

AMIDA
Augmented Multi-party Interaction with Distance Access

http://www.amidaproject.org/

Integrated Project IST–033812

Funded under 6th FWP (Sixth Framework Programme)

Action Line: IST-2005-2.5.7 Multimodal interfaces

Deliverable D7.2: Commercial Component Definition

Due date: 30 November 2007 Submission date: 30 November 2007
Project start date: 1/10/2006 Duration: 36 months
Lead Contractor: PHI Revision: 1.0

D7.2: Commercial Component Definition

Abstract:

The AMIDA project is developing technology to assist meeting participants, particularly
during “remote” meetings conducted using videoconferencing and other communication
tools. Our approach relies on employing techniques for automatically analysing meetings
either as they happen or after the fact and allowing end user applications access to the
“annotations” that have been derived from the raw signals. In this first year of the
project, we have designed and implemented the infrastructure for handling these
annotations. This report describes this infrastructure, called “the Hub”, and how it has
been used to broker between components that produce annotations and demonstrations of
potential end user applications.

Contents
1 INTRODUCTION ... 4
2 THE OVERALL CONCEPT OF THE HUB .. 5
3 THE OVERALL DESIGN.. 6

3.1 PRODUCERS .. 6
3.2 CONSUMERS ... 7
3.3 DATA AND METADATA MODEL.. 7
3.4 ANNOTATION ARCHIVE (TRIPLE STORE) AND HUB BASE... 8
3.5 MIDDLEWARE... 9
3.6 RUNNING DEMONSTRATIONS AND ATTACHING NON-JAVA PRODUCERS .. 9

4 HOW TO USE THE HUB AND MIDDLEWARE ... 9
4.1 CONNECTING TO THE HUB.. 10
4.2 EXAMPLE CONSUMER... 10
4.3 EXAMPLE PRODUCER.. 11
4.4 EXAMPLE METADATA QUERY... 11
4.5 PACKAGE STRUCTURE .. 12

5 UNDERLYING TRIPLE REPRESENTATION .. 12
5.1 DATA ELEMENTS .. 12
5.2 METADATA ELEMENTS ... 13

6 DISCUSSION... 14

1 Introduction
The AMIDA project is developing technology to assist meeting participants, particularly
during “remote” meetings conducted using videoconferencing and other communication
tools. We are focusing on two different types of target applications that we think will be
the most valuable. The first is engagement support for remote meetings. This involves
techniques to help the user overcome the special difficulties that arise from taking part in
a meeting remotely. When people are face-to-face, they have many subtle cues available
to them about everything from whether or not the other person is paying attention and if
so, to what; what they mean by what they say; and how they feel about what is
happening. These cues are often missing during remote meetings, even when using
relatively rich interfaces like low-latency videoconferencing. Our goal for this kind of
application is make substitutes for at least the most basic of these cues available to
remote meeting participants, in order to improve their meeting experiences. The second
type of target application is meeting information access. During meetings, participants
often need to remember information relevant to the current discussion, whether this
information is in a formal document, in their email, was expressed in the minutes of
previous meeting, or was just discussed previously without being minuted. Our goal for
this kind of application is to produce an interface that meeting participants can use that
will “listen in” during an ongoing meeting an unobtrusively pull up the most relevant
information it has available, to reduce the amount of time users spend searching for it.
Although participants in all meetings could potentially benefit from such an application,
it is remote meeting participants who have the most to gain, since they need to
concentrate more of their attention than face-to-face ones on the meeting at hand simply
to understand what is happening.

Applications such as these rely on the automatic analysis of meeting recordings for the
properties that will affect the state of the end user application. For instance, for
engagement support, if a remote participant is joining a meeting that is largely face-to-
face, it might be useful to convey roughly where each of the face-to-face participants is
looking. This might tell the remote participant, for instance, whether there is crucial
information on the slides or on a physical document they do not have, or whether
everyone else is currently distracted. For meeting information access, knowing which
past information is relevant requires an analysis of the words that have been spoken, not
just in the current meeting, but also in past meetings, so that the correct past extracts can
be found. There is the potential for a great many different types of automatic analysis,
producing different annotations, to be performed on the same base multimodal signals.
There could also be many different end user applications requiring the same annotations,
even at the same time; consider the case where there are two simultaneous meetings both
of which need to remember a critical event in the company’s past. Although we could
treat every application separately, producing the annotations and then accessing them,
this would be highly inefficient. Instead, we have devised an annotation infrastructure
through which components that produce annotations can bank what they produce, and
components that need the annotations can retrieve them. We call this infrastructure “the
Hub”. The main documentation for the Hub is the Javadoc accompanying its
implementation; this document introduces the system at a higher level.

