
AMIDA

Augmented Multi-party Interaction with Distance Access

http://www.amidaproject.org/

Integrated Project IST–033812

Funded under the 6th FWP (Sixth Framework Programme)

Action Line: IST-2005-2.5.7 Multimodal interfaces

Deliverable D6.7: AMIDA Proof-of-concept System
Architecture

Due date: 31/03/2008 Submission date: 31/03/2008
Project start date: 1/10/2006 Duration: 36 months
Lead Contractor: IDIAP Research Institute Revision: 1

Project co-funded by the European Commission in the 6th Framework Programme (2002-2006)
Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

AMIDA D6.7: page 1 of 33

http://www.amidaproject.org/

D6.7: AMIDA Proof-of-concept System Architecture

Abstract:
Two meeting assistance systems have been built around the Hub client-server architecture
for annotation exchange, in order to demonstrate the meeting processing capabilities of
the AMIDA project, the integrative power of the Hub, and the potential utility of the en-
visaged applications. The first system – the AMIDA Automatic Content Linking Device
– is a real-time query-free document retrieval system, while the second one – the AMIDA
Mobile Meeting Assistant – is a mobile device that allows remote participants to attend a
meeting and improves their engagement with respect to voice-only solutions.

The ACLD is a system that constantly retrieves items from a document repository, which
includes meeting related documents together with excerpts from previous meetings of the
group, and displays them to a participant or to all of them; the device can be used online,
during a meeting, or offline, integrated in a meeting browser. Its main components are
the Document Bank Creator, the Indexer, the Query Aggregator, the User Interface, the
Monitor, and the Meeting Simulator.

The MMA takes advantage of the automatic annotation of the visual focus of attention of
meeting participants, and other annotations, to reconstruct a 2D or 3D representation of
the meeting on the mobile device (smart phone) of the remote participant. The audio and
slides are also conveyed.

Results and feedback for the first versions of the systems are given at the end of each
description, together with plans for the future development of the systems within the
AMIDA project.

AMIDA D6.7: page 2 of 33

D6.7 AMIDA Proof-of-concept

Contents

1 Introduction 4
1.1 Outline of the demonstrators . 4

1.2 Overview of the Hub . 5

2 The AMIDA Automatic Content Linking Device 6
2.1 Objectives . 6

2.2 Overall Architecture . 7

2.3 Components of the Automatic Content Linking Device 9

2.3.1 User Interface . 9

2.3.2 Document Bank Creator . 9

2.3.3 Document Indexer . 10

2.3.4 Query Aggregator . 11

2.3.5 Work in Progress: Meeting Simulator and Meeting Monitor . . . 13

2.4 Implementation and Results . 14

2.4.1 Software Prerequisites . 15

2.4.2 Integration Effort . 15

2.4.3 Controlling the Application . 17

2.4.4 Results of the AMIDA ACLD . 18

2.5 Evaluation, Feedback and Future Plans 18

2.5.1 Feedback from Potential Users and Customers 20

3 The Mobile Meeting Assistant 23
3.1 Requirements for a Mobile Meeting Assistant 23

3.1.1 Other Devices and Representations 24

3.2 Design of the MMA . 24

3.3 Implementation of the MMA and Results 26

3.4 Evaluating the MMA through a Pilot User Study 27

3.4.1 User Study: Questions and Answers 28

3.4.2 User Study and COI Workshop: Suggestions 29

3.5 Future Work . 31

AMIDA D6.7: page 3 of 33

D6.7 AMIDA Proof-of-concept

1 Introduction

This deliverable describes the specification and implementation of two integrative appli-
cations that serve as proof of concept for AMIDA technologies: the Content Linking Demo
(Section 2) and the Mobile Meeting Assistant (Section 3). These two applications are both
using the Hub (see Section 1.2 and (AMIDA, 2007)), a client/server architecture for real-
time sharing of annotations over multimodal data. The applications constitute the first
AMIDA proof-of-concept system architectures, and they define the bases for integrating
the existing AMIDA technologies within complex, real-time systems.

The successful implementation of the applications, accompanied by a preliminary assess-
ment of their qualities, demonstrate that meeting assistant technologies based on auto-
matic meeting analysis have reached significant maturity within the AMIDA project. In
particular, the Hub is shown to be an adequate architectural infrastructure for technol-
ogy demonstrations. Feedback from users and observations from developers indicate how
these demonstrations can be improved in the next phase of the AMIDA project.

In the remainder of this section, we describe in more detail the objectives of the two appli-
cations – which were successfully demonstrated at the February 7-8, 2008 annual review
and at the AMI Community of Interest Workshop, February 4-5, 2008 – and provide an
outline of the Hub technology which supports both demonstrators1.

1.1 Outline of the demonstrators

The Automatic Content Linking Device (CLD) is designed to help meeting participants
who discuss specific facts or topics mentioned in documents, but who do not have the
time to perform actual searches to retrieve the documents (and respective facts) in real-
time during the meeting. The CLD searches at regular intervals a database of documents
that is prepared before a meeting – including reports, emails, presentations, fragments and
minutes of past meetings – based on a criterion constructed from the words and terms that
were recognized automatically in the meeting discussion.

Results are presented as a list of document names ordered by relevance (possibly an empty
list) using a persistence mechanism to limit the variations of speech-based retrieval. A
user interface offers the participants quick access to the content of the documents, when-
ever they need it. Hovering over a document gives some more information (for instance,
for a meeting fragment, it displays the its extractive summary), and clicking on it enables
the document to be viewed in full (including playback for topic segments).

The Mobile Meeting Assistant is intended for a remote participant to a meeting, connected
through a mobile phone to a smart meeting room. The assistant is aimed at increasing
the engagement in the meeting of the remote participant, despite the fact that the video
signal from the meeting is not available through the mobile phone (a common bandwidth
limitation with mobile devices).

Therefore, the assistant takes advantage of the automatic recognition of the speaker’s
identity, of the visual focus of attention of the participants, and of the slide capture, to

1This deliverable, numbered D6.7 in the updated AMIDA Technical Annex (February 2008), was initially
numbered D7.3, and pertained to WP7. The title and topics remain those defined in the initial TA.

AMIDA D6.7: page 4 of 33

D6.7 AMIDA Proof-of-concept

display 2D and 3D simulations of the meeting scene on the mobile device, thus allowing
the remote participant to better follow the flow of discussion in the smart meeting room,
and to get a detailed, real-time view of the projected slides regardless of their original file
format.

1.2 Overview of the Hub

The Hub is a client-server architecture for annotation exchange between ‘consumers’ and
‘producers’, which is extensively documented in AMIDA Deliverable 7.2 (AMIDA, 2007).
The Hub consists of a server to which both consumers and producers connect, and a
database to which all annotations produced by the producers are stored. The database
can be populated with existing annotations by using a dedicated producer that reads tab-
separated files. There is also a producer that reads the AMI Meeting Corpus (Carletta
et al., 2006) in its native NXT format and populates the Hub directly from that.

The Hub integrates real-time data exchange with historical data retrieval. Producers can
come online at any time, declare the data they will produce and start producing it. Because
the underlying format in the Hub’s database is simple (using timed triples), no database
changes are required for new types of data. Consumers request data using queries which
can constrain the meeting, speaker, producer, annotation type and value of the results.
Each matching annotation is then passed to the consumer, historical matches first, then
live data.

To make a realistic demonstration framework, we load up the Hub with the first three
meetings of a four-meeting set from the AMI Meeting Corpus. To do this we use the
converter mentioned above. The data for the fourth meeting in the set is passed to the
Hub as if it were live, using the same converter but with an extra flag telling it to adjust
the time at which each element is produced. Ideally we would pass no pre-computed
information to the Hub for this fourth meeting, instead of computing everything on the
fly. At present however, the results of automatic speech recognition are computed offline
and passed ”as live”. For the Mobile Meeting Assistant demo, the visual focus of attention
is also computed offline.

Within this framework, the modules in the two demonstrators can simply be seen as Hub
producers and consumers (and sometimes both), with the top-level consumer being the
user-interface. The Hub thus proves to fulfill its objectives as an architecture for real-time
annotation exchange.

AMIDA D6.7: page 5 of 33

D6.7 AMIDA Proof-of-concept

2 The AMIDA Automatic Content Linking Device

2.1 Objectives

Participants in a meeting often mention documents containing facts that are currently dis-
cussed, but only a few of them are at hand. Searches could be performed in an document
management system for the right piece of information, but the participants in a meeting
usually do not have the time to perform such operations frequently during a meeting.
Even when browsing through the recording of a previous meeting, users do not have the
time to search for additional information related to that meeting, though this would help
them better understand or locate information in the meeting.

