (VTLN) show similar performance gains to those
obtained with the same techniques on CTS data[30] (and in contrast to performance on BN). Purely
test-adaptive techniques such as maximum likelihood linear regression [37, 23] are used mostly for
adapting to speakers rather than the environment.

4 Language Modelling and Vocabulary

Similarly to acoustic modelling in-domain data availability is a major issue in language modelling
and vocabulary selection. Vocabularies are normally selected by using the most frequent in-domain
words, and if necessary, augmenting the list with the most frequent words from other sources, for
example BN text corpora. Even though meetings can be held on a wide range of topics the approach
appears to yield sufficient coverage [31].

Language model training data for conversational speech is sparse. Hence models are constructed from
other sources such as BN data and interpolated. This is true for both CTS and meeting data. Hence
most systems use interpolated language models from a variety of sources, including data collected
from the web [11] specifically for the task [?, 27].

The use of web-datafor building domain specific language models (LMs) has proven highly effective
(e.g. [31]). Such data is collected by querying search engines withn-grams representative of the
target domain. The choice of queries has a significant impact on how well the retrieved web-data
matches the domain. Traditionally, queries were deemed representative of the target domain solely
by examining then-gram counts of a sample of in-domain text (T). In more recent work[?] on search
models the queries were selected by selecting the most frequentn-grams that occurred in the target
domain but did not occur in the background data (B).

5 Speech decoding

A major component in the development of any speech recognition system is the decoder. As task com-
plexities and, consequently, system complexities have continued to increase the decoding problem has
become an increasingly significant component in the overall speech recognition system development
effort, with efficient decoder design contributing to significantly improve the trade-off between de-
coding time and search errors. One approach that has seen considerable interest in recent years is the
Weighted Finite State Transducer (WFST) based decoder. Pioneered by Mohri and others at AT&T
[?], the key advantage behind the use of WFSTs for speech decoding is that it enables the integration
and optimisation of all knowledge sources within the same generic representation. While the use of
static networks in speech decoding is far from being a new idea, the explicit use of weighted finite-
state transducers is relatively recent, providing a more efficient framework for carrying out speech
recognition and also enabling simpler decoder design and greater flexibility in the integration of new
knowledge sources in various stages of the system hierarchy.
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6 System architectures

Systems for meeting transcription are not yet in wide-spread use. At this stage the system architectures
mostly follow patterns that have been developed elsewhere (e.g. in CTS transcriptions). State-of-the-
art systems operate in multiple passes where each pass normally outputs both a first-best results and
a word-graph. The latter is often used to constrain the search space for subsequent stages, or more
recently, to allow for output combination of complementary systems, i.e. systems that are trained to
yield similar performance with different error types. Depending on the allowance in terms of real time
the system complexity is usually increased by the number of passes, with decreasing gains in word
error rate in later passes. So far only few experiments are published that try match system architecture
to the type of input data (i.e. dependent on the microphone configuration). In the case of multiple
remote microphone data experiments with recognition on each microphone channel have not yielded
superior performance. In recent NIST evaluations the practical benefit of a unified system structure
regardless of the input data was noted by all participants. Integration with other systems, such as
those for diarisation or source localisation systems was not yet shown to yield clear advantages.

7 Conclusions

In this paper we tried to give a brief overview of state-of-the-art in speech recognition of conversa-
tional speech with remote microphones. Although the discussion is clearly incomplete at this stage we
highlighted properties and main issues of current systems and discussed several different approaches
to fundamental problems. From the results so far (word error rates of 20–35% and still a large differ-
ence to results with close-talking data) and the fact that current systems have not yet touched on the
full complexity of the domain, we infer that there is room for substantial improvement. Front-ends
that are on the one side fully integrated into ASR systems, but are at the same time aware of the
physical conditions, are likely to yield substantial improvements. Distributed system architectures
will allow effective implementation of such systems. Several important questions are only just being
addressed, for example the issue of time-overlapped speech, or effects of reverberation.
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1 Introduction

Attention refers to the cognitive process of selectively concentrating on one thing while ignoring
other things. This is an everyday wording of a definition given by one of the first great psychologists,
William James:

Everyone knows what attention is. It is the taking possession by the mind in clear and
vivid form, of one out of what seem several simultaneously possible objects or trains of
thought... It implies withdrawal from some things in order to deal effectively with others.

(Principles of Psychology, 1890)

Attention is basic for all forms of perception; for outer perception via our senses, vision, hearing, taste
and smell, as well as for inner perception, the perception offeelings, emotions, thinking. Attention
processes allow us to direct attention to certain aspects inthe environment with special care. An
impressive example of the capacity to direct attention is the cocktail party effect: at a party, in the
chaos of noise and voices, we are able to focus and concentrate on voices further away and thus
follow a conversation, despite the other acoustic signals that continuously reach our ear. We are also
especially good at selectively directing our attention to one or another aspect of an object, such as its
color, shape or movement.

The amount of incoming information to the primate visual system is much greater than that which
can be fully processed. Only part of this information is processed in full detail while the remainder
is left relatively unprocessed. ([19]). There are two prime mechanisms in attention control: oursense
system is constantly aware of its environment and changes ask for our immediate attention, second
there is the process of directing our attention and selecting the information channel in order to better
do what our task requires us to do. The first, bottom-up attentional selection process is a fast, and
often compulsory, stimulus-driven mechanism. The other mechanism, top-down attentional selection,
is a slower, goal-directed mechanism where the observer’s expectations or intentions influence the
allocation of attention. Observers can volitionally select regions of space or individual objects to
attend. (see [19].)

Although attention is an innate activity of the mind, it shows itself in observable phenomena of body
movements, facial expressions and the way people (or animals) act or behave. So it is tacitly assumed
that eye gaze, body posture, arm and head movements are phenomena that go with changes in the
attentional state of a person. This implies that these phenomena are possiblecuespointing at the
attentional state of a person or a change in his attentional state.

