mednet.engine.saliency.evaluator#
Functions
|
Evaluate multiple saliency map algorithms and produces summarized results. |
|
Tabulate various summaries into one table. |
- mednet.engine.saliency.evaluator.summary_table(summary, fmt)[source]#
Tabulate various summaries into one table.
- Parameters:
summary (
dict[Literal['ablationcam','eigencam','eigengradcam','fullgrad','gradcam','gradcamelementwise','gradcam++','gradcamplusplus','hirescam','layercam','randomcam','scorecam','xgradcam'],dict[str,Any]]) – A dictionary mapping saliency algorithm names to the results ofrun().fmt (
str) – One of the formats supported by python-tabulate.
- Returns:
A string containing the tabulated information.
- Return type:
- mednet.engine.saliency.evaluator.run(saliency_map_algorithm, completeness, interpretability)[source]#
Evaluate multiple saliency map algorithms and produces summarized results.
- Parameters:
saliency_map_algorithm (
Literal['ablationcam','eigencam','eigengradcam','fullgrad','gradcam','gradcamelementwise','gradcam++','gradcamplusplus','hirescam','layercam','randomcam','scorecam','xgradcam']) – The algorithm for saliency map estimation that is being analysed.completeness (
dict[str,list]) – A dictionary mapping dataset names to tables with the sample name and completness (among which Average ROAD) scores.interpretability (
dict[str,list]) – A dictionary mapping dataset names to tables with the sample name and interpretability (among which Prop. Energy) scores.
- Returns:
A dictionary with most important statistical values for the main completeness (AOPC-Combined), interpretability (Prop. Energy), and a combination of both (ROAD-Weighted Prop. Energy) scores.
- Return type: