On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Funduscopy: Additional Metrics

I. EVALUATION

Extended result tables for our proposed method and previous published work.

 TABLE I

 COMPARISON WITH PREVIOUS WORKS ON DRIVE

		Target: DRIVE (584x565)				
Method	Year	F1	Acc	Pr	Re (Se)	Sp
2nd human observer		0.7931	0.7881	0.8072	0.7796	0.9717
Unsupervised		-		-	-	-
Bibiloni et al. [1]	2018	0.7521	0.938	0.786	0.721	0.970
Supervised						
Fraz et al. [2]	2012	0.7929	0.9480	0.8532	0.7406	0.9807
Jin et al. [3]	2019	0.8237	0.9566	0.8529	0.7963	0.9800
Laibacher et al. [4]	2018	0.8091	-	-	-	-
Li et al. [5]	2016	-	0.9527	-	0.7569	0.9816
Liskowski et al. [6]	2016	-	0.9535	-	0.7811	0.9807
Maninis et al. [7]	2016	0.8220	-	-	-	-
Marin et al. [8]	2011	0.8134	0.9452	0.9582	0.7067	0.9801
Orlando et al. [9]	2017	0.7857	-	0.7854	0.7897	0.9684
Yan et al. [10]	2018	0.8183	0.9529	0.8124	0.8242	0.9720
Zhao et al. [11]	2019	0.7882	-	-	-	-
M2U-Net DRIVE		0.8030	0.9619	0.8103	0.8000	0.9797
M2U-Net COVD -		0.7885	0.9592	0.7990	0.7824	0.9787
M2U-Net COVD – SSL		0.7913	0.9598	0.8016	0.7862	0.9789
All supervised methods use the same train-test split						

 TABLE II

 COMPARISON WITH PREVIOUS WORKS ON STARE

		Target: STARE (605x700)				
Method	Year	F1	Acc	Pr	Re (Se)	Sp
2nd human observer		-	0.9347	0.6432	0.8955	0.9382
Unsupervised		-	-	-	-	-
Bibiloni et al. [1]	2018	0.752	0.938	0.786	0.721	0.970
Supervised						
Fraz et al. [2]	2012	0.7747	0.9347	0.7956	0.7548	0.9763
Jin et al. [3]	2019	0.8143	0.9641	0.8777	0.7595	0.9878
Li et al. [5]	2016	-	0.9628	-	0.7726	0.9844
Maninis et al. [7]*	2016	0.831	-	-	-	-
Marin et al. [8]	2011	0.8080	0.9526	0.9659	0.6944	0.9819
Orlando et al. [9]	2017	0.7644	-	0.7740	0.7680	0.9738
Yan et al. [10]	2018	-	0.9612	-	0.7581	0.9846
Zhao et al. [11]*	2019	0.7960	-	-	-	-
M2U-Net STARE		0.8150	0.9727	0.8090	0.8257	0.9848
M2U-Net COVD -		0.8117	0.9724	0.8128	0.8114	0.9851
M2U-Net COVD - SSL		0.8196	0.9734	0.8164	0.8282	0.9847
*Same train-test split as adopted in this work						

TABLE III Comparison with previous works on IOSTAR

	Target: IOSTAR (1024x1024)					
Method	Year	F1	Acc	Pr	Re (Se)	Sp
Supervised						
Abbasi-Sureshjani et al. [12]	2015	-	0.9501		0.7863	0.9747
Meyer et al. [13]*	2017	-	0.9695	-	0.8038	0.9801
Zhang et al. [14]	2016	-	0.9514	-	0.7545	0.9740
Zhao et al. [11]	2019	0.7707	-	-	-	-
M2UNet IOSTAR		0.8173	0.9708	0.8081	0.8311	0.9831
M2U-Net COVD -		0.7928	0.9665	0.7755	0.8161	0.9798
M2U-Net COVD – SSL		0.7845	0.9644	0.7544	0.8221	0.9770
*Same train-test split as ado	pted in	this work				