Attention is required for every form of sensual and cognitive perception, and thus for obtaining in-
formation. This is the very reason whyeye-gaze, and head movements arecuesfor identifying the
attentional state and focus of attention of someone. Focussing our attention to something or someone
in our environment is done by directing our sense organs towards the object that we want to perceive.

Gaze directionis thus a natural sign for focussing attention to something in our visual environment.
Laying our hand behind the ear and directing our head in the direction of a sound source is a natural
sign of focussing our auditive attention to something that we hear. Becoming aware of this natural
function, gaze becomes also a signal that is used to express attentiveness. Gaze patterns, as well as
body postures thus become codes, by means of which the interactors show whether they are or are
not attentive, whether they are willing to hear, or to interact. Backchannels ([32]) are codes used by
hearers to show their attentiveness and signals for the speaker that he can go on. Deictic pointing is
a way of referring to something and attracting someone’s attention to that something that we want
to highlight as being of special interest in a specific situation. Deictic pointing gestures are often
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accompanied with verbal gestures especially the use of referring expressions that help to identify the
referred object. Gazing at something is the third way in which people try to focus other peoples
attention.

Since our perceptions are mostly related to organized activities, which are being performed to achieve
specific aims, the attentional cues do not occur unrelated. They show specific patterns. Identification
of these patterns of attentional cues and how they correlatewith specific activities is important for
recognition of these activities from the observable cues.

The termfocus of attentionhas different meanings in different research areas. The primary use of
the term focus of attention refers to a perceptual variable indicating the object or person someone is
attending to ([4]), a description of someone’s focus of attention during an activity. At a semantical
level the description of someone’s focus of attention during an activity involves describing which
actions, objects or people someone is attending to. At a syntactical level this could involve describing
the spatial and temporal properties of someone’s (visual) attention. As such this is not a directly
observable category.

As people often orient themselves towards the physical objects or persons they are attending to, the
notion of focus of attention has a derived meaning referringto the physically observable behavior
of orientation towards an object by means of posture, head orientation and/or gaze. This could be
called thevisual focus of attention. Psychological attention and physically observable attention do
not necessarily coincide but are correlated highly. This isa generally held assumption.

The termfocus of attentionis also used within a (computational) linguistic context. In a theory
of discourse structure, developed by Grosz and Sidner, three components of discourse structure are
distinguished: linguistic structure, intentional structure, and attentional state. Theattentional stateis
considered as an abstraction of the discourse participantsfocus of attention. This state records the
objects, properties, and relations that are salient at a given point in the discourse. (see [5])

Dialogic attentioninvolves listening to a person (auditory mode of dialogic attention) or speaking
to one or more persons (articulatory mode of dialogic attention). The focus of dialogic attention
identifies these persons, the extent of dialogic attention describes the number of persons within this
focus. ([28])

Research in focus of attention and in techniques for recognition of attentional cues has the interest of
several research areas, including human interaction, conversational analyses, human machine interac-
tion, user interfaces and attentive systems, embodied conversational agents and virtual environments.

2 Recognition of Attention in Meetings

Meetings are coordinated multi party activities where people collaborate in a shared task. Joint at-
tention is required for effective collaboration. Most of the activities are conversational, participants
verbally exchange ideas, have discussions. In order to understand what is going on in a meeting, to be
able to write a summary of activities, discussions and decisions made, we need to understand the basic
processes that underly these activities and also how these processes show in observable phenomena.
Communication is a joint activity, the process of sharing ideas. In conversations a speaker produces
meaningful signals by which he tries to direct the attentionof the listeners mind to the ideas that he
wants to communicate. The speaker selects those codes that he expects are most effective in directing
the attention of the interlocutors in the way he wants.

By pointing at something people try to attract someone’s attention to something. (spatio deictic
referring). For example someone is looking in the directionof the window, then points at it and says:
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"Look there is Socrates".

Several issues are involved:

a) that someone is making a movement with his arm, hand, that he moves his body to the one
who’s attention he tries to attract, his eye-gaze and head-movements, his speech, tone, and
wording.

b) that this movement made is a pointing gesture, that he points at something to attract the attention
of someone, who is in the same field of perception.

c) how this pointing gesture is related to other simultaneous activities by the same or other actors
in the environment

d) how this pointing gesture fits in a sequence of activities over time by the same or by other actors
or things in the environment

e) what the target is that the actor refers to

f) what the intention is that the actor has with pointing at this target

For automatic recognition of such a conversational gestureas deictic pointing we need computer
vision technology as well as knowledge about the situation and the course in time of the conversational
activities in which the act of pointing is embedded. Severalmodalities play a role in the process of
recognition and interpretation.
Since the interpretation of the actions, hand and head movements made by participants in meetings
can only be inferred when considering them in synchronized and parallel sequences of actions often
Dynamic Bayesian Networks or (multi-layered) Hidden Markov Models are used for the prediction
(classification) of the movements in terms of signals that have some particular pragmatic meaning in
the context of the meeting.

People in meetings coordinate their actions in collaboration. Research has been performed to recog-
nize meeting activities and segment meetings into sequences of meeting activities such as, note taking,
discussion, presentation. These activities show in particular patterns of joint attention orgroup focus
of attentionand requires modeling simultaneous activities of all participants in a meeting. A meeting
location has a number of distinguished locations of interest that participants refer to or focus their
attention at in a meeting: white-board, laptop, documents,participants, someone entering the room,
and in the AMI design project meetings the prototype of the remote control is a recurrent topic of
interest. Head movements is one of the features (together with speech, linguistic and paralinguistic
features, body postures and arm movements) that are used forrecognition of sequences of meeting
activities. (see [1], [7], [16], [21], [20],[33], [2].)