2 The Overall Concept of the Hub

The Hub is intended to provide all of the storage that a group or a company needs for
annotations about their archived meetings in one place. Our vision for how this would
work is as follows. Once a company decides that it wishes to archive its meetings, it
would purchase a Hub, much like it currently might purchase a videoconferencing system
or any other major piece of infrastructure. Installing the Hub would involve setting up a
Hub server to run the database in which the annotations are stored, a method for backing
it up, and possibly redundant servers to spread the processing load and reduce the times
the overall system is down for maintenance. It would also require the company’s
meeting rooms and videoconferencing end points to have recording equipment set up, in
the way that the AMI and AMIDA projects have demonstrated, with the audio and video
signals going into a separate time-synchronized signal store. These signals would feed
straight into processes for creating annotations automatically from them: automatic
speech recognition to yield the words spoken, decision points, summaries, basic
information about who was present for what parts of a meeting and what people were
attending, and the like. These processes might run on one machine, but would more
likely take a whole set of machines, and they might provide quick results, or slow ones,
after a delay. The company would have a range of annotations to choose from,
depending on which end user applications they wished the Hub to support. Finally, the
company would almost certainly already have a system in place for document
management, which would ideally be accessible from the Hub, giving the system access
to documents that are potentially relevant to a given meeting. If the recording set-up or
video-conferencing system keeps track of which documents were accessed during which
meetings, so much the better, since this is important for understanding what happened.

Once a company has installed their Hub, they can switch it on and the system will be
ready to record meetings and produce annotations to accompany the signals that make up
their meeting archive. For each meeting, when someone switches on the recording, as the
same time as the audio and video signals went into the archive, the system would tacitly
observe who was present and create a summary of the meeting, and note where to find
the slides for any presentations given and documents that were consulted, and assuming
the document management in order, where to find any minutes produced. It would also
start up the components that produce annotations, which they would start putting into the
Hub. The system would know when a meeting ended from when someone switched off
the recording, or from a lack of activity in the room, and once the components had
finished processing the meeting, if there were no other meeting for them to handle, they
would go into standby until needed again.

At the same time as some components are producing annotations for a current or past
meeting, end users will be running applications that pull this information out of the Hub
and present it to them in one of a number of interfaces tailored to different tasks. There
could be many users all running such applications at the same time to obtain different
kinds of information, for data from any point between when the Hub was switched on
until the moment just past. In addition, as time passes, new components might be
brought on-line, applying new annotations, perhaps even to all of the existing data, in

service of new end user applications, and existing components that produce annotations
might be replaced with better ones.

Although this vision for the Hub is far-reaching – such an infrastructure could not be
easily be built today, but can be imagined for the near future – it informs the overall
design for what we have implemented for use in the AMIDA project. The vision
suggests our major requirement for its design: it must be a network resource that can
handle access from many annotation producers and consumers at the same time, and be
able to store, search, and retrieve very large amounts of data quickly.

3 The overall design

At the simplest level of description, our complete system for handling annotations
brokers between the producers of annotations and their consumers. From the producer’s
point of view, it provides a mechanism for putting annotations into a permanent archive.
From the consumer’s point of view, it provides information about what types of
annotations are in the archive and a mechanism for retrieving relevant annotations.

3.1 Producers
Annotation producers process one or more of the signals from a meeting recording.
Typical annotations might include:

• words, as the output from automatic speech recognition;
• head orientation or direction of gaze;
• movement events, such as sitting, standing, or walking;
• decision points, saying a decision was made at a particular time;
• dialogue acts dividing words into e.g., questions versus statements.

Ordinarily, each component that produces annotation will produce one type. The
annotations themselves typically take the form of a statement that from time X to time Y
during the meeting, a particular thing was happening: Fred was standing, for instance, or
Doris was speaking the word “control”. Some types of annotations refer to the
behaviour of an individual, and some to the behaviour of the group as a whole. A set of
annotations of one type from one producer is an annotation stream.

It isn’t enough for a producer just to start passing annotations in a stream into the Hub,
since no component will be able to make use of those annotations unless they know what
they are for, and how they compare to other, rival versions of the same information. For
instance, there might be two speech recognizers hooked up to the same Hub and
processing the same meetings: a fast one that yields poor results, and a slower one that
gives better ones. Before producers start passing in annotations, they need to declare
what type of annotations they produce, with what sorts of expected latency, so that the
annotations can be used sensibly in end user applications.