Therefore, a system that could relate ongoing discussions to potentially relevant docu-
ments or other pieces of information, i.e. an Automated Content Linking Device (CLD),
would be very valuable in at least two application scenarios:

1. ‘Just-in-time’ retrieval: participants to a meeting are constantly made suggestions
about documents (including excerpts of previous meetings) that are potentially rel-
evant to the ongoing discussion. Participants are free to ignore them, or to start
using them to enhance the discussion, e.g. with figures, precise facts, or decisions
that were made in previous meetings. Previous work in this direction are papers by
Hart and Graham (1997); Budzik and Hammond (2000); Henziker et al. (2005).

2. Document/speech alignment for meeting browsers: users of a meeting archive can
view the recordings of previous meetings augmented with related documents, re-
gardless of whether the participants to the meeting referred to them explicitly or
not. This is crucial for meetings whose main purpose is to discuss a long docu-
ment, e.g. a report. Previous work in this direction are papers by Rhodes and Maes
(2000); Franz and Milch (2002).

Conceptually, the content linking mechanism is the same in both cases – only the re-
sources that are available and the constraints of real-time results are different. There-
fore, in the current implementation of the AMIDA CLD, a meeting from the AMI/IM2
Meeting Corpus is replayed (here, ES2008d as a case study) and as it plays, the device
indicates relevant documents and pseudo-documents (segments from previous meetings,
i.e. ES2008a-c). The highlighting changes as the meeting proceeds to show appropriate
identifiers for those past documents that are most relevant at each point. Hovering over
a document identifier gives more information (for instance, for a meeting segment, the
label or the extractive summary), and clicking on it enables the document to be viewed in
full (including playback for topic segments).

The Automatic CLD demonstrates the AMIDA concept of a (potentially remote) meeting
assistant, which is supported by user requirements, and whose interface is the result of
principled design. The device draws together a number of key technologies developed in
AMIDA, and proves that the Hub is an effective communication and integration device in
realistic conditions.

AMIDA D6.7: page 6 of 33

D6.7 AMIDA Proof-of-concept

2.2 Overall Architecture

The Automatic Content Linking device is designed to perform searches at regular inter-
vals, in a database of documents that can be prepared before a meeting, including for
instance reports, emails that were exchanged, minutes and presentations from past meet-
ings, etc. Pseudo-documents such as fragments of previous meetings that are related to
the current one are also included in the repository.

The search criterion is constructed based on the terms that were recognized automatically
from the meeting discussion (some pre-specified terms can receive greater weight) and
the results are presented as a list of document names ordered by relevance (which can be
empty if no document matches enough the words that were recognized). A persistence
mechanism helps documents that are often retrieved to remain some time at the top of the
list. The user interface offers the participants quick access to the content of the documents
that are retrieved, if they believe that they contain valuable information to a given topic in
the meeting.

These functionalities are supported by a number of modules, the main ones being the
Document Bank Creator, the Document Indexer, the Query Aggregator, and the User
Interface. These components exchange data through the subscription-based client/server
architecture of the Hub. The system’s architecture is shown in Figure 1.

USER INTERFACEMetadata table
w. document URLs

DOCUMENT
BANK CREATOR

RELEVANT_DOCS
Meeting specific
metadata table

w. document URLs
or text snippets

w. document URLs

DOCUMENT
INDEXER

or text snippets

Index (i.e. list of tuples:
[word, doc. URL])

QUERY
AGGREGATOR

Pre-defined
keywords Other

annotationsASR data Audio-visual
contents (media files)

HUB

AGGREGATOR

DB of annotations
and metadata

LINKED_CONTENT
(i.e. list of tuples [time,

docURL, relevance, word])

Media file
server MMMand metadata server MMM

Figure 1: Architecture of the AMIDA Automatic Content Linking Demo.

AMIDA D6.7: page 7 of 33

D6.7 AMIDA Proof-of-concept

The main components will be described in separate subsections below, but the following
outline offers an overall perspective of their input and output data in order to facilitate the
understanding of the data exchanges between modules.

• Document Bank Creator – documents are all reports, emails, minutes and presen-
tations (slides) from past meetings, which are potentially relevant to the current
meeting; pseudo-documents are fragments of previous meetings from a series.

– IN: name of meeting (from user)
– IN: metadata table with document URLs (from Hub’s database)
– OUT: metadata table with URLs or short text snippets of documents relevant

to given meeting (to Hub’s database)
• Document Indexer – uses Apache Lucene2

– IN: metadata table produced by Document Bank Creator (directly via Hub or,
first, given explicitly by an expert user)

– IN (optional): list of particularly relevant keywords (from user)
– OUT: index, i.e. machine-readable list of tuples (meeting, keyword, doc type,

pointer) (to Hub’s database or, first, to a local file)
• Query Aggregator – performs searches using words and terms that are recognized

automatically from the meeting discussion; a list of pre-specified terms which re-
ceive more weight when searching can be used; the Query Aggregator produces a
list of document names, ordered by relevance, based on the search results and on a
persistence model explained below.

– IN: ASR from the Hub (inserted by Meeting Simulator or directly by an ASR
producer such as Tractor)

– IN (optional): other annotations (same source)
– OUT (periodically): list of tuples (meeting, time, keyword, relevance, doc type,

pointer) (to Hub’s database), i.e. Linked Content annotation
• User Interface – displays results from Query Aggregator and offers quick access to

TXT/HTML and source versions of documents.

– IN: media files (either via URLs obtained from metadata tables in the Hub’s
database, or from “simulated” streaming managed by the Meeting Simulator)

– IN: annotation files, especially Linked Content (from the Hub’s database or
via the Hub directly from the Query Aggregator and other producers)

– OUT: display meeting media, relevant documents and other annotations
– OUT: interaction with documents

Several modules appear in Figure 1, but were not mentioned in the list above because they
do not play a role in the version of the demo at the time of writing. These are the Overall
Controller, the Meeting Simulator, and the Hub Monitor, whose intended role is described
in more detail in Section 2.3.5 below.

2See http://lucene.apache.org/ or for the Perl implementation used here, http://search.
cpan.org/dist/Plucene/.

AMIDA D6.7: page 8 of 33

http://lucene.apache.org/
http://search.cpan.org/dist/Plucene/
http://search.cpan.org/dist/Plucene/

D6.7 AMIDA Proof-of-concept

2.3 Components of the Automatic Content Linking Device

2.3.1 User Interface

We start the description with the User Interface, as this allows a better understanding of
the functioning of the system. In theory, the only information given to the User Inter-
face is the identifier of a meeting to display. This allows the interface to retrieve via the
Hub (and its metadata database) the pointers to the related media, and the annotations
that will be displayed, including the Linked Content annotation produced by the Query
Aggregator. The meeting could in principle be an ongoing or a completed one, though
for demonstration purposes it is more convenient (for repeatability reasons) to use a com-
pleted one (here, ES2008d). The Interface should also allow the user to start playing the
meeting. In practice, in the current implementation, a number of variables (mainly related
to metadata) are hard-coded into the interface for meeting ES2008d.

Using the Linked Content data structures – which basically contain meeting, time, key-
word, relevance, document type, and URL to document – the User Interface displays for
a given moment or place-in-transcript the N most relevant documents. It is possible to
display only documents above a certain relevance threshold, but this filtering is more ef-
ficiently done by the Query Aggregator itself. The URLs allow the interface to show the
list of the relevant documents and pseudo-documents, changing the highlighting of the
most relevant ones as the meeting proceeds.

The interface also offers the users several possibilities for interaction with documents.
These hover-over and clicking behaviours are different for each document type. For a
meeting fragment, hovering over its label displaying its extractive summary obtained on-
the-fly from the Hub, while clicking on the label displays the ASR transcript. For doc-
uments, clicking on their label displays their content in a raw-text window, from which
a formatted version in HTML can be obtained. The source document can also be re-
trieved, but opening it with its dedicated program (often MS Word or Powerpoint) slows
considerably the viewing process. These behaviors can easily be redefined by the User
Interface (the only important information being the metadata that indicates the type of the
document), and in the future, user studies should indicate the optimal behavior for rapid
document exploration.

The User Interface is implemented using two components: the interface itself is in Flash,
and a Java front-end ensures communication with the Hub as a consumer. A snapshot of
the implemented interface is provided in Section 2.4 below, in Figure 3.

2.3.2 Document Bank Creator

The Document Bank Creator is run offline before a meeting to create the bank of doc-
uments and pseudo-documents that will be searched over during the meting. This is a
preparation task, which either generates a metadata layer that indicates where documents
are, or simply copies the documents to a separate folder, in preparation for the Document
Indexer, which must be explicitly told which documents are potentially relevant to the
current meeting. In a more user-friendly scenario, the module is told at the beginning
of a meeting which project or series the meeting belongs to, and determines potentially

AMIDA D6.7: page 9 of 33

D6.7 AMIDA Proof-of-concept

relevant documents, which are sent to the indexer. The documents are referenced in the
Hub’s database (in the future based on metadata structures developed in the IM2.DMA
project3, and the result of the Document Bank Creator module (list of URLs to documents
for a given meeting) can be viewed as a new metadata layer which can be added to the
Hub’s database.