3 Gazing Behavior in Face to Face Communication

A speaker can use gaze to indicate that the party being gazed at is an addressee of his utterance.
([3]) Listeners gaze and direct themselves towards speakers inorder to hear and see better what the
speaker is saying. At the same time the speakers monitors whois listening and how his speech is
received by the hearers. Gaze behavior is also of importancein turn-taking management. There are
specific patterns in gaze behavior and hence in head movements related to conversational behavior.
Identifying these patterns and recognizing this patterns is part of understanding what is going on in
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the meeting in terms of who is being addressed, who is trying to take the floor, who is anticipating
floor changes, who is participating in a conversation.

Speakers gazing practices often demonstrate explicitly toco-participants that an initiating action is
being directed to a particular party, thus selecting that party to speak next. This shows the gazed-at
participant that he or she is the intended recipient, and it shows the participants not gazed at that
they are not the intended recipient. For this method to work,then, an intended recipient must see
the gaze. Others may also need to see it to grasp that someone (else) has been selected. (see:[15]).
As has been shown already in the sixties and seventies, eye gaze serves an important role in guiding
the conversation, both at the side of the speaker and the listener (e.g. [11]). At the speaker’s side,
looking at the listener may serve the function of monitoringthe attention level and the processing
status of the incoming speech, and help to regulate the flow ofconversation. At the listener’s side,
looking at the speaker serves both the function of providingfeedback for the speaker’s monitoring
activity, to inspect the speaker’s behavior (facial expression, posture etc) for information about the
speakers attitude and emotion, and to monitor for nonverbalcues for turn-taking. Most of these early
findings concerning the use of nonverbal cues in communication are based on the analysis of dyadic
conversations. Later research on triadic and multi party conversations has confirmed and extended
the early findings. [31] provide evidence that gaze behavior is a reliable predictor of addressee-hood.

The main focus of [27] is the exploration of behavioral cues that could potentially be used for clas-
sification of the addressee of utterances in a situation where two users interact with each other and
with a service system. Facial orientation, utterance length and reactions on system events are con-
sidered important cues for focus of attention. In order to evaluate the potential integration of these
features, Naive Bayes classifier is used. Classes correspond with attentional states of the users. Both
participants look at the system (class A), The speaker looksat the system but the partner looks at
the speaker (B),The speaker looks at the partner but the partner looks at the system(C) and Both
participants look at each other (D). Results show that facial orientation together with systems events
(dialogical context) together are reliable features for predicting the attentional state of the interaction.

Recent work on addressee identification in four-participants face-to-face meetings presented in [9]
have shown that using utterance, contextual and speaker’s gaze features addressee can be predicted
with an accuracy of 82.57%. In comparison, classification that used solely gaze directional cues
achieved a significantly lower accuracy of 66.45%. This indicates that gaze directional cues when
used alone are unreliable features for predicting addressee in meeting discussions. It was also found
that listeners’ gaze direction provides useful information for addressee identification only in the situ-
ation where gaze features are used alone. In all these cases,classification was performed by means of
Bayesian Networks.

4 Research on Head Orientation and Gaze

Most existing work in detecting a user’s visual focus of attention makes use of camera-based head
pose tracking ([25], [24] ) or eye tracking ([30]). The eye-based gaze detectors require a robust eye-
tracker, and then typically extract gaze from the position of the pupils relative to the userŠs head. The
head-based techniques estimate the focus of attention by determining the orientation of the userŠs
head and assuming that the user is looking in the direction inwhich their head is pointing. These
techniques can be accurate, but the fact that they are camera-based means that they are typically not
mobile, and can encounter difficulties when the lighting of the scene changes. (see also: [17].)

Head position and eye gaze together and interactively determine whether an observer looking at a
picture of a face judges whether the person on the pictures islooking at the viewer or next to him.
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Gaze direction is constituted by head orientation and eye orientation ([13]) and can be used as a
deictic signal, indicating the current focus of interest ([14]). We have reason to believe that we can
use head orientations as a valid substitute for gaze when determining the focus of interest (c.f. [18]).
In an experiment with a four-person setting, it was found that in 87.0 % of all cases, the participants
rotated their heads and eyes in the same direction

Eye gaze is hard to monitor in a non-intrusive way. Thereforemost systems that want to detect visual
focus of attention of a person use head orientation. How goodcan we predict eye gaze from head
orientation?
In 88.7% of the time, the focus of interest could be determined solely by the head orientation. Based
on the fact that the head orientation component of gaze is so prevalent, it is expected that we see
the same systematics that occur in gaze behavior when looking at head orientations alone. This is
validated by analyzing a corpus consisting of head orientations and speaker data. ([24]).

How good are outside observers of meeting, i.e. people looking at a meeting through video, in telling
what the focus of attention of a participants is? How preciseare they in deciding where the head of
the participants is directed to? The research described in [22] shows that differences in gaze behavior
between speakers and listeners in a multi-party setting also exist when we look at their head orien-
tations. By analyzing a corpus of four-person meetings it appeared that speakers are generally being
looked at by more persons than listeners are. In an experiment, conducted in a virtual environment,
it was found that observers apply these systematics when asked to identify the speaker when shown
only the head orientations of the meeting participants. Thevirtual environment proved to be a suitable
tool for research in perception of human behavior since it allows for good stimulus control.

In [24] an overview of work on tracking focus of attention in meeting situations is presented. A system
has been developed that is capable of estimating participants focus of attention from multiple cues.
The system employs an omni-directional camera to simultaneously track the faces of participants
sitting around a meeting table and use neural networks to estimate their head poses. In addition,
it uses microphones to detect who is speaking. The system predicts participants focus of attention
from acoustic and visual information separately, and then combines the output of the audio- and
video-based focus of attention predictors. The work reports recent experimental results. In order to
determine how well we can predict a subject’s focus of attention solely on the basis of his or her head
orientation, we have conducted Experiment in which head andeye orientations of participants in a
meeting were recorded using special tracking equipment show that head orientation was a sufficient
indicator of the subject’s focus target in 89% of the time. The paper also discusses how the neural
networks used to estimate head orientation can be adapted towork in new locations and under new
illumination conditions.

