https://img.shields.io/badge/docs-v0.0.2-yellow.svg https://img.shields.io/badge/docs-latest-orange.svg https://gitlab.idiap.ch/bob/bob.db.uvad/badges/v0.0.2/build.svg https://gitlab.idiap.ch/bob/bob.db.uvad/badges/v0.0.2/coverage.svg https://img.shields.io/badge/gitlab-project-0000c0.svg https://img.shields.io/pypi/v/bob.db.uvad.svg

UVAD Database Access in Bob

This package is part of the signal-processing and machine learning toolbox Bob. This package provides an interface to the Unicamp Video-Attack Database (UVAD) database. The original data files need to be downloaded separately.

If you use this database, please cite the following publication:

@ARTICLE{7017526,
author={Pinto, A. and Robson Schwartz, W. and Pedrini, H. and De Rezende Rocha, A.},
journal={Information Forensics and Security, IEEE Transactions on},
title={Using Visual Rhythms for Detecting Video-Based Facial Spoof Attacks},
year={2015},
month={May},
volume={10},
number={5},
pages={1025-1038},
keywords={Authentication;Biometrics (access control);Databases;Face;Feature extraction;Histograms;Noise;Unicamp Video-Attack Database;Video-based Face Spoofing;Video-based face spoofing;Visual Rhythm, Video-based Attacks;impersonation detection in facial biometric systems;unicamp video-attack database;video-based attacks;visual rhythm},
doi={10.1109/TIFS.2015.2395139},
ISSN={1556-6013},}

Installation

Complete Bob’s installation instructions. Then, to install this package, run:

$ conda install bob.db.uvad

Contact

For questions or reporting issues to this software package, contact our development mailing list.