The documents that are considered by the Document Bank Creator can be support doc-
uments, short fragments of previous meetings (whole meetings do not seem helpful as
search results), slides, emails, personal web pages, etc. In particular, this requires break-
ing up the previous meetings into pseudo-documents corresponding to short segments; at
their largest, these would be topic segments, but in the current implementation they are
30-second snippets of the meetings, which is a more appropriate length for retrieval (and
ASR consultation or audio playback). These pseudo-documents are created from the ASR
of the previous meetings.

The Document Bank Creator accepts heterogeneous file formats, and extracts text from
them using calls to the proprietary software that created the files. The most frequent calls
are to MS Word and MS Powerpoint, but MS Excel and HTML documents must also
be converted to text in order to prepare them for indexing (in fact calls to MS Word is
also used to extract text from HTML documents). Therefore, once the Document Bank
Creator gathers the documents that are potentially related to a meeting, it starts a series of
external calls to the above-mentioned software to derive text versions which will be used
by the Document Indexer. In the process, the module also generates HTML versions of
each document, which are easier and quicker to visualize by the user than the original MS
Office versions.

2.3.3 Document Indexer

The Document Indexer uses the text version of the files associated to the current meeting
by the Document Bank Creator to construct an index, i.e. a data structure that optimizes
word-based search over the document set, which can become quite large over time, de-
pending how many documents are attached to a meetings. The index can also be viewed
as a new annotation layer, represented logically as a list of tuples: (meeting, keyword,
doc type, URL), where the URLs of the documents are used as unique identifiers.

One could index the documents for a number of prespecified keywords only, or increase
the weight of such prespecified keywords4. However, current document indexers do a fine
job by using all words as keywords, for instance Apache Lucene, which is used here in its
Perl implementation called Plucene. Plucene constructs enhanced and optimized indices
(using word stemmers and the TF-IDF weighting scheme (Salton and McGill, 1983)),
and in the long-term, semantic analysis could be added to keywords in context to perform
concept-based indexing.

3This is the Data Management and Access module of the IM2 Swiss NCCR, see http://www.im2.ch;
the paper by Popescu-Belis and Estrella (2007) explains the metadata solution developed in IM2.DMA.

4Note also that each segment could be indexed based not just on the words spoken but also based on the
words present on any slide put up soon before or during the segment, but this is the responsibility of the
Indexer; or slides could be indexed independently, and it would be the user interface that, when a slide is
retrieved, would play the corresponding part of the meeting.

AMIDA D6.7: page 10 of 33

http://www.im2.ch

D6.7 AMIDA Proof-of-concept

As the index is a permanent layer of information concerning the documents related to
a meeting, it could be stored in a declarative format in the Hub’s main database, from
where it could be retrieved at the beginning of the demo by the Query Aggregator, which
is constantly using it. Alternatively, in the present implementation, the index is accessed
directly by the Aggregator as a set of files.

2.3.4 Query Aggregator

The Query Aggregator periodically extracts from the speech of a given meeting a list
of keywords that are mentioned (using the ASR or a manual transcript for development
purposes). This aggregator gets the words from the Hub5 and processes them in batches
of fixed size. This can actually mean either at regular time intervals, or for a fixed number
of words/utterances, e.g. every 30 seconds or 5 utterances or 50 words (the implemented
version is the first one)6.

So, the Query Aggregator is both a Hub data consumer and producer: it tracks the ASR
as it comes through and periodically extracts keywords from the ASR; then, it combines
them to build a query, and searches the index to retrieve relevant documents, which are
sent as new annotations to the Hub – from where they can be used by the User Interface
to display the document labels and give access to them.

It is possible to spot a number of pre-specified keywords as they come through the ASR,
and to increase the importance of these keywords when doing the search, using Lucene’s
boosting mechanism (the weight of the boosting can be set too: here between 3 and 5
times the weight of non-boosted words). However, the aggregator works also without a
list of boosted terms. A specific list was defined by the user-study group for the meeting
series under study, and at present it contains the following words or expressions:

Keywords: ‘fashionable’, ‘innovative’, ‘fancy’, ‘injury’, ‘cost’, ‘energy’,
‘component’, ‘case’, ‘chip’, ‘interface’, ‘button’, ‘L C D’, ‘lcd’, ‘material’,
‘latex’, ‘wood’, ‘titanium’, ‘easy’, ‘technical’, ‘working’, ‘look’, ‘meeting’,‘design’,
‘project’, ‘remote’, ‘control’, ‘user’, ‘minutes’, ‘detailed’, ‘concept’.

In addition, the words from the ASR or transcript are filtered for stopwords, so that ideally
only content words are used for search. The following list of stopwords is used:

Stopwords: ‘uh-huh’, ‘can’, ‘just’, ‘would’, ‘it’s’, ‘we’re’, ‘I’m’, ‘we’ll’,
‘Let’s’, ‘I’, ‘the’, ‘it’, ‘we’, ‘that’, ‘like’, ‘of’, ‘to’, ‘yeah’, ‘a’, ‘in’, ‘and’,
‘you’, ‘your’, ‘for’, ‘is’, ‘on’, ‘by’, ‘be’, ‘with’, ‘do’, ‘will’, ‘how’, ‘are’,
‘what’, ‘from’, ‘or’, ‘as’, ‘this’, ‘have’, ‘um’, ‘so’, ‘okay’, ‘mm-hmm’, ‘gonna’,
‘at’, ‘there’s’, ‘they’re’, ‘but’, ‘?’, ‘I’ll’, ‘that’s’, ‘mm’, ‘yep’, ‘ah’, ‘lemme’,
‘you’re’, ‘you’ll’, ‘didn’t’, ‘don’t’, ‘’cause’, ‘s’, ‘ve’, ‘t’, ‘m’, ‘no’, ‘oh’, ‘re’,

5Words arrive gradually if the meeting is ongoing or simulated, or as a block if the meeting is a finished
one, but from the point of view of the aggregator these two modes are similar.

6Strictly speaking, a function that asks the aggregator to find relevant documents on demand from a
user interface could be useful, to allow users to update the list of relevant documents when they need it;
implementing such a function would only change (temporarily) the period of the aggregator.

AMIDA D6.7: page 11 of 33

D6.7 AMIDA Proof-of-concept

‘if’, ‘wow’, ‘cause’, ‘hmm’, ‘[gap]’, ‘kay’, ‘my’, ‘am’, ‘yes’, ‘wasn’, ‘kinda’,
‘ll’, ‘alright’, ‘they’, ‘an’, ‘uh’, ‘was’.

The Aggregator performs document search by matching the keywords from the ASR
(from which stopwords were removed) with those from the index constructed above and
returns the most relevant set of documents at that given moment, more specifically a list
of tuples such as (meeting, time, keyword, relevance, doc type, pointer). It is useful to
include in this annotation the keywords that were matched (i.e. the ones that helped to
retrieve the specific document) as well as a relevance score (preferably an absolute one,
i.e. from 0 to 100%) to allow the interface to sort the relevant documents as needed.

This list is itself a new annotation layer, called Linked Content, which can be sent via
the Hub and stored in the Hub database, to which the User Interface must subscribe. The
output can be described conceptually, for each document, using the following fields (they
could be stored individually in the Hub as timed triples, but they are currently sent as
XML into the Hub):

Document name: name of the document returned by the query.
Document id: some form of identifier of the document.
Document type: possible types of documents are ‘seg’ (a 15-20” segment or snippet of

meeting), ‘doc’ (MSWord), ‘ppt’ (MS Powerpoint), ‘xls’ (MS Excel), ‘txt’ (in the
future, more fine-grained types such as agenda, questionnaire, or minutes could be
used.

URL: location of document (for meeting snippets, location of ASR transcript).
Query words: words of the query, separated by whitespaces, without the stopwords, but

where keywords are boosted by marking them with ˆN where N is a digit (3–6).
This is useful to highlight the words in the documents.

Media URL: location of media file for meeting snippets.
Relevance: relevance score of document, based on the query results from Lucene search

engine, filtered and modified as explained below.
Rank within result set: rank of document out of those returned by the query.
Related meeting: identifier of meeting from which relevant document retrieved.
Start time: start time of the relevant meeting segment (if type is snippet).
End time: end time of the relevant segment.
Meeting id: ID of the meeting from which the relevant document was retrieved.

To avoid inconsequent results from one time frame to another (due to the fact that words
vary considerably from one frame to another) a persistence or “smoothing” mechanism
was also defined. This mechanism modifies current relevance scores for each document
returned by the Lucene search based on those from the previous time frame. The smooth-
ing factor, called α, has the following impact on the updated relevance (noted r′(tn) where
tn is the current time frame and tn−1 the previous time frame): r′(tn) = r(tn) + (α ∗ r′(tn−1)).
A large value of α denotes a larger persistence – if α > 1 there is an ever increasing r(tn))
even if the document is no longer retrieved by Lucene – and in our experiments a typical
value of α = 0.8 was used7.