3.2 Consumers
An annotation consumer can be anything that needs to read one or more types of
annotations from the Hub. Often, a consumer will want all annotations of a given type
for a given meeting. For instance, a meeting browser that shows transcription will want
all words for every speaker in the meeting. Such a consumer effectively needs complete
annotation streams. Sometimes a consumer needs a fragment with annotations for just
part of the full meeting, and sometimes they may be interested in confluences of events
that combine information from different annotation streams. Consumers can subscribe to
data by query, where each query feeds its results to the consumer on a different socket. A
query can match an entire annotation stream or filter an annotation stream to discard parts
of it. The matching is done based on regular expressions over the individual properties
for the annotation, such as the annotation type or the meeting which it describes.

For any given query, there is a basic expectation that the annotations will be fed to the
consumer in temporal order. However, producers are not required to guarantee this
ordering. It is the consumer's responsibility to check the ordering by testing incoming
data against the timestamp of the last datum received. There are several processing
metaphors that can be used to deal with producer data.

• If the consumer wishes to be fast but not guarantee results, it will simply buffer
any data that is out of order, dealing with inserting it on a separate, lower priority
thread. This is the normal metaphor for assistance during an ongoing meeting.

• If the consumer wishes to guarantee results are correct at a particular time, it will

insert as it goes, making the processing less likely to keep up with incoming data.

Note that there is no reason why a producer should not be a consumer as well; for
instance, a dialogue act recognizer will need access to output from the speech recognizer
in order to operate. That is, producers are likely to operate on one or more of the signals
from the meeting recording, but they may also take as inputs pre-existing interpretations
of those signals, which are themselves expected to be found in the Hub.

3.3 Data and metadata model

In the data model employed by producers and consumers, there are two possible types of
annotation streams. In the first, each element, representing one annotation, has an
explicit start time, with an implicit end time which is the start of the next element. This
gives a stream the semantics of a mutually exclusive and exhaustive sequence of intervals
spanning the duration of a meeting. In the second, elements contain explicit start and end
times. For either kind of stream, each element uses as its id something constructed using
its start time and a unique identifier for the stream to which it belongs. The id of the
stream uniquely identifies several properties of the annotation:

• the meeting with which the annotation is associated. This is necessary because
there could be two simultaneous meetings in the Hub.

• the producer by which it was generated
• if the annotation is about an individual’s behaviour, which individual it describes.

In addition to the start time and stream id, each annotation element has type information
that gives its contents. The type information for each annotation element describes one
or more attributes which can have numeric, enumerated or free-text type.

As well as the streams of annotations that are produced and consumed within the system,
there are some kinds of information that just describe a meeting overall, not timespans
within the meeting. Some typical kinds of metadata for a meeting are which group or
purpose was involved; who was present; where the meeting was held; and what
documents were consulted during the meeting. In addition, information declared by
producers about data types and so on is also considered to be metadata. Although we
could force all metadata into a fake kind of annotation stream, this would be rather
inconvenient for developers of producers and consumers, since they would have to
remember what conventions were used to do this. For this reason, we treat metadata
using a separate metadata model.

3.4 Annotation archive (triple store) and Hub Base

Although producers and consumers use the typed data model that we have described,
annotations are not actually stored in a database that retains the semantics implicit in this
data model, because such a representation would require the underlying database schema
to be changed every time a new kind of producer were connected to the system. This
would ordinarily require the database to be taken down, which is undesirable for a system
of this kind. There are many different possible ways of implementing an archive that is
more robust in the face of change, although any successful implementation needs to be
fast and able to store very large amounts of data. On the other hand, although it must be
possible to put annotations into the archive, it is never necessary to remove them.. Our
archive stores simple timed triples: object, attribute, value triples with an associated time
stamp, leaving the task of translating between our typed data model and these triples to
the middleware that intermediates between consumers, producers, and the annotation
archive. For convenience, metadata is stored in the same annotation archive as the
annotations, using set conventions about the time to use on the triple. Details about the
triple representation used for both data and metadata are given in section 5.

The Hub Base is simply software that handles the triple store that comprises the
annotation archive. When it receives a new triple from the middleware, it adds it to the
archive. It also returns search results for queries posed by the middleware to the archive,
using a query language based on regular expressions over the triple fields. In order to
allow the annotation archive to reside on a different machine from producers and clients,
its communication to the middleware is via sockets.