5 Annotating Focus of Attention

In order to train and evaluate the quality of attention recognition techniques hand annotated video
corpora are made, in which the focus of attention of each of the participants is labelled continuously.
A fixed list of possible targets is used to identify the focus.In annotating focus of attention we stick to
the visual focus of attention of individuals, defined by the head orientation or eye gaze. So if someone
is looking at a person but thinking about his upcoming holiday we will only label where he is or she
is looking at.
For research in addressing behavior in face to face meetingsfocus of attention of participants in
scenario based recorded meetings (collected in the M4 and AMI projects) was annotated. The coding
is based on observations of the gaze and head turning of participants. The target set of interests
for this research on addressing are meeting participants. Reliability of marking the changes in the
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gazed target (segmentation) was about 80%, and reliabilityof target labeling showed a kappa value of
0.95. Experiments with Bayesian Network models show that information about the focus of attention
of participants, speakers as well as listeners contributesto the reliability of addressee prediction.
([8, 10])

Telling in what direction or what the participants are looking at is not only relevant for reliability
of coding of the focus of attention in meeting behavior but also for technology mediated meeting
participation, where remote participants rely on similar video and audio technology as annotators.

6 Applications

Modeling and tracking a person’s focus of attention is useful for many applications: Intelligent sup-
portive computer applications could use information abouta userŠs focus of attention to infer the
user’s mental status, his/her goals and cognitive load and adjust their own responses to the user ac-
cordingly. For multi-modal human computer interaction, the user’s focus of attention can be used
to determine his/her message target. For example, in interactive intelligent rooms, focus of attention
could be used to determine whether the user is to control the refrigerator, the TV set, or he/she is
talking to another person in the room. ([23])

Recognition of the attentional state of communicating and collaborating agents is a requirement for
attentive systems, which observe user activity to anticipate user needs as well as for Attentive User
Interfaces, user interfaces that manage the user attentiondeciding when to interrupt the user, the kind
of warnings, and the level of detail of the messages presented to the user ([29]).

Systems are build that integrate perceptual attention intomulti-party, multiconversational dialogue
layers [26]. A computational model of the dynamics of attentional state should model the perceptional
aspects and the way the senses react to the perceived signals, as well as the activities, goals and
intentions in which the actors are involved. In [12] a computational model of controlling the focus of
perceptual attention for embodied agents is proposed. It provides the potential to support multi-party
dialogues in a virtual world. It demonstrates that embodiedagents can respond dynamically to events
that are not even relevant to the tasks and shift their attention among objects in the environment.

Finally, Horvitz et al. present an overview of principles and methodologies in research on integrating
models of attention into human-computer interaction. ([6]).

7 Conclusion

We provided a short, and necessarily incomplete, overview of research in the area related to the
recognition of attentional cues in meetings. The analyses concerns (a) the behaviors of participants in
face to face conversations, as well as in face to face meetings, related to various meeting activities (b)
the analyses of this behavior by outside observers of meetings, notably annotators of meetings, and
(c) the impact for remote meeting participation.

The recognition of attentional cues by machines requires recognition and tracking of human bodies
and body parts, head movements, arm and hand positions, and thus builds on state of the art technol-
ogy in computer vision. We do not give an overview of this research area.

We have only reviewed the main lines of research related to the issue of recognition of attentional
cues. Insights gained by this research can help our understanding of what is going on in meetings.
The study of meeting behavior, the roles that the various communication channels play in conversa-
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tions is of prime importance for specifications of the requirements that technology mediated meet-
ings should satisfy. The locations of participants in the meeting, the positioning of video and audio
recorders, screens and sound boxes in meeting rooms, they all influence the way (remote) partici-
pants and outside observers perceive various modes of interactions that occur in the meeting. The
identification of patterns of attentional behavior, head movements, gestures, eye gaze, can only be
done after detailed and very careful observations of peoplein situations that are as realistic as possi-
ble. Conversational analysts have been doing this type of research already for many decennia. Often
this research is based on observations by researchers who did real-time annotations. The multi-modal
meeting corpus recorded in the AMI project makes it possibleto gain more insight in what is going on
in meetings. We have pointed at the relevance of the issues and research reviewed in this overview for
the understanding of outside observers, annotators and remote participants, who observe and annotate
meetings by means of video and audio technology.
Many issues arise that need further investigation. To name one issue: are perceived changes in the
audio field a cue for changes in focus of attention of participants in the meeting? What are the con-
sequences for the perception and experience of meeting participation of the reconstructed audio field
for remote participants.
A lot of experiments have been performed to study the importance of gaze and mutual gaze in re-
mote meetings, and the impact of the lack of a visual channel on conversations and meetings. Often
these experiments are necessarily performed in controlledsituations in order to be able to exclude
influences that may interfere with the conditions under study. Making it often quite risky to infer
results from this experiments to the real situations in which the knowledge should be applied. It is a
great advantage that we now have the opportunity to study meetings in settings as realistic as possible
in which the technology to support meetings is being used. This is by far the best way to get more
insight in the impact of these technologies and to further the development of this technology and to
get it tuned to the practice of meetings in the best possible way.
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1 Introduction
The automatic analysis of meetings recorded in multi-sensor rooms is an emerging re-
search field in various domains, including audio and speech processing, computer vision,
human-computer interaction, and information retrieval [45, 86, 64, 81, 21, 61, 92]. An-
alyzing meetings poses a diversity of technical challenges, and opens doors to a number
of relevant applications, including automatic structuring and indexing of meeting collec-
tions, and facilitation of remote meetings.