7We have also experimented with a better controlled formula: r′(tn) = (r(tn) +α∗ r′(tn−1))/(1 +α) where
α = 0 means no influence, α = 1 means arithmetic average of the two, α < 1 that previous value has less
influence than current, α > 1 means more . . . , α = ∞ means the list remains unchanged. The problem with
this formula is that the case when r(tn−1) is close to zero is very different from the case where r(tn−1) = 0.

AMIDA D6.7: page 12 of 33

D6.7 AMIDA Proof-of-concept

Figure 2: HTML view of the offline output of the Query Aggregator.

A filtering mechanism deletes the least relevant of the documents sent to the User In-
terface. In any case, at most 6 documents are returned, but fewer documents may be
returned if the relevance of the latter is small. This is set by two variables (in all of the
above, ‘relevance’ is the updated relevance computed using the formula above):

min-absolute-relevance (typically 0.2): all documents with relevance below this value
are deleted;

max-relative-decrease (typically 0.5): end list of results if document dk+1 score is lower
than this proportion of the dk score.

There is also an HTML version of the aggregator which generates static XML and HTML
views for debugging the QA itself, or simply examining/evaluating the results. The
HTML view, shown in Figure 2 displays on the left the list of words from the current
time frame, and on the right up to six most relevant documents (in HTML version) with
their computed weights. The keywords are highlighted in both meeting transcript and
documents, and the words from the transcript are highlighted (in a different colour) in the
documents when they are found.

2.3.5 Work in Progress: Meeting Simulator and Meeting Monitor

Two modules which were part of the original design of the ACLD have only been sketched
in the first version, and need improvement in the future. The Meeting Simulator, which
renders a past meeting as if it were ongoing, is at present implemented as a streamer of

AMIDA D6.7: page 13 of 33

D6.7 AMIDA Proof-of-concept

annotations from a tabular file into the Hub, but should in the future be able to transform
annotations that are already in the Hub. An initial version of the Meeting Monitor, which
shows the triples that are written to or read from the Hub, already exist but should be
made more flexible in the future.

The Meeting Simulator simulates an ongoing meeting from data that corresponds to a
completed meeting (here, ES2008d), in case the ACLD is used to view an archived meet-
ing – as well as for demonstration purposes, as it will be unpractical to require people
to hold a real meeting for each demo of the system! ASR and other annotations for the
meeting must be streamed in real-time through the Hub, which implicitly controls timing
of the system. Thanks to the Simulator, the User Interface and the Query Aggregator
work in the same way whether the meeting is real-time or past: they receive the same date
from the Hub, except that this can be produced by the Meeting Simulator or by real-time
processors. So, the indexing/search components can be developed based on annotation-
s/metadata of completed meetings: the content linking functionality is virtually the same
whether the meeting is completed or not.

The Meeting Simulator should read annotations from some the Hub’s database (or alter-
natively NXT files or other XML files), rendering them as what would come out of a set
of live data producers, and pump them through the Hub. Examples of such annotations
are: ASR (version to be specified – which can be reasonably expected from an AMIDA
real-time system soon), as well as, and if required by the query aggregator, topic segments
along with dialogue act segments and labels. The Simulator could play the meeting me-
dia files as well, e.g. by starting streaming processes towards the specific User Interface,
because media files do not go through the Hub, or even give a synchronized presentation
of audio and video in a dedicated window (e.g. using SMIL).

The Hub Monitor is a module consisting mainly of a graphical display that monitors
Hub activity, i.e. the underlying transfer of data while the ACLD is running, so that the
developers can understand what is going on. As new data producers and consumers are
registered, they will be shown by the Monitor, and the messages that they produce will
be seen going through the system (e.g. something in the style of the OAA monitor). The
Monitor is in fact a part of the Hub which can be developed quite separately from the other
modules described above. However, the User Interface and the Hub Monitor could be
wrapped into a second, larger interface that displays the whole Automatic Content Linking
Device, i.e. the meeting being simulated and the annotations that are going through the
Hub.

2.4 Implementation and Results

The current version of the AMIDA Automatic Content Linking Device was successfully
demonstrated at the February 7-8, 2008 AMIDA annual review and at the AMI Community
of Interest Workshop, February 4-5, 2008. The current version follows the architecture
shown in Figure 1 above, on page 7. A number of steps were taken for implementation of
the architecture, which are described in this section: listing software prerequisites, defi-
nition of integration techniques, and design of application controls. The results observed
when running the demo are described at the end of this section (Subsection 2.4.4).

AMIDA D6.7: page 14 of 33

D6.7 AMIDA Proof-of-concept

2.4.1 Software Prerequisites

The following software components are prerequisites to the Content Linking Device8, the
main one being the Hub itself. The Hub requires a MySQL database management system
(freeware), with a database called ‘test’, a schema loaded from the test.db file, and a
user called ‘annot’. Java JDK/SDK 1.5 or later should be available to allow compilation
(making sure java and javac are on a visible path – check the PATH environment vari-
able). To run the Query Aggregator, Perl and the Plucene module are required – preferably
using Active State Perl for Windows and its Perl Package Manager. Another solution is
to install Cygwin with its own Perl, and use Cpan to install Plucene, as this module has a
lot of dependencies.

Compilation of all source files is centrally managed by a build.xml file in the top level
directory, which requires the Ant software (again, included in the PATH). A number
of variables can be set by modifying the initial lines of build.xml, which are self-
explanatory:

<property name="host" value="localhost" />

<property name="dbName" value="test" />

<property name="user" value="annot" />

<property name="pass" value="*********" />

<property name="table" value="test" />

<property name="debug" value="false" />

<property name="port" value="4000" />

<property name="mysqlDefaultPort" value="3306" />

<property name="timeorderedoutput" value="true" />

<property name="logdir" value="./logs" />

<property name="linkedcontsource" value="online" />

The Query Aggregator’s Java front-end to the Hub is automatically compiled when using
the Ant tool on top level. The jar file containing the Hub classes is also automatically
build by the ‘ant’ tool, as is the User Interface’s Java front-end.

2.4.2 Integration Effort

The following steps were recommended by the AMIDA ACLD integrators to ensure a
uniform integration procedure for all contributors:

1. Download and install your local copy of Hub & Middleware.

2. Create your own installations of the complete system and update them regularly
from the CVS. It is possible to work with two instances, one for individual develop-
ment and implementation purposes (used for implementing your module within the
system environment, so this version might differ across partners, e.g. as it contains
software not belonging to the system or not (yet) delivered, or works with older ver-
sions of system modules), and the other one exclusively for reference installation of

8Instructions to install them are available on the AMIDA project Wiki.

AMIDA D6.7: page 15 of 33

D6.7 AMIDA Proof-of-concept

the overall system (which should be identical at all partners as it is used for system
testing at under identical conditions).

3. Implement a basic version of your module that communicates effectively with the
Hub & Middleware (is capable to produce and/or to consume simple example data
entered in the Hub using the AmiDataStreamer for instance).

4. Deliver a basic module to CVS, including realistic example output data produced
by it, to be used by other modules for manual testing of their I/O-behaviour (see for
example the AMIDA wiki page with system traces).

5. Repeat the procedure – update your local system, improve/fix your module, deliver
new version to CVS – until system works as intended.

The following rules were established for module developers concerning directory struc-
turing, to improve integration. The overall system including all modules should appear
into the toplevel system directory (onto the CVS), containing the following subdirectories:

• bin/*: general executables or startup scripts concerning the overall system
• doc/*: general system documentation
• etc/*: files necessary for running the overall system, e.g. configuration files
• lib/*: libraries of general (not module specific) nature
• mod/<modulename>/*: individual system modules (directory structure below)
• opt/*: optional components not needed at runtime, e.g. tools, visualizations, etc.

The directory structure being used internally for each module in mod/<modulename> is
generally free. The recommendation for some subdirectories, whose use could simplify
installation and integration for all partners, is the following:

• mod/<modulename>/bin/*: module specific startup scripts and executables
• mod/<modulename>/data/*: databases or data that are needed at runtime
• mod/<modulename>/doc/*: module specific documentation
• mod/<modulename>/lib/*: module specific libraries (if necessary)
• mod/<modulename>/src/*: module specific sources
• mod/<modulename>/test/*: example testdata for manual checking of correct

processing

All system directories (including subdirectories) should be considered as read-only at run-
time – otherwise each site could move quickly towards working with different systems,
which in turn makes it difficult to debug the overall system, as it is impossible to repro-
duce identical system states at different locations anymore. This restriction only poses
problems for writing log data (and possibly for configuration files) and it has been re-
laxed for these files. Moreover, ensuring that all folders are read-only at runtime makes it
possible (at least in theory) to start the system from a CD/DVD.

Given that no module is allowed to write data into the system directory tree, one should
create for this purpose a module-specific directory (e.g., /tmp/<modulename>) outside

AMIDA D6.7: page 16 of 33

D6.7 AMIDA Proof-of-concept

the system tree. In any case, responsibility for the data format as well as for the actually
produced data generally rests with the data producer.