3.5 Middleware

In our architecture, the middleware is what bridges the gap between our data model and
the timed triples of the annotation archive. The middleware consists of libraries that
producer and consumer clients of Hub data can use to access the annotation archive
indirectly. The libraries allow producers to express their annotations in terms of the
typed data model, transforms those annotations into the underlying triple representation,
and passes them to the Hub Base. Similarly, the libraries allow consumers to express
queries in terms of the data model fields, transforms those queries into the simpler query
language employed in the annotation archive, and passes those queries to the Hub Base
for execution. In the middleware, the methods that producers and consumers use to add
and access metadata conform to the metadata model and therefore are completely
separate from those for adding and accessing data, even though underneath, both are
stored in the same place.

In our architecture, it is technically possible for producers and consumers to bypass the
middleware and work directly with the Hub Base. This is not recommended because it
places an added burden on the producers and consumers; either they have to effect their
own data transforms, or eschew semantics completely and hope that they underlying
triple representation is as the developer thinks.

3.6 Running demonstrations and attaching non-Java producers

Although our overall concept for the Hub is sound in the way it covers the lifetime needs
of a company or group, it does raise problems for development. Programmers
developing new components or even just demonstrating end-user applications that deal
with meetings as they happen need to be able to populate the Hub exactly as and when
they need it. For this reason, we provide auxiliary software that can be used to create a
new Hub and populate it, with the expectation that then it will be destroyed and a new
Hub created for further testing. Since the AMIDA project has their “historical”
annotations for selected past runs of producers stored in the format for the NITE XML
Toolkit, this software takes that format, transforms it into a tab-delimited one where the
fields match what is expected for the given annotation type, and stream that into the Hub.
The software can be run as if in real-time, passing each annotation as its time comes. The
final technique for streaming in tab-delimited data can also be used to connect non-Java
producers to the Hub.

4 How to use the Hub and Middleware

The architecture for the Hub/Middleware implementation is shown in Figure 2. The client
library contains a Hub client plus the middleware to transform Producers’ data elements
into Hub elements and Consumer queries into Hub queries, amalgamating the results and
passing back as expected.

Figure 1 Hub middleware architecture

To set up your own Hub, you first need to start a MySQL database, load it with the
provided database schema, and then start the Hub process that connects to it. Instructions
for doing this along with code examples that produce and consume data and metadata are
provided.

4.1 Connecting to The Hub

Connecting to the Hub must be done by producers and consumers alike. It is done using a
simple Java call:

Midpoint midpoint = new HubMidpoint();

The location of the Hub is made known to Java using a set of Java properties:

Property name Default value Description
ch.idiap.hub.debug false command line debug info
ch.idiap.hub.timeorderedoutput false if true, all query output is

guaranteed time-ordered
ch.idiap.hub.host localhost the name of the machine

runing the Hub server
ch.idiap.hub.table test name of the DB table
ch.idiap.hub.jdbc jdbc:mysql://localhost/test name of DB, protocol and

optionally username and
password

ch.idiap.hub.port 4000 the port over which the
Hub connection is made

4.2 Example Consumer

Consumers of meeting data wish to ask questions bounded by meetings and sets of
meetings, participants and groups, or particular time periods within or between meetings.
The middleware privileges this metadata as distinct from annotation data.

Annotation data from producers is treated as essentially uniform. As described below,
producers are only allowed to publish streams of DataElements, each element having a
pre-published type declaration. Each element must be associated with its type value(s)
and its producer, and may also be associated with a meeting, participant, start time, end
time and confidence score. Those properties can all form part of a consumer query.

Consumers query the middleware by filling in the slots of a Query element and
submitting it. Matching data elements are returned one-by-one using callbacks to a result
handler. For example:

Query q = new Query(“word”); // looking for elements called ‘word’
q.setMeeting(“ES2008(a|b|c)”); // in meeting ES2008a, b or c
middleware.performQuery(q, this);

The second argument to performQuery is a ResultHandler where the callbacks containing
query results are sent.

4.3 Example Producer

Producers can register one or more ElementClass that define the DataElements they
produce. Each has an element name and a type, and may have an arbitrary number of
further attributes, each of which has its own type. The types may be enumerated, free
text, or numeric.