In the context of meetings, detecting, localizing, and tracking people and their speak-
ing activity are crucial for enriching the interactive experience between participants of a
meeting, on a single site as well as on multiple sites, e.g. videoconferencing. The lo-
calization and tracking tasks play fundamental roles in two areas. The first one is media
processing: speaker location is useful to select or steer a camera as part of a visualization
or production model, to enhance the audio stream via microphone-array beamforming for
speech recognition, to provide accumulated information for person identification, and to
recognize location-based events (e.g. a presentation). The second one is human interac-
tion analysis: social psychology has highlighted the role of non-verbal behavior (e.g. gaze
and facial expressions) in interactions, and the correlation between speaker turn patterns
and aspects of the behavior of a group [63]. Extracting cues to identify such multimodal
behaviors requires reliable speaker localization and tracking.

Although the above tasks are facilitated in meetings by the constraints of the physical
space and the expected type of human activities, they still pose several challenges. The
interactive nature of meetings involves spontaneous multi-party speech, which contains
highly dynamic patterns of speaker turns, including short speech utterances, non-linear
human motion, partial and total visual occlusion, and multiple sources (multiple over-
lapping speakers and/or background noise sources). The meeting room environment is
thus highly dynamical, and in order to develop useful applications for enhanced user ex-
perienceduring meetings (e.g. online and realtime) andafter meetings (e.g. automatic
summarization or queries from a user), robust and computationally tractable methods that
can cope with the multisource aspect as well as the highly dynamical aspect are nec-
essary. Ideally, such methods should address, in principled ways, the need for fusion of
perceptual data (e.g. multiple audio and visual sources), in order to exploit the modalities’
redundancy and complementarity, and the need for accurate descriptions of the interac-
tive, multiperson processes that meetings contain (e.g. representing the dynamic status of
each individual, while accounting for the constraints introduced by their interaction).

This report presents an overview of existing work on localization and tracking of mul-
tiple interlocutors with multiple sensors. Rather than being exhaustive, the report attempts
to provide a non-expert reader with pointers to what the authors regard as representative
work in the domain, and to present a succint discussion of the advantages and limitations
of such methods, including the ones that have been developed as part of the AMI project.
Themultisourcecontext will be the focus throughout. Additionally, given that the empha-
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sis of the review is on localization and tracking of talking people, we limit the review to
audio-only and audio-visual (AV) methods.

The report is organized as follows. Section 2 reviews existing work on localization
and tracking with audio sensors. Section 3 does so for work using audio-visual sensors.
Finally, Section 4 discusses available resources (i.e., data and related annotations) in this
domain.

2 Localization and tracking with audio sensors

The speed of sound in the air being finite and relatively low in an indoor environment
(around 342 m/s), most practical audio localization/tracking applications rely on time
asynchrony between the waves arriving at multiple microphones in multiple locations,
called microphone arrays. A three-fold inverse problem then arises: that of inferring,
from the slight differences between the recorded signals, the number of active speakers
at any given time (detection), their instantaneous positions (localization) and their spatio-
temporal trajectories over time (tracking).

These “slight differences” are tightly linked to the geometrical placement of the mi-
crophones. More precisely, the differences are usually measured from three non-exclusive
viewpoints:

1. Time asynchrony: the time of flight of the acoustic waves from mouth to micro-
phone is different for different microphones, due to their different placements. Au-
dio localization/tracking methods relying on time asynchrony usually require pre-
cise knowledge of the microphone array’s geometry. However, they do not require
any particular knowledge about the room, and are thus the most developed in terms
of practical applications. Omnidirectional microphones are used in most cases.
Typical geometries include Uniform Linear Arrays (ULA) and Uniform Circular
Arrays (UCA): a finite number of microphones equally spaced along a line or a
circle, respectively. However, a solution particularly designed for meeting rooms is
the Huge Microphone Array (HMA) including a large number of microphones on a
wall [76].

2. Impulse response: for a given mouth location, the path travelled by the sound to
the various microphones will vary. Hence, the impulse response will vary as well.
Assuming the impulse response characteristics of the room to be perfectly known
beforehand (calibration), it is possible to deduce the position of the speaker. How-
ever, the tedious calibration step is often undesirable in practical application (e.g.
portable videoconferencing systems), so the impulse responses need to be estimated
in an online, automatic fashion. This task is also called blind Multiple Inputs Multi-
ple Outputs (MIMO) channel identification [16, 11], where geometrical knowledge
of the microphone array is not required. The task is tightly linked to Blind Source
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Separation approaches [12]. Solving this problem amounts to retrieve a complete
model of the meeting room, which would permit not only to locate but also to sep-
arate the various signals at the same time. This problem is still difficult and open to
research. A preliminary test of such a method can be found in [13].

3. Microphone channel: recently, it was proposed to use several directional micro-
phones placed at the same location, but oriented towards different directions [60].
The direction-dependent transfer function of each microphone is assumed to be
known, so that the speaker location can be reconstructed. This solution can also be
combined with the first group of approaches [72].

In the following we focus on the first group of solutions, for which [9, 44] provide compre-
hensive introductions. These methods are typically linked, directly or indirectly, to the fol-
lowing observation: if two signalsx1(t) andx2(t) = x1(t−τ12) are received by two micro-
phones, with a relative delayτ12, the cross-correlation functionf (τ) =

R
t x1(t)x2(t− τ)dt

will have a maximum atτ = τ12. We first briefly mention the detection issue within the
context of source localization, then examine the various instantaneous source localization
methods. Finally, tracking of speaker trajectories over time is presented.