The integration of a module consists of the delivery (using cvs commit) of a module into
the central CVS repository at UEDIN (disk/cvs/ami/Demos/ContentLinkingDemo V0.1),
under mod/<modulename> structured as described above. For each module, there should
be a single command to start the module, usually an executable shell script saved in
mod/<modulename>/bin. Before delivery, each module must have been successfully
tested in interaction with the Hub Middleware as well as in conjunction with the latest
committed updates from the CVS (therefore, before the delivery, one should perform first
a ’cvs update -d’ command). If the answer to all the following questions is “yes”,
then the module may be committed to the CVS:

• Can the module be integrated with the Hub middleware successfully?
• Is the module version information and documentation up-to-date and complete?
• Does the module correctly process the available test data as input?

2.4.3 Controlling the Application

The demo runs on a Windows PC (other platforms will be considered later).

The following operations need to be performed, and initially they were done using .bat
scripts and/or typed commands:

1. start MySQL and delete all content in the ‘test’ table within the ‘test’ database;
2. start the Hub server (use mod/HubMiddleware/bin/startHubService.bat);
3. populate the Hub with metadata and data for meetings ES2008a, b and c

(use mod/HubMiddleware/bin/populateHubForCLD.bat);
4. start the Query Aggregator

(use mod/QueryAggregator/bin/startQueryAggregator.bat);
5. start the Hub Monitor (use mod/HubMonitor/monitor.bat);
6. start the User Interface (use mod/UserInterface/bin/startUIConsumer.bat

and then amidaUI.exe);
7. start streaming the words for meeting ES2008d

(use mod/HubMiddleware/bin/runWordStreamer.bat).

However, a more convenient method for compiling and running the demo was defined,
using the ‘ant’ command and the ‘build.xml’ file, which resides in the top-level directory
on CVS. The following commands have to be run from this directory:

1. ant runHubWithCleaning = drops the content of the ‘test’ table, starts the Hub
and populates the table again.

2. ant runQueryAggregator = starts the Query Aggregator.
3. (optional) ant runHubMonitor = starts the Hub Monitor.
4. ant runUI = starts the UIConsumer (frontend to the Hub) and the Flash GUI.
5. ant runWordStreamer = streams the words (ASR) for meeting ES2008d through

the Hub.

AMIDA D6.7: page 17 of 33

D6.7 AMIDA Proof-of-concept

There are also individual ant targets for dropping the table, running the Hub, compiling,
and so on, as shown in the build.xml file. Calling ant runHubWithCleaning after a
clean checkout from CVS will also compile all necessary modules.

An SQL solution to reset the Hub’s table into the state that holds “after” meetings ES2008a,
b and c, but “before” meeting ES2008d, has been developed, and the number of records a
database restricted to this series should contain was determined independently by several
developers (39322). The reset.sql script first removes all words inserted by the ASR
module (in fact, at present, its simulated stream) regardless of their timing, and then all
other annotations inserted after the last insertion pertaining to meeting ES2008c, which is
the Extractive Content. The embedded SELECT requires MySQL version 5.0 or higher.

-- Usage: mysql --user=annot -p test < reset.sql

--

DELETE FROM test WHERE object LIKE "ES2008d.word.%" ;

--

DELETE FROM test WHERE time >

(SELECT time FROM

(SELECT * FROM test) AS _test

WHERE ((object = "consumer.Extractive_Consumer")

AND (attribute = "unregisters"))

ORDER BY time DESC

LIMIT 1);

2.4.4 Results of the AMIDA ACLD

A snapshot of the resulting application is shown in Figure 3. The execution tests of the
ACLD have been satisfactory: the communication between the modules using the Hub
works smoothly, and the logs show proper connection, sending and receival of annotation
triples. The documents that are retrieved contain the expected words and keywords (this
is easier to check on the static HTML representation produced by the Query Aggregator
and shown in Figure 2 above) and all the functionalities offered by the User Interface
over these documents are available. The nature of Perl scripting makes it easy to change
many of the parameters of the Query Aggregator, even while the system is running, which
allows experimenting with various values of the persistence and filtering model, and with
different lists of keywords and stopwords.

2.5 Evaluation, Feedback and Future Plans

The performance evaluation of the ACLD application is the topic of future work. One
can of course test the performance of the retrieval system in terms of precision and recall,
but this requires the definition of a ground truth document set for each time interval of
a meeting, which is the main difficulty for such an evaluation. Three approaches of the
ACLD evaluation problem are planned:

1. Setup an offline experiment where subjects are shown a meeting transcript (seg-
mented into 30-second chunks) printed on paper, or alternatively a meeting record-

AMIDA D6.7: page 18 of 33

D6.7 AMIDA Proof-of-concept

Figure 3: Snapshot of AMIDA CLD’s User Interface over meeting ES2008d. Left col-
umn shows recognized keywords (with timing), central column shows relevant documents
(font size codes for importance), and right column shows a list of the previous meetings
of the series, giving access to their contents (hovering over a label displays meeting meta-
data, as shown in the snapshot).

ing (audio/video) aligned with the transcript on a computer screen, and they are also
given a set of documents (again, printed or on a computer screen). The task of the
subjects is to associate to each chunk of the meeting zero, one or several documents
that they believe are the most related to the given chunk. This allows us to construct
ground truth data for the Content Linking Device, which can then be tested as many
times as needed against this data.
The main challenge of this approach is to demonstrate acceptable inter-coder agree-
ment on the definition of the “relevant” documents at each point in the meeting. To
make the task tractable, it is likely that subjects would only be capable to keep in
mind (hence potentially designate as relevant) only a subset of all available doc-
uments for a meeting (e.g. for ES2008d about 80 (short) documents), hence each
subject should probably be given from the start only a small subset of documents for
which he/she should be able to tell whether one of them is relevant at a given point
in the meeting. Of course, this means that a lot of subjects are required: some need
to work on the same sub-sets, to test for agreement, and the whole set of documents
should be covered.

2. Conversely, it is possible to let users watch a meeting (with the possibility to pause)
and ask them to rate the apparent relevance of each document returned by the

AMIDA D6.7: page 19 of 33

D6.7 AMIDA Proof-of-concept

ACLD. Of course, this cannot measure the ‘silence’ of the ACLD, but only its
‘noise’ or purity.

3. Implement an experiment for evaluation in use by testing the ACLD on an ongoing
meeting, and measuring how often the participants do consult the documents found
by the ACLD. Several consultation modes could be defined, such as simply looking
at the ACLD window, checking metadata for a document, or looking at the original
version of the document. This type of evaluation appears to be very informative for
an end-user system, but must be repeated every time the system is changed, which
makes it very costly.

2.5.1 Feedback from Potential Users and Customers

Another type of evaluation is derived from the very positive reception of the ACLD, as
well as the comments received at the AMIDA Community of Interest Workshop (Mar-
tigny, February 4–5, 2008). The ACLD was part of the interactive program (six “breakout
sessions”), in which it received the visit of about twenty representatives of companies
from the AMIDA COI9, which are active in the field of meeting technology. The sessions
lasted 30’ each, starting with a presentation of the ACLD and followed by questions and
feedback from the audience (notes were taken). In addition, the ACLD was shown at a re-
gional technology transfer event later during the first day, providing additional feedback.
The received feedback that can be grouped into three main categories, plus another one
for various other remarks.

1. Graphical layout of the interface

• the frame where the document names are displayed is too small with respect
to the rest – a lot of space is lost in the interface – use a larger part of the
screen for detecting documents;

• display a larger overview of each document (e.g. as in Internet Explorer’s
“Quick Tabs” overview (Ctrl+Q)) in the main window, without keeping his-
tory data (i.e. past 30-second intervals);

• avoid using too many mouse clicks: the content of documents should be more
visible from the start;

• colour code the nature of documents, and/or their relation to meetings;

• make dates more visible.

2. Document repository

• include documents that are known to users (from previous meetings) but also
documents that are unknown to them: the value of the interface would then
be to inform users about documents that they might not know of, not only the
ones from previous meetings;

9See http://www.amiproject.org/business-portal/about-ami/project-partners/

community-of-interest/vendors.

AMIDA D6.7: page 20 of 33

http://www.amiproject.org/business-portal/about-ami/project-partners/community-of-interest/vendors
http://www.amiproject.org/business-portal/about-ami/project-partners/community-of-interest/vendors

D6.7 AMIDA Proof-of-concept

• include shared documents but also non-shared ones for individual users (e.g.
my emails) – increase personalization, for individual use: each user could
have their own document repository and their own list of keywords;

• include websites among documents, e.g. using a Google search (for instance,
news sites, blogs, or websites of competitors) – without increasing too much
the size of the repository;

• allow for various document categories: project-specific, company-specific, ex-
ternal, websites, etc.