Here’s some code for a producer that will output ASR with an estimated word-accuracy
rate of 40%, 5000ms after the end of the speech element arrives:

Producer asrproducer = new Producer();
asrproducer.addElementProduced(new ElementClass(“word”,
 new ElementType(ElementType.FREE_TEXT)));
asrproducer.setEstimatedAccuracyMillis(5000);
asrproducer.setEstimatedAccuracyPercentage(40);
asrproducer.setOutputType(Producer.OUTPUTS_AT_END);
midpoint.registerProducer(asrproducer);

4.4 Example Metadata query

Metadata requests are serviced by middleware in a different manner to consumer queries.
Instead of sending individual results to a handler, metadata requests return a complete set
of results up to the current time. As an example, this code requests meeting information
from the archive for a meeting named ES2008d, then requests its list of participants for
that meeting. This code assumes a Hub connection as shown in 4.1.

Meeting meeting = midpoint.getMetadata().getMeetingFromID(”ES2008d”);
List participants = meeting.getParticipants();

The list of participants is correct at the time of query, but if the meeting is ongoing it is
possible that the participant list will not be the same the next time it’s requested.

4.5 Package Structure

The structure of the packages of the middleware implementation is shown in Figure 2:

org.amiproject.middleware

hubimplementation agent helper

Figure 2 Hub middleware package structure

The org.amiproject.middleware package contains a set of interfaces defining how client
programs interface to the Hub. The hubimplementation sub-package is our
implementation using the Hub. The agent package contains example producer and
consumer agents on which users can be base their own producer and consumer code.
Finally, The helper package provides some abstract classes useful for developers.

5 Underlying Triple Representation

Though it is not necessary for end users to know how data is actually stored in the Hub, it
is described here for completeness.

5.1 Data Elements

All data will be stored in the Hub as timed triples with IDs of this form:

<meeting-id>.<element-type>.<speaker-id>.<producer-id>.<numeric-id>

Time is expressed universally in milliseconds since the beginning of the 1970, as is
traditional on Unix systems. The speaker is optional because some elements like topics
are not associated with any speaker. If a producer has declared an element with more than
typed attributes it will be represented by a set of triples with the same ID:

Time ID Attribute Value

88886666 ES2008d.link..p3.98 starts http://a.b.c/agenda.ppt

88886666 ES2008b.link...p3.98 rank 1

Notice that the ‘starts’ triple is overloaded with the value of the first attribute declared on
the type. It can be retrieved via its original attribute name (if declared) or as the type-
value of the element as a whole.

Middleware ensures a value for every declared attribute is stored for every data point
(even if the producer fails to fill some slots). That allows the query-answering module to
know exactly how many triples to expect before passing on data elements to result
handlers.

5.2 Metadata Elements

This table describes how metadata elemnts are stored in the Hub as of version 1.3 of the
middleware. Since metadata is untimed, we use set conventions for the time to associate
with each type of metadata. For metadata that describes a meeting, the meeting start time
is used. For metadata that describes a participant, document, or location, we used the
time that the information is added to the annotation archive. For metadata that describes
a producer or consumer, one set of triples is placed at the time that the component
registers with the system and another at the time when it unregisters.

Time ID Attribute Value

88880000 meeting.ES2008d starts -

88990000 meeting.ES2008d ends -

88990000 participant.FEO008 native-language German

88990000 participant.FEO008 english-experience 2 years

88880000 meeting.ES2008d participant1 FEO008

88880000 meeting.ES2008d participant2 MEE010

88880000 meeting.ES2008d location EdMeetingRoom

88880000 role.ES2008d.role1 FEO008 PM

88880000 role.ES2008d.role2 MEE010 ME

88880000 location.ES2008d.loc1 MEE010 Home_MEE010

88880000 document.doc1 participant FEO008

88880000 document.doc1 filename http://x.y.z/presentation_kick_off.Rose.ppt

88880000 document.doc1 meeting ES2008a

88880000 document.doc1 type presentation

88880000 document.doc2 filename http://x.y.z/ES2008d.Closeup1.avi

88880000 document.doc2 meeting ES2008d

88880000 document.doc2 type media

http://wiki.idiap.ch/ami/EdMeetingRoom
http://x.y.z/presentation_kick_off.Rose.ppt
http://x.y.z/ES2008d.Closeup1.avi

88880000 document.doc2 participant MEE010

88889999 producer.p1 registers

88889999 producer.p1 output_time OUTPUT_AT_END

88889999 producer.p1 estimated_lag 11111

88889999 producer.p1 estimated_accuracy 45

88889999 producer.p1 produces_element word

88889999 producer.p1.word element_type type1

88889999 producer.p1 description ASR producer for AMI meetings

88899999 producer.p1 unregisters

0 elementtype.type1 type STRING

0 elementtype.type2 type ENUMERATED

0 elementtype.type2 value1 deictic

0 elementtype.type2 value2 discursive

0 elementtype.type3 type NUMBER

88880000 consumer.c1 registers

88880000 consumer.c1 description content linking display

88889999 consumer.c1 unregisters

Media files are treated as a special kind of document. Documents can currently be of type
unknown_type; presentation; agenda; minutes; figures (spreadsheet); summary;
meeting_extract; media.