 TABLE IV

 COMPARISON WITH PREVIOUS WORKS ON CHASE_DB1

		Target: CHASE_DB1				
Method	Year	F1	Acc	Pr	Re (Se)	Sp
2nd human observer Unsupervised		0.7686	0.9538	-	-	-
Azzopardi et al. [15]	2015	-	0.9387	-	0.7585	0.9587
Zhang et al. [14]	2016	-	0.9452	-	0.7626	0.9661
Supervised						
Fraz et al. [2]*	2012	0.7566	0.9469	0.7415	0.7224	0.9711
Jin et al. [3]	2019	0.7883	0.9610	0.7630	0.8155	0.9752
Laibacher et al. [4]*	2018	0.8006	-	-	-	-
Li et al. [5]	2016	-	0.9581	-	0.7507	0.9793
Orlando et al. [9]	2017	0.7332	-	0.7438	0.7277	0.9712
Roychowdhury et al. [16]	2015	-	0.9530	-	0.7201	0.9824
Yan et al. [10]	2018	-	0.9610	-	0.7633	0.9809
M2U-Net CHASE_DB1		0.8022	0.9704	0.7985	0.8086	0.9835
M2U-Net COVD -		0.7884	0.9678	0.7710	0.8095	0.9807
M2U-Net COVD – SSL		0.7988	0.9694	0.7819	0.8189	0.9816
*Same train-test split as a	adopted	in this w	ork			

TABLE V Comparison with previous works on HRF

		Target: HRF (2336x3504)				
Method	Year	F1	Acc	Pr	Re (Se)	Sp
Unsupervised						
Annunziata et al. [17]	2016	0.7578	0.9581	0.8089	0.7128	0.9836
Budai et al. [18]	2013	-	0.9610	-	0.669	0.985
Odstrcilik et al. [19]	2013	0.7324	0.9494		0.7741	0.9669
Zhang et al. [14]	2016	-	0.9556	-	0.7978	0.9710
Supervised						
Orlando et al. [9]*	2017	0.7158	-	0.6630	0.7874	0.9584
Yan et al. [10]*	2018	0.7212	0.9437	0.6647	0.7881	0.9592
Laibacher et al. [4]*	2018	0.7814	0.9635	-	-	-
Jin et al. [3]*	2019	0.7988	0.9651	0.8593	0.7464	0.9874
Zhao et al. [11]	2019	0.7659	-	-	-	-
M2U-Net HRF		0.7800	0.9641	0.7798	0.7880	0.9798
M2U-Net COVD -		0.8020	0.9669	0.7889	0.8188	0.9802
M2U-Net COVD - SSL		0.7972	0.9659	0.7898	0.8021	0.9807
*Same train-test split as	adopted	l in this v	vork			