3. Additional functionalities

• after a meeting, email to all participants a list of (pointers to) the documents
that were ”touched” (consulted) during the meeting

• allow group use but also individual use during a meeting. For instance, al-
low each participant to use their own version, and record the interest of each
of them in specific documents, then show to everyone information about the
group use of the document repository (which ones are most clicked?);

• implement relevance feedback: refine search technique based on user behavior
(i.e. return more documents similar to those that are frequently consulted);

• detect specifically the similarities with previous discussions and alert uses that
they already had this discussion before;

• represent the keywords as a cloud with emphasis varying with their frequency
(see http://www.quintura.com for an example).

4. Varia

• give the system more knowledge about the context of a meeting, and retrieve
only documents related to that context (use word sense disambiguation over
the query words) – improve accuracy of search;

• both online and offline scenarios look interesting (online: meeting assistant;
offline: meeting browser);

• this application could lead to a cultural shift in the way meetings are orga-
nized: meetings could be divided into two short sessions, with an interval in
the middle during which participants could consult the documents that were
retrieved by the CLD;

• frequent questions: who else is doing that?, has anyone else tried this?

• infrequent question: how do you evaluate the quality of the result?

Finally, in a future version of the device, the architecture will be extended to include sev-
eral other control modules, which will enable the user to select meetings and start/stop/-
pause the demo in a simple way. This planned architecture is shown in Figure 4.

AMIDA D6.7: page 21 of 33

http://www.quintura.com

D6.7 AMIDA Proof-of-concept

USERStart command Meeting name

Start command

OVERALL
CONTROLLER

Meeting name

Meeting name

Metadata table
w. document URLs

USER
INTERFACEDOCUMENT

BANK CREATOR
MEETING

SIMULATOR

RELEVANT_DOCS
Meeting specific
metadata table

w. document URLs
or text snippets Keywords?

w. document URLs

SIMULATOR

DOCUMENT
INDEXER

or text snippets

ASR data

Keywords?

Index (i.e. list of tuples:
[word, doc. URL])

QUERY
AGGREGATOR

Keywords Other timed
annotations

Audio-visual

HUB

AGGREGATOR Audio-visual
contents (media files)

HUB
HUB

MONITOR
LINKED_CONTENT

(i.e. list of tuples [time,
docURL, relevance, word])

Media file

HUB annotation &
metadata DB

Media file
server MMM

Figure 4: Future Architecture of the AMIDA Automatic Content Linking Demo.

AMIDA D6.7: page 22 of 33

D6.7 AMIDA Proof-of-concept

3 The Mobile Meeting Assistant

The Mobile Meeting Assistant (MMA) is a graphical interface for accessing remote meet-
ings in real time from mobile devices. For this version we focus on accessing annotated
meetings of AMI corpus (Carletta et al., 2006). Two main user interfaces (2D and 3D
view) are used to show the current communication situation in the meeting room. The
real time aspect is based on streaming recorded meetings, because of lack of algorithms
and of hardware that would be able to produce necessary annotations in real time. We
state below the usage scenario and end-user requirements that we have set for a Mobile
Meeting Assistant intended for a remote participant (Subsection 3.1). The design (3.2),
implementation and results (3.3) are described, together with the results of a small-scale
user study (3.4).

3.1 Requirements for a Mobile Meeting Assistant

A limitation of business meetings is the availability of some of the participants, e.g. due
to unexpected events that prevent key persons from attending the meeting. An application
that allows participating in meetings via a mobile device (a smart phone) is useful in this
kind of situation. The task we investigate here is how to enable a remote user to better
understand what is happening in the meeting room. Providing video stream from/to the
meeting to/from the remote user is not feasible due to bandwidth constraints, and it might
not also be the optimal solution, as compared to replacing the real video by a graphical
representation. This might at first be seen as loosing an important part of the information,
but a careful use of automatic description (annotations) of the meeting allows a Mobile
Meeting Assistant to give the user more information than could actually be conveyed
through a conventional video stream.

Indeed, even if the speaker is trying to be convincing using her words, the body language
tells more to her partners in conversation (Kendon, 1981). Therefore, to help remote
participants understand the maximum of the conversation, we have to express non-verbal
communication in a graphical interface and (out of scope of this paper) how to detect
such non-verbal means of communication. The key issue is how to represent a sufficient
amount of communication signals in an intuitive interface. This version of the application
deals with recorded or ongoing meetings.

As the MMA is intended for smart mobile phones, there are additional limitations such
as: small size of the screen and varying light conditions, limited bandwidth, background
noise and potential lack of attention. Fortunately, recent mobile phones cope already quite
well with technical limitations, and computing power, bandwidth, graphic capacities and
privacy concerns are gradually improving.

The MMA is a user-friendly interface that helps remote participants remain engaged in a
meeting. Unlike a traditional telephone conversation, the mobile application helps remote
users not only to hear other participants, but also to understand the non-verbal communi-
cation taking place. An MMA must also help remote users to access additional informa-
tion about speakers, and about meeting documents such as presented slides10. Therefore,
the following features that are particularly important for prospective users of an MMA:

10Conversely, the MMA could convey to the meeting room an avatar representation of the remote user,

AMIDA D6.7: page 23 of 33

D6.7 AMIDA Proof-of-concept

• give access to basic channels of the meeting: sound, slides, documents, ASR/tran-
script;

• display addressee, i.e. allow the remote user to understand who is speaking to
whom;

• notify the user that certain keywords have been pronounced;
• use personalized graphical representation of speakers;

3.1.1 Other Devices and Representations

Commercial video-conferencing equipment (e.g. Tandberg, http://www.tandberg.com
or HP Halo, http://www.hp.com/halo) uses internet video streaming or broadcast and
special hardware (e.g. the TotalView phone from Be Here). Video calls are available in
many P2P communication applications and they are even already available for mobile
phones in WCDMA/UMTS networks. But to our best knowledge, there is no wide spread
working application that would use automatic graphical representation of a remote scene
based on real-time events (excluded emoticons), as confirmed by a recent survey about
the research in this area (Nijholt et al., 2006).

An original representation has been presented by Harry Drew in his Infospaces project
(Drew and Donath, 2008). The Infospaces environment keeps track of all statements pro-
duced by each speaker, focusing on the agree/disagree dimension. This representation is
probably too complex for the limited screen size of a mobile device, hence too confusing
for the general user, but it is an example of an alternative graphical representation of a
meeting flow (the Infoavatars proposed by the same authors shows how to represent the
history of an interaction on a user’s representation).

3.2 Design of the MMA

The design method that was followed is based on the six-step guidelines for building a
user interface proposed by L. Chitarro (Chittaro, 2006).

Mapping. The meeting processing application outputs time-stamped annotations of the
meeting in real time, and sends them to the Hub, from where the remote user’s device
(mobile phone) can retrieve them using a subscription mechanism. Each of the incoming
annotations must then be mapped into a multimedia event, within a virtual space using
simple avatars for participants, photographic representation of slides, red-color flashing
highlighting for speech events, and green color arrows for the object of the visual focus
of attention. We reserve sound and/or vibration events for further use, especially for
keyword spotting, domain of interest warning, and “expected to speak” events (a notice
to the remote participant that his people in the meeting room are expecting him to speak,
i.e. give him the turn in conversation).

Selection The meeting processing tools provide, in principle, a wide range of abstracted
information from the meeting, for both short time events (e.g. posture), as well as long
term observations (e.g. automatic summary of a meeting). Moreover, multiple audio and
video streams are available. It is, of course, virtually impossible and highly unpractical

so that the other participants also improve their understanding of his presence, as the avatar might express
some of his communication states.

AMIDA D6.7: page 24 of 33

http://www.tandberg.com
http://www.hp.com/halo

D6.7 AMIDA Proof-of-concept

to fit all this information into the tiny screen of a mobile phone (usually 320x240 pixels).
Therefore, given the goals of the MMM mentioned above, the following annotations were
selected:

• head orientation and joint visual focus of attention (i.e. “who is looking to whom’),
giving an idea of the dynamics of the meeting;

• automatic speech recognition, used to show mouth movement;
• speaker segmentation (i.e. “who speaks when”);
• clothes color, represented on the avatars11.
• slide content and slide change.

In addition, the speech signal from the meeting room is conveyed to the remote user (a
technical solution using VoIP is currently under implementation). The user study de-
scribed in Subsection 3.4 below confirms that the selected features appear to be highly
relevant to potential users.

To further reduce the amount of information displayed at the same time, we decided to
show the focus of attention of only one meeting participant selected by the user at the
same time. We experimented with automatic selection of the participant whose focus of
attention to show but we have found out that the speaker changes sometimes so fast, that
it was difficult to follow by the remote user.

Annotation producers that are represented graphically sometimes generate too many events
to display them all, as that would produce a “jitter” on the screen that would make the
graphic interface difficult to use. Therefore the amount of data sent to the Hub was re-
duced by filtering over the timestamps: for example, the standard output of the head
orientation producer is 25 frames per second (fps), but we use only a 1 fps rate.

