Implements the Universal Background Model (UBM) training

This algorithm is a legacy one. The API has changed since its implementation. New versions and forks will need to be updated.

Algorithms have at least one input and one output. All algorithm endpoints are organized in groups. Groups are used by the platform to indicate which inputs and outputs are synchronized together. The first group is automatically synchronized with the channel defined by the block in which the algorithm is deployed.

Unnamed group

Endpoint Name Data Format Nature
features system/array_2d_floats/1 Input
ubm tutorial/gmm/1 Output

Parameters allow users to change the configuration of an algorithm when scheduling an experiment

Name Description Type Default Range/Choices
number-of-gaussians uint32 100
maximum-number-of-iterations uint32 10

The code for this algorithm in Python
The ruler at 80 columns indicate suggested POSIX line breaks (for readability).
The editor will automatically enlarge to accomodate the entirety of your input
Use keyboard shortcuts for search/replace and faster editing. For example, use Ctrl-F (PC) or Cmd-F (Mac) to search through this box

For a Gaussian Mixture Models (GMM), this algorithm implements the Universal Background Model (UBM) training described in the paper: Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. "Speaker verification using adapted Gaussian mixture models." Digital signal processing 10.1 (2000): 19-41.

First, this algorithm estimates the means, diagonal covariance matrix and the weights of each gaussian component using the KMeans clustering. After only the means are re-estimated using the Maximum Likelihood estimator.

This algorithm relies on the Bob library.

The following parameters are configurable:

  • 'number-of-gaussians': The number of Gaussian Components
  • 'maximum-number-of-iterations': The maximum number of iterations for the EM algorithm.
No experiments are using this algorithm.
This algorithm was never executed.
Terms of Service | Contact Information | BEAT platform version 2.2.1b0 | © Idiap Research Institute - 2013-2024