T. Laibacher was with Idiap Research Institute, Martigny 1920, Switzerland (e-mail: tim.laibacher@gmail.com).

A. Anjos is with Idiap Research Institute, Martigny 1920, Switzerland (e-mail: andre.anjos@idiap.ch).

REFERENCES

- P. Bibiloni, M. Gonzlez-Hidalgo, and S. Massanet, "A real-time fuzzy morphological algorithm for retinal vessel segmentation," *Journal* of *Real-Time Image Processing*, Jan. 2018. [Online]. Available: https://doi.org/10.1007/s11554-018-0748-1
- [2] M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, "An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation," *IEEE Transactions on Biomedical Engineering*, vol. 59, no. 9, pp. 2538–2548, Sep. 2012.
- [3] Q. Jin, Z. Meng, T. D. Pham, Q. Chen, L. Wei, and R. Su, "DUNet: A deformable network for retinal vessel segmentation," *Knowledge-Based Systems*, vol. 178, pp. 149 – 162, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0950705119301984
- [4] T. Laibacher, T. Weyde, and S. Jalali, "M2u-net: Effective and efficient retinal vessel segmentation for real-world applications," in *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, June 2019.
- [5] Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang, "A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images," *IEEE Transactions on Medical Imaging*, vol. 35, no. 1, pp. 109– 118, Jan. 2016.
- [6] P. Liskowski and K. Krawiec, "Segmenting Retinal Blood Vessels With Deep Neural Networks," *IEEE Transactions on Medical Imaging*, vol. 35, no. 11, pp. 2369–2380, Nov. 2016.
- [7] K. K. Maninis, J. Pont-Tuset, P. Arbelez, and L. V. Gool, "Deep Retinal Image Understanding," in *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, 2016.
- [8] D. Marin, A. Aquino, M. E. Gegundez-Arias, and J. M. Bravo, "A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features," *IEEE Transactions on Medical Imaging*, vol. 30, no. 1, pp. 146–158, Jan. 2011.
- [9] J. I. Orlando, E. Prokofyeva, and M. B. Blaschko, "A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images," *IEEE Transactions on Biomedical Engineering*, vol. 64, no. 1, pp. 16–27, Jan. 2017.
- [10] Z. Yan, X. Yang, and K. Cheng, "Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation," *IEEE Transactions on Biomedical Engineering*, vol. 65, no. 9, pp. 1912–1923, Sep. 2018.
- [11] H. Zhao, H. Li, S. Maurer-Stroh, Y. Guo, Q. Deng, and L. Cheng, "Supervised Segmentation of Un-Annotated Retinal Fundus Images by Synthesis," *IEEE Transactions on Medical Imaging*, vol. 38, no. 1, pp. 46–56, Jan. 2019.
- [12] S. Abbasi-Sureshjani, I. Smit-Ockeloen, J. Zhang, and B. Ter Haar Romeny, "Biologically-Inspired Supervised Vasculature Segmentation in SLO Retinal Fundus Images," in *Image Analysis and Recognition*, M. Kamel and A. Campilho, Eds. Cham: Springer International Publishing, 2015, pp. 325–334.
- [13] M. I. Meyer, P. Costa, A. Galdran, A. M. Mendona, and A. Campilho, "A Deep Neural Network for Vessel Segmentation of Scanning Laser Ophthalmoscopy Images," in *Image Analysis and Recognition*, ser. Lecture Notes in Computer Science, F. Karray, A. Campilho, and F. Cheriet, Eds. Springer International Publishing, 2017, pp. 507–515.
- [14] J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits, and B. M. t. H. Romeny, "Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores," *IEEE Transactions* on Medical Imaging, vol. 35, no. 12, pp. 2631–2644, Dec. 2016.
- [15] G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov, "Trainable COSFIRE filters for vessel delineation with application to retinal images," *Medical Image Analysis*, vol. 19, no. 1, pp. 46–57, Jan. 2015. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1361841514001364
- [16] S. Roychowdhury, D. D. Koozekanani, and K. K. Parhi, "Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification," *IEEE Journal of Biomedical and Health Informatics*, vol. 19, no. 3, pp. 1118–1128, May 2015.

- [17] R. Annunziata, A. Garzelli, L. Ballerini, A. Mecocci, and E. Trucco, "Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation," *IEEE Journal of Biomedical and Health Informatics*, vol. 20, no. 4, pp. 1129– 1138, Jul. 2016.
- [18] A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, "Robust Vessel Segmentation in Fundus Images," *International Journal* of Biomedical Imaging, vol. 2013, p. 11, 2013. [Online]. Available: http://dx.doi.org/10.1155/2013/154860
- [19] J. Odstrcilik, R. Kolar, A. Budai, J. Hornegger, J. Jan, J. Gazarek, T. Kubena, P. Cernosek, O. Svoboda, and E. Angelopoulou, "Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database," *IET Image Processing; Stevenage*, vol. 7, no. 4, pp. 373–383, Jun. 2013.