Presentation. The second design task was to place all selected visual items on the de-
vice’s screen. We propose two alternatives for displaying the meeting room: the 2D and
the 3D view, shown respectively left and right in Figure 6. The 2D view is a top-view like
representation, where each participant is represented by a simple avatar consisting in three
basic shapes to represent the body and arms. The person or place in the focus of attention
of a participant is marked by a light-green frame. The head orientation is represented by
a sector starting from the avatar, which becomes red when the person is speaking.

The 3D view gives the user the possibility to change her view of the virtual representation
of the meeting room, for instance by turning around the meeting table or by zooming on
the slide-screen. The focus of attention is represented by a light-green arrow, while the
speaking status is shown by a red moving lips.

The other steps in the design are interactivity, human factors and selection of proto-
types. We want to engage the remote user in the meeting, i.e. not only watch it, but also to
discuss, express her feelings and opinions. In the current version, the user interaction with
the interface is limited to switching the interface, selecting the participant whose focus of
attention will be shown and navigation in the 3D representation. Human factors such as
perceptual and cognitive capabilities have guided the design as explained above; in addi-
tion, we placed text on surface with enough contrast; we doubled the thickness of focus

11As no automatic processor was available, therefore this metadata item was added manually. More
personalized avatars could be used in the future.

AMIDA D6.7: page 25 of 33

D6.7 AMIDA Proof-of-concept

of attention frame. Also the most important features (focus of attention and speaking/non
speaking) are represented by signal colors (light green, red) and the color scheme stays
the same in both representations. Finally, initial steps for the selection of the best solution
were taken through the user study described below in Subsection 3.4.

3.3 Implementation of the MMA and Results

The three main parts of the presented system are: Smart Meeting Room (SMR) (Moore,
2002), the Hub (AMIDA, 2007), the media/document server and mobile phones with
Mobile meeting application. The data flow is represented on Figure 5.

Figure 5: Architecture of the Mobile Meeting Assistant

The meeting takes place in an instrumented meeting room (SMR). Consequently the au-
dio and video streams for each participant as well as for the overall scene are captured
(and recorded). Automatic feature extraction software is used to produce annotations
such as automatic speech recognition (ASR), speaker segmentation, head orientation, and
most important here, the visual focus of attention (VFOA) (Ba and Odobez, 2006). The
architecture supposes that these algorithms are running in real time and that resulting an-
notations circulate through the real-time data distribution entity, the Hub. However, as
some of these algorithms do not run in real time at present, their output is simulated on
past meetings from offline annotations.

We have implemented a Java 2 Mobile Edition interface that enables the communication
with the Hub using an Internet connection. The Java application subscribes to the an-
notation flow from a particular meeting and is listening for updates. Upon reception of
an annotation element, it renders this element directly to the GUI. If the annotation con-
sists of an URI of a document (a slide capture for example), the application obtains the
document from the document server, and displays it in the user interface.

Two types of interfaces were implemented. The actual 2D interface is represented on the
left side of Figure 6, while one type of 3D interface is represented on the right side of the
same figure.

AMIDA D6.7: page 26 of 33

D6.7 AMIDA Proof-of-concept

Figure 6: 2D and 3D interfaces displayed in a mobile phone emulator.

3.4 Evaluating the MMA through a Pilot User Study

A small-scale user study was performed with 13 subjects, all of whom use information
technologies every day and have a university degree in computer science. The subjects
were given a demo of the MMA application running on an emulator in real-time, with a
video recording of the meeting playing on second computer, for a duration of 5 minutes
(meeting IS1008a from the AMI Corpus). They had then the possibility to interact with
the application, for instance to change the interface or the viewing angle, for a maximum
duration of 5 minutes.

The subjects answered a questionnaire shortly after the demonstration and had a possibil-
ity to add personal comments. Some questions required them to rate various aspects of
the MMA device, as well as possibilities for future implementations, and other questions
dealt with their own needs for a remote meeting assistant. Numeric ratings are coded from
1 to 5, 1 being best and 5 worst.

The subjects judged the MMA very positively, as they liked the concept (1.5/5) and the
present approach (1.9/5) – if a positive answer is counted if 1 or 2 was the response,
92% liked the general idea and 85% liked the current approach. They would use such an
application “sometimes” (9 out of 13), mainly for design/technical meetings (11 out of
13) or business meetings (10 out of 13), but less for personal meetings (5 out of 13). They
would mainly use the application while waiting at the train station or at the airport (10 out
of 13), in the office or on a train/airplane (9 out of 13 both). The main limitations for use
in such conditions is the available attention if the user must do something else (e.g. go to
a gate or catch a train), the small size of the screen, and noise from the environment (7

AMIDA D6.7: page 27 of 33

D6.7 AMIDA Proof-of-concept

out of 13 both).

In terms of the users’ experience, they seem equally satisfied with the 2D and the 3D
interfaces (2.3/5 and 2.2/5)12. The interface and color schemes are at the appropriate
level of complexity (11 out of 13). The most appreciated information is “who is speaking
when/to whom” (1.7/5), followed by the full-screen slide preview (2.0/5), the focus of
attention (2.1/5) and head orientation (2.5/5). Possible features to be added in the future
have been rated similarly: “you are expected to speak” alert seems the most desired one
(2.0/5), followed by “enter/leave room” (2.2/5), use of personalized avatars (2.4/5), and
speech transcript (2.5/5)13.

Finally, most of the subjects would also use a desktop version of the MMA (11 out of
13), and some would even prefer it (8 out of 13), a fact that meets some of the explicit
suggestions received from industrial partners.

Figure 7: Prototypes of “funny” and “advanced” 3D interfaces.

3.4.1 User Study: Questions and Answers

We summarize below the questions that were asked in the user study, and the answers
obtained from 13 subjects in [square brackets].

Q.1 Experience: please give us your opinion on the application that you just have tested.
Rate from 1 (you like a lot) to 5 (you don’t like at all) the following interfaces: 2D
[AVG=2.3]; 3D standard [AVG=2.2]; 3D funny [AVG=2.3]; 3D advanced [AVG=2.7].

Q.2 Interface and colors used in the main demo were: too simple [8%] / just fine [84%]
/ too complicated [8%].

12We observed in fact a variety of acceptance for each interface when doing the study: while an important
proportion of users prefer a representation which is close to reality – such as the 3D representation on the
right of Figure 6 or even more realistic as in Figure 7 – while others prefer a simple 2D representation,
or even funnier alternatives. Several users suggested the possibility to upload their own avatars for each
participant.

13In other words, regarding the selected media channels and annotations, the user study showed that
77% of users would like to see who is speaking when and to whom, 69% of users were interested to know
what participants are looking at (focus of attention). Another strongly requested feature was the full screen
slide preview (by 69% of participants). Finally the expected to speak feature was appreciated by 73% of
participants of the poll.

AMIDA D6.7: page 28 of 33

D6.7 AMIDA Proof-of-concept

Q.3 Please rate following and planned features from 1 (you like a lot) to 5 (you don’t
like at all): who is speaking when/to whom [AVG=1.7]; entered room/left meeting alert
[AVG=2.2]; possibility to create/upload personalized avatars [AVG=2.4]; head orienta-
tion [AVG=2.5]; focus of attention [AVG=2.1]; full-screen slide preview [AVG=2.0];
you are expected to speak! alert [AVG=2.0]; accurate representation of where people are
sitting [AVG=2.8]; textual transcript of the meeting [AVG=2.5].

Q.4 Think about the possible use of this application in your perspective. What sort
of meeting would you like to participate remotely in: business: yes [77%] / no [0%] /

don’t know [23%]; design/technical meeting: yes [85%] / no [15%] / don’t know [0%];
personal (family, friends): yes [38%] / no [46%] / don’t know [16%].

Q.5 Where would you use it? In the office: yes [69%] / no [23%] / don’t know [8%]; On
the train/airplane: yes [69%] / no [23%] / don’t know [8%]; At the airport/train station:
yes [84%] / no [16%] / don’t know [0%]; In a car: yes [33%] / no [59%] / don’t know
[8%]; Other situations: yes [33%] / no [0%] / don’t know [67%].

Q.6 What limitations do you see for use on the road? Select as many as you wish:
environment too disturbing to be on meeting [7/13]; privacy concern [4/13]; screen/device
too small [7/13]; time available [1/13]; attention available (driving the car, switching
trains) [10/13].

Q.7 Overall rating. Rate from 1 (you like a lot) to 5 (you don’t like at all) the following
questions. How do you like the idea? [AVG=1.5] How do you like our current approach?
[AVG=1.9] Is it easy to understand who is speaking? [AVG=2.2] I could imagine being
more engaged in the meeting. [AVG=2.5]

Q.8 When ready and adapted to your needs would you be using it? Regularly [2/13]
/ sometimes [9/13] / never [2/13].

Q.9 Desktop version. Would you prefer a desktop version? yes [61%] / no [23%] / don’t
know [16%]. Would you also use a desktop version? yes [92%] / no [8%] / don’t know
[0%].

Q.10 Additional comments. Give us a personal feedback, hint or request a feature.