6 Discussion

As described, our overall system for handling annotations suffices for creating initial
prototypes for AMIDA’s main target applications, engagement support for remote
meetings and meeting information access. However, there are a number of issues with
this design which future end user technologies may find too limiting, and which may
require embellishment of the current design. We discuss the most important of these
here.

The first is that sometimes it is useful to know not just about annotations of a particular
type or set of types, but also how annotations of two or more types relate to each other
temporally. For instance, one might wish to know about facial expressions that occur just
after decision points, or about pointing incidents and uses of deictic pronouns such as
“this” in close temporal proximity. At the moment, our system allows consumers to
subscribe to the annotation streams involved and filter a single annotation stream base on
properties of the elements it contains, but leaves the consumer to its own devices when it
comes to evaluating conditions across different annotation streams. This could in theory
result in a great deal of data being passed to a consumer just for it to be thrown away. It

would be possible to add some more complex query operators that prevent this difficulty.
The most useful operators would probably test for element pairs of mixed type that occur
within a given time window plus the same test with an ordering specified for the types.

The second is the fact that the current data model only covers annotation streams where
each element has a start and end time, whereas some kinds of annotation are effectively
untimed. For instance, consider the case of an abstractive summary. Such a summary is
an untimed but ordered set of sentences. It is possible to cram untimed data into our
stream model by assigning fictional timings to the elements representing (in this case) the
sentences, using some convention such as placing the first at the start time of the meeting
and the rest at regular spaced intervals, with a flag at the end indicating that the data is
complete. This has the advantage that it requires no changes to the Hub, but violates the
principle of our middleware that the semantics for the data should be clear. Thus, we
may wish to add more apparatus to the middleware that grounds out to this representation
at the lower level, but treats untimed data distinctly from the point of view of producers
and consumers.

Third, in previous work on the AMI project, some annotations have been related to each
other in ways that are not temporal. For instance, each sentence from an abstractive
summary has been associated with one or more dialogue acts drawn from across the
streams of dialogue acts corresponding to each of the meeting participants. This allows
the creation of end user tools in which the user can read a summary and then navigate to
the most relevant parts of the meeting record. Similarly, pairs of dialogue acts can in
theory be related to each other, for instance, as question and answer, but it is difficult to
put a temporal bound on how far this relationship might stretch. If such relationships
become important to the technologies we build, some facility for them will have to be
added to the system, but with the proviso that this facility must above all be efficient in
use. One possible representation would involve placing information in a separate stream
expressing the relationship redundantly at the start time of both annotations involved, so
that it can be found efficiently.

Fourth, at present the annotation system does not enforce that consumers and producers
must access the annotation archive via the middleware, but if it did, we would be able to
change the underlying data representation without adversely affecting end user
technologies. Our current arrangement has the potential to be brittle. As the archive
grows, we may need to think about investing in more clever ways of storing the base
data. Thus, we should consider making use of the middleware mandatory.

Finally, in systems with a great many producers for annotations of different types,
consumers may need a better way of sorting through what is available to them. Although
the middleware imposes a semantics to the Hub’s simplistic triple store, consumers still
need to know what the various types produced will be; which one contains transcribed
words, for instance. That is, the system assumes a common vocabulary for producers and
consumers that may not always be feasible in practice. One way to provide support for
vocabulary differences would be to include an ontology of types to which both
consumers and producers could refer as a translation aid, without imposing the hard

constraint that the actual type names be used in the data they pass. This ontology would
be most helpful to developers of end user technologies if it were human-readable.

	1 Introduction
	2 The Overall Concept of the Hub
	3 The overall design
	3.1 Producers
	3.2 Consumers
	3.3 Data and metadata model
	3.4 Annotation archive (triple store) and Hub Base
	3.5 Middleware
	3.6 Running demonstrations and attaching non-Java producers

	4 How to use the Hub and Middleware
	4.1 Connecting to The Hub
	4.2 Example Consumer
	4.3 Example Producer
	4.4 Example Metadata query
	4.5 Package Structure

	5 Underlying Triple Representation
	5.1 Data Elements
	5.2 Metadata Elements

	6 Discussion