2.1 Detection

Since the speech of a given person is sporadic, it is needednot to estimate any speaker
location during silence. Traditional Voice Activity Detectors (VADs) typically use single
channel features, such as energy and zero-crossing rate. Although well adapted to single
channel tasks such as automatic speech recognition, they are suboptimal in terms of local-
ization precision [49]. Thus, they are not necessarily adapted to the task of acoustic source
localization. Alternative methods that rely on the cross-correlation between channels can
be found in [17, 51, 52].

2.2 Localization

The usual meaning of “localization” is to identify the location of the various active speech
sources in physical space, from a short time frame on which speech is considered as
stationary (typically 20 to 30 ms). As mentioned above, methods based on the asynchrony
between the various microphones rely on the cross-correlation between those signals.
They can be divided into two types: time delay of arrival (TDOA), and direct methods.

The TDOA methods consist in first estimating the time delays between each pair of
microphones, and then deriving the location of the sources from geometrical considera-
tions, e.g. using the Linear Intersection algorithm [8]. The main bottleneck is the time
delay estimation (TDE) step, which may be affected by reverberations. A practical im-
provement can be obtained by modifying the cross-correlation function, e.g. using the
generalized cross correlation phase transform (GCC-PHAT) [43]. In the case of multiple
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sources and one microphone pair, an alternative method for the estimation of multiple
time-delays is the Adaptive Eigenvalue Decomposition Algorithm [6]. However, in the
general case of multiple microphone pairs, multiple sources, and multiple sound paths (re-
verberations), it is not obvious how to pair the various time-delays observed at the various
pairs of microphones in order to deduce the exact location of the acoustic sources.

The direct methods avoid this bottleneck by directly inferring the source(s) locations
from the measured signal. They can be divided into two groups: Coherent Signal Sub-
space Processing (CSSP), and beamforming. CSSP methods [87, 19] are extensions of
narrowband methods originated in the fields of radar and communications [73]. Although
they allow in theory to estimate jointly the number of sources and their locations, they suf-
fer from sensitivity to reverberant environments and/or need sufficient amounts of data.

Beamforming localization methods, also known as Steered Response Power (SRP)
methods, are a reasonable alternative that does not rely on strong room knowl-
edge/modelling assumptions. The idea is to estimate the power at any location in space
by compensating for the corresponding delays between the signals (“steering” the ar-
ray) [44]. Multiple simultaneous sources will be reflected by multiple maxima across the
search space. However, reverberations will also appear as maxima (“virtual sources”).
A partial solution to this issue is to combine the flexibility of SRP methods with the ro-
bustness to reverberations of PHAT: this is known as SRP-PHAT [22]. In general, the
main drawback of SRP methods is that the search space can be large (e.g. the whole
room in the case of meetings). Recently, an approach was proposed that discretizes the
search space into volumes, and reduces the search to “active” volumes only [25, 26]. In
such a framework, localization amounts to determine whether there is an acoustic source
present within each of a predetermined, finite number of volumes. However, spatial res-
olution and interference between the signals of the different speakers may be an issue.
Indeed, using the whole spectrum to locate multiple sources leads to unnecessary noise
in the location estimation. In other words, spectral data from all sources is used to locate
a given source, thus inducing an unnecessary bias in the location estimate. A possible
way to address these issues is the “sparsity assumption” in the frequency domain [51, 52].
This assumption is derived from statistical observations on human speech [71], and sim-
ply means that within a frequency bin, only one speech source is dominant in terms of
magnitude, while all other sources can be neglected.

In practice, although CSSP methods and, more recently, MIMO/BSS methods have
seen very promising developments, they are still not as practically effective as the SRP
methods. One drawback of SRP methods is that number of active sources and reverber-
ations are not determined automatically. However, this issue can be efficiently addressed
by clustering/tracking methods.
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2.3 Tracking

Tracking can be viewed as the task of filtering instantaneous location estimates provided
by the methods mentioned above. The Kalman filter [39, 90] assumes dynamics to be
linear and Gaussian. These assumptions become an issue when dealing with human mo-
tion (non linearities such as sharp turns). Furthermore, in spontaneous speech, utterances
are short (typically less than a second), speaker changes often, and overlaps represent a
non-negligible portion of speech [75].

The Extended Kalman Filter (EKF) was proposed to accomodate non-linear dynam-
ics through a linearization step [79], however it is known to be practically difficult to
tune its parameters [37]. More recently the Unscented Kalman Filter (UKF) was pro-
posed to avoid this linearization step and accomodate non-Gaussian measurement noise
sources [38, 37, 53]. For a recent application of the UKF to acoustic source localization,
see [24]. However, these approaches may encounter difficulties when dealing with spon-
taneous speech, which is both highly changing in space (speaker changes) and sporadic
over time (short utterances).

As an alternative, Sequential Monte-Carlo (SMC) methods, also known as Particle
Filtering (PF), approximate the optimal Bayesian filter by representing probability dis-
tributions through a finite set of particles [33, 23]. For a state-space model, a PF re-
cursively approximates the filtering distribution of states given observations using a dy-
namical model, an observation model, and sampling techniques, by predicting candidate
configurations and measuring their likelihood, in a process that amounts to random search
in the configuration space. Applications to single acoustic source localization and track-
ing can be found in [83, 88, 89], and a comprehensive review in [54]. However, the
fast-changing speaker turns encountered in spontaneous multi-party speech requires ei-
ther specific multisource models [46] or adapting the single-source model to “switching
between speakers” situations [55]. Estimating the number of active speech sources is still
an issue, tightly linked to the data association issue. Although Particle Filters can model
multiple objects via multi-modal distributions, deciding which modes are significant and
which objects they belong to is an open issue. Moreover, when the number of active
objects varies very often along time, complex birth/death rules are needed.