3.4.2 User Study and COI Workshop: Suggestions

From the user study questionnaire (Q10), we reformulate and synthesize from actual
users’ feedback the following ideas. They are grouped into two (inter-related) categories:
evaluation of demonstrated system, and suggestion for the future.

Evaluation from user study:

1. The demo looks quite intuitive to use.
2. The demo is of great use for someone who is relatively new to the meeting partici-

pants, but when participants are familiar with each other, this graphical information
looks superfluous, and speech could be enough.

3. 2D graphical conventions are not clear enough (ask a good graphic designer).
4. It is uncertain that 3D adds anything new, but visual complexity. (Another user: 3D

interfaces look more like a gadget than a really useful feature.)

AMIDA D6.7: page 29 of 33

D6.7 AMIDA Proof-of-concept

5. Subtle body language is not conveyed – reactions such as signs of disagreement and
agreement.

6. The interfaces are too primitive to be convincing (realism is not required, but rich-
ness and clarity are).

7. The slides should be more readable (having an unreadable black board is more
disturbing than helping).

8. The most useful informations (who is speaking and the slides) should remain the
most visible compared to the other features.

Future developments suggested by the user study:

1. Give people in the meeting a means to see the presence of the remote user virtually
(otherwise the remote user is only watcher/listener). To be active in the meeting,
they need to be present virtually.

2. Record the meeting so that one can track back on interesting parts, and use speech
transcription for indexing.

3. Try to spread this application widely, not only for business use but also for personal
communication.

4. Solve also the challenges of a real phone (using data and voice at the same time).
5. Can speaker and VFOA annotations be done in real time? What if two persons

speak simultaneously?

Feedback from COI workshop participants mainly concerns ideas for future improve-
ments or developments. This feedback was obtained during the “breakout sessions”, in
which the MMM received the visit of about twenty representatives of companies from the
AMIDA COI14, which are active in the field of meeting technology. The sessions lasted 30’
each, starting with a presentation of the ACLD and followed by questions and feedback
from the audience. In addition, the system was demonstrated at a regional technology
transfer event later during the first day, providing additional feedback.

1. Add more interfaces among which the user can choose, some of them possibly
very abstract (position of participant corresponding to company hierarchy etc.). Let
users choose their own avatars, possibly also used in other programs (e.g. http:
//www.wee-mee.com). Let users define their own meeting rooms (simple form /

using image / select from a list).
2. Add access to information about other persons involved in the meeting.
3. Allow document sharing.
4. Integrate actual photos/camera streams.
5. Include visualization of longer-term meeting features (social network).
6. Keep the interface very simple.
7. The display of slides in real-time on the mobile phone could be turned very easily

into a product.
8. The system could also be used for purely remote meetings, to create a feeling of

meeting room.
14See http://www.amiproject.org/business-portal/about-ami/project-partners/

community-of-interest/vendors.

AMIDA D6.7: page 30 of 33

http://www.wee-mee.com
http://www.wee-mee.com
http://www.amiproject.org/business-portal/about-ami/project-partners/community-of-interest/vendors
http://www.amiproject.org/business-portal/about-ami/project-partners/community-of-interest/vendors

D6.7 AMIDA Proof-of-concept

9. Test it on real device.
10. Make a desktop version with more features.

The MMA appears thus quite intuitive to use, and seems especially useful to someone
who is new to the meeting participants; however, 2D graphical conventions could be
made clearer, and the 3D representation seems unnecessarily complex to some users. In
both cases, slides should be made more visible, as well as the identity of the speakers.
Ideally, more subtle body language, such as signs of disagreement and agreement, should
be conveyed.

More realism was also required, e.g. by including actual photos of users, or at least letting
them choose their own avatars. Accessing information about the other participants as well
as meeting documents was another suggestion, while the slide capture itself appeared to
be a good candidate for a commercial product. Of course, a realistic system running on
a physical phone is a primary objective, bringing the audio stream to the user via the
data stream (using VoIP), and synchronizing it with annotations and with the graphical
representation of the meeting.

An important development will be the converse representation of the remote participant
into the meeting room, because people in the meeting also need to improve their under-
standing of his/her presence beyond pure speech. At this point, the system could also be
extended to support purely remote meetings, so that it creates the feeling of a meeting
room using virtual reality.

3.5 Future Work

There are several development axes that we want to investigate further. First there is a
need of improvement of the user interface so that it is easier to understand. The second
step is to enable users to access additional information about participants and about meet-
ing context in a convenient way. An important task is also to bring the audio stream to
users via data stream and to play it locally (synchronized with the graphical representation
of the meeting).

Another task will take into account the use of HTML as light-weight platform for remote
meeting browsing as well as remote meeting participation for business people on the
move. Persons will be able to hand-over a mobile phone session to a stationary device
and vice versa in their hotel room, for instance.

Finally, the implementation of the remote participation in meetings is another goal of
this project. This will include voice streaming and the control of the remote participant’s
virtual representation in the meeting room. These design steps should be backed up when
possible by small scale user studies, and a large-scale user study will be performed before
starting work on remote’s participant interaction.

AMIDA D6.7: page 31 of 33

D6.7 AMIDA Proof-of-concept

References

AMIDA (2007). Commercial component definition. Deliverable 7.2, AMIDA Integrated
Project IST033812 (Augmented Multi-party Interaction with Distance Access).

Ba, S. and Odobez, J.-M. (2006). A study on visual focus of attention recognition from
head pose in a meeting room. In Renals, S., Bengio, S., and Fiscus, J. G., editors,
Machine Learning for Multimodal Interaction III, LNCS 4299, pages 75–87. Springer-
Verlag, Berlin/Heidelberg.

Budzik, J. and Hammond, K. J. (2000). User interactions with everyday applications as
context for just-in-time information access. In International Conference on Intelligent
User Interfaces.

Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., Kadlec, J.,
Karaiskos, V., Kraaij, W., Kronenthal, M., Lathoud, G., Lincoln, M., Lisowska, A.,
McCowan, I., Post, W., Reidsma, D., and Wellner, P. (2006). The ami meeting corpus:
A pre-announcement. In Renals, S. and Bengio, S., editors, Machine Learning for Mul-
timodal Interaction II, LNCS 3869, pages 28–39. Springer-Verlag, Berlin/Heidelberg.

Chittaro, L. (2006). Visualizing information on mobile devices. Computer, 39(3):40–45.

Drew, H. and Donath, J. (2008). Information spaces - building meeting rooms in virtual
environments. In CHI 2008 (25th SIGCHI Conference on Human Factors in Computing
Systems), Florence, Italy.

Franz, A. and Milch, B. (2002). Searching the web by voice. In Coling 2002 (19th In-
ternational Conference on Computational Linguistics), volume 2, pages 11–15, Taipei,
Taiwan.

Hart, P. E. and Graham, J. (1997). Query-free information retrieval. IEEE Expert: Intel-
ligent Systems and Their Applications, 12(5):32–37.

Henziker, M., Chang, B.-W., Milch, B., and Brin, S. (2005). Query-free news search.
World Wide Web: Internet and Web Information Systems, 8:101–126.

Kendon, A. (1981). Nonverbal communication, interaction, and gesture: selections from
Semiotica. Mouton, Berlin.

Moore, D. J. (2002). The IDIAP Smart Meeting Room. Communication 02-07, IDIAP
Research Institute.

Nijholt, A., Rienks, R., Zwiers, J., and Reidsma, D. (2006). Online and off-line visualiza-
tion of meeting information and meeting support. The Visual Computer, 22(12):965–
976.

Popescu-Belis, A. and Estrella, P. (2007). Generating usable formats for metadata and
annotations in a large meeting corpus. In ACL 2007 (45th International Conference of
the Association for Computational Linguistics) Interactive Poster and Demonstration
Sessions, pages 93–96, Prague, Czech Republic.

AMIDA D6.7: page 32 of 33

D6.7 AMIDA Proof-of-concept

Rhodes, B. J. and Maes, P. (2000). Just-in-time information retrieval agents. IBM Systems
Journal, 39(3-4):685–704.

Salton, G. and McGill, M. J. (1983). Introduction to Modern Information Retrieval.
McGraw-Hill, New York, NY, USA.

AMIDA D6.7: page 33 of 33

	Introduction
	Outline of the demonstrators
	Overview of the Hub

	The AMIDA Automatic Content Linking Device
	Objectives
	Overall Architecture
	Components of the Automatic Content Linking Device
	User Interface
	Document Bank Creator
	Document Indexer
	Query Aggregator
	Work in Progress: Meeting Simulator and Meeting Monitor

	Implementation and Results
	Software Prerequisites
	Integration Effort
	Controlling the Application
	Results of the AMIDA ACLD

	Evaluation, Feedback and Future Plans
	Feedback from Potential Users and Customers

	The Mobile Meeting Assistant
	Requirements for a Mobile Meeting Assistant
	Other Devices and Representations

	Design of the MMA
	Implementation of the MMA and Results
	Evaluating the MMA through a Pilot User Study
	User Study: Questions and Answers
	User Study and COI Workshop: Suggestions

	Future Work