Recently, alternative approaches were proposed where the number of active speech
sources need not be known [47]. An unsupervised, online approach called “short-term
clustering” was proposed, that automatically groups location estimates that are close to
each other in space and time, and separate those that are not. [48] demonstrates on real
data that it can be directly applied to the task of spontaneous speech segmentation, without
requiring any constraint from the participants. The resulting speech segmentation is very
precise, even when multiple participants talk at the same time. In addition, “short-term
clustering” is shown to allow for detection and solving of trajectory crossing issues.
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3 Localization and tracking with audio-visual sensors

Localizing and tracking speakers in enclosed spaces using AV information has increas-
ingly attracted attention in signal processing and computer vision [69, 34, 20, 67, 27,
84, 95, 2, 5, 18, 15], given the complementary characteristics of each modality. Broadly
speaking, the differences among existing works arise from the overall goal (tracking sin-
gle vs. multiple speakers), the specific detection/tracking framework, and the AV sensor
configuration. Much work has concentrated on the single-speaker case, assuming either
single-person scenes [20, 67, 2], or multiperson scenes where only the location of the
current speaker needs to be tracked [69, 34, 27, 84, 95, 5]. Many of these works used sim-
ple sensor configurations, i.e., one camera and a microphone pair [20, 67, 84, 5]. Other
works have addressed the data fusion problem using multiple microphones and a single
camera [28], and others have used multiple cameras, either non-calibrated [29] or fully
calibrated [95, 65], given the fact that, while single cameras are useful for remote confer-
encing applications, multiperson conversational settings like meetings often call for the
use of multiple sensors to cover the entire workspace (table, whiteboards, etc.). Among
the existing techniques, probabilistic generative models based on exact [67] or approx-
imate inference methods, both variational [5] and sampling-based [84, 95, 28, 29, 65],
appear to be the most promising, given their principled formulation and demonstrated
performance.

None of the above works, however, can handle the problem of continuously infer-
ring, from audio and video data, the location and speaking status for multiple people in a
realistic conversational setting. In fact, although audio-based multispeaker tracking and
vision-based multiobject tracking have been studied for a few years as separate problems
in signal processing [82, 70, 85, 51] and computer vision [36, 68, 93, 94], respectively, the
AV multispeaker tracking problem has been studied only relatively recently, making use
of more complex sensor configurations [21, 40, 77, 14, 15, 18, 4, 30]. Each of these works
is briefly discussed in the following. For presentation purposes, we categorize the exist-
ing work as being either system-oriented or model-oriented, where the emphasis in the
first case is on module integration, while in the second case is on a unifying mathematical
formulation.

Regarding the first category, the work in [21] described a system based on a device that
integrates a small circular microphone array and several calibrated cameras, whose views
are merged into a panorama, The system, in which each person is tracked independently,
consists of three modules: AV auto-initialization, using either a standard acoustic source
localization algorithm or visual cues, visual tracking using a Hidden Markov Model
(HMM), and tracking verification. The work in [40] described a non-probabilistic mul-
tispeaker detection algorithm using an omnidirectional camera (which has limitations of
resolution) and a microphone array, calibrated with respect to each other. At each video
frame, the method extracts skin-color blobs by traditional techniques, and then detects
a sound source using standard beamforming on the small set of directions indicated by
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the skin-blob locations. The work in [77] described an AV multispeaker system, based
on a stereo camera and a linear microphone array, consisting of three separate modules:
stereo-based visual tracking of 3-D head location and pose for each person independently,
estimation of the direction of arrival of the audio signal with the microphone array, and
estimation of audio-visual synchronous activity. Two hypothesis tests are used to make
independent decisions about the speaking activity and visual focus of the speakers, based
on simple statistical models defined on the observations derived from each module. The
work in [14] uses a number of standard techniques in separate modules that are later in-
tegrated into a system that estimates the location and identity of the meeting participants,
and detects the current speaker, using a setup including four calibrated cameras (an omni-
directional camera located on the center of the meeting table, and four cameras located in
the corners of the meeting room), and a 16-microphone array, located on one end of the
table.

For the second category, a number of probabilistic generative models have been re-
cently proposed for the task of simultaneously inferring location and speaking activity of
multiple interlocutors. All of them are based on PF techniques [15, 18, 4, 30, 31], but
differ in the choices of state space, dynamical model, observation model, and sampling
technique. The work in [15] used two calibrated cameras and four linear sub-microphone
arrays on a wall, and was based on the model first proposed in [36], which defines a
multi-person state-space where the number of people can vary over time. A full-body
multi-person observation model was defined by two terms: one for video, derived from a
pixelwise background substraction model, and one for audio, derived from a set of short-
time Fourier transforms computed on each microphone’s signal. The PF relied on basic
importance sampling (IS), and so is likely to become rapidly inefficient as the number of
people increases. The work in [18] used the same calibrated sensor setup as [21], and
tracked multiple speakers with a set of independent PFs, one for each person. For sam-
pling, each PF uses a mixture proposal distribution, in which the mixture components are
derived from the output of single-cue trackers (based on audio, color, or shape informa-
tion). This proposal distribution increases robustness in case of tracking failure in single
modalities. Furthermore, each single-object observation model is assumed to be factor-
ized over the various cues. The work in [4] uses a setup composed of a stereo camera
and a circular 8-microphone array, and uses a basic PF to perform inference over a multi-
person state space, assuming that the multi-object observation model can be factorized
over participants. However, the approach was only applied to two-people scenes, likely
due to the known limitations of the basic PF algorithm. The work in [30, 31], developed
in the context of the AMI project, presents an approach in a meeting room consisting
of three uncalibrated cameras covering the physical space with mostly non-overlapping
fields-of-view, and a circular 8-microphone array placed on the center of the meeting
table. The model uses a mixed-state, multi-object state-space, which integrates a pair-
wise person occlusion model through the addition of a Markov Random Field prior in the
multi-object dynamic model. To address the problems of traditional PFs in handling the
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high-dimensional state space defined by the joint multi-person configurations, inference
in this model is performed with a Markov Chain Monte Carlo particle filter (MCMC-PF),
which results in high sampling efficiency [56, 42]. The model integrates audio-visual
data through an observation model where audio observations are derived from a source
localization algorithm, and visual observations are based on models of the shape and spa-
tial structure of human heads. Overall, the model in [30, 31] has two advantages over
[15, 18]. First, it explicitly incorporates a pairwise person interaction prior term, which is
especially useful to handle person occlusion. Second, it uses an MCMC sampling tech-
nique, which allows to track several objects in a tractable manner (effectively close to the
case of independent PFs), while preserving the rigorous joint state-space formulation.

An important initiative related to evaluation of audio-visual technologies for localiza-
tion and tracking is the recent Workshop on Classification of Events, Actions and Rela-
tions (CLEAR), where audio-visual approaches were evaluated in the context of seminar
and conference rooms to track single presenters on common data and using a common
evaluation protocol [1, 10, 41, 66, 7, 32]. As representative examples, in [41], a 3D
tracking with stand-alone video and audio trackers was combined using a Kalman filter.
The work in [66] proposed an algorithm based on a particle filter approach to integrate
acoustic source localization, person detection, and foreground segmentations using mul-
tiple cameras and multiple pairs of microphones. It was demonstrated that the specific
audio-visual formulation yields greater tracking accuracy than a filter based on individual
modalities. The reader is referred to the CLEAR workshop proceedings for details about
all the approaches.

Some of the recent AMI work focused on integrating, improving and evaluating a
system for hands-free speech recognition in meetings [62, 59, 58] based on an audio-
visual sensor array, including the multi-modal approach for multi-person tracking [30,
31], and speech enhancement and recognition modules. As mentioned before, tracking
speakers solely based on audio is a difficult task due to a number of factors: human speech
is an intermittent signal, speech contains significant energy in the low-frequency range,
where spatial discrimination is imprecise, and location estimates are adversely affected by
noise and room reverberations. However, with a few exceptions, speaker tracking research
has been largely decoupled from microphone array speech recognition research. The work
in [3] presented a framework where a Bayesian network is used to detect speech events by
the fusion of sound localization from a small microphone array and vision tracking based
on background subtraction from two cameras. In the work in [91], a particle filter that
fuses audio from multiple large microphone arrays and video from multiple calibrated
cameras was used in the context of seminar rooms, in which there is essentially one main
speaker (the lecturer).

In the system in [59], audio is captured using a circular, table-top array of 8 micro-
phones, and visual information is captured from 3 different camera views. Both audio
and visual information are used to track the location of all active speakers in the meeting
room [30, 31]. Speech enhancement is then achieved using microphone array beamform-
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ing followed by a novel post-filtering stage. The enhanced speech is finally input into a
standard HMM recognizer system to evaluate the quality of the speech signal. Experi-
ments consider three scenarios common in real meetings: a single seated active speaker,
a moving active speaker, and overlapping speech from concurrent speakers. The speech
recognition performance achieved using our approach is compared to that achieved using
headset microphones, lapel microphones, and a single table-top microphone. To quantify
the advantages of a multi-modal approach to tracking, results are also presented using a
comparable audio-only system. The results show that the audio-visual tracking based mi-
crophone array speech enhancement and recognition system outperforms single table-top
microphones and is comparable to lapel microphone for all the scenarios, as measured by
both signal-to-noise ratio enhancement (SNRE) and word error rate (WER). This demon-
strates that the accurate speaker tracking provided by the audio-visual sensor array proved
beneficial to both speech enhancement and recognition. An analysis of the effects of lo-
cation accuracy on the recognition of overlapping speech is presented in [58].

4 Available Data Resources

Most of the research summarized in the previous two sections has been conducted over a
number of non-standardized audio or audio-visual data sets, which vary from each other
with respect to the specific sensor setup, the type of recorded situations, the structure of
the data set, the type of existing annotations, and their degree of availability to others for
research purposes. The community in this domain, however, has already acknowledged
the considerable effort involved in collecting such data, and the need to rely in common
evaluation procedures.

In the context of the AMI project, an audio-visual corpus, called AV16.3, was recorded
and annotated, and reported in [50]. This corpus includes a high variety of scenarios, rang-
ing from static, constrained cases, to dynamic and natural ones, with multiple seated or
moving speakers in a meeting room. The sensors include two eight-microphone circular
arrays on a table, and three cameras around the room. The calibration of the cameras
allowed to reconstruct the ground-truth location of the mouth of each person with a 3-D
error inferior to 1.2 cm. Overall, this data set should be interesting for both the audio and
the vision communities, and is publicly available. A second corpus, called AV16.7, was
recorded to evaluate the multi-person tracking task [78], and contains sequences including
up to four people conversing and moving in the meeting room. Finally, an audio-visual
corpus for speech recognition, called the Multi-Channel Wall Street Journal Audio-Visual
(MC-WSJ-AV) corpus, was also recorded. The specification and structure of the full cor-
pus are detailed in [57]. The corpus includes cases of single stationary speakers, single
moving speakers, and stationary overlapping speakers. In the first scenario, the speaker
reads out sentences from different positions within the meeting room. In the second one,
the speaker moves between different positions while reading the sentences. Finally, in

9



the third scenario, two speakers simultaneously read sentences from different positions
within the room. Much of the data comprises non-native English speakers with different
speaking styles and accents. The corpus is therefore suitable for research on both tracking
and speech recognition.

Another important data resource is the one coordinated by NIST and the CHIL (Com-
puters in the Human Interaction Loop) european project through the CLEAR initiative,
where data collected and annotated in the CHIL meeting and lecture rooms become avail-
able for purposes of common evaluation [80].
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