bob.machine.GMMMachine¶
-
class
bob.machine.GMMMachine((object)self) → None¶ Bases:
bob.machine._machine.MachineDoubleBaseThis class implements a multivariate diagonal Gaussian distribution. See Section 2.3.9 of Bishop, “Pattern recognition and machine learning”, 2006
__init__( (object)self, (int)n_gaussians, (int)n_inputs) -> None
- __init__( (object)self, (GMMMachine)other) -> None :
- Creates a GMMMachine from another GMMMachine, using the copy constructor.
__init__( (object)self, (HDF5File)config) -> None
-
__init__((object)self) → None¶ __init__( (object)self, (int)n_gaussians, (int)n_inputs) -> None
- __init__( (object)self, (GMMMachine)other) -> None :
- Creates a GMMMachine from another GMMMachine, using the copy constructor.
__init__( (object)self, (HDF5File)config) -> None
Methods
__init__((object)self)__init__( (object)self, (int)n_gaussians, (int)n_inputs) -> None acc_statistics((GMMMachine)self, (object)x, …)Accumulate the GMM statistics for this sample(s). acc_statistics_((GMMMachine)self, (object)x, …)Accumulate the GMM statistics for this sample(s). forward((MachineDoubleBase)self, (object)input)Executes the machine on the given 1D numpy array of float64, and returns the output. forward_((MachineDoubleBase)self, (object)input)Executes the machine on the given 1D numpy array of float64, and returns the output. is_similar_to((GMMMachine)self, …)Compares this GMMMachine with the ‘other’ one to be approximately the same. load((GMMMachine)self, (HDF5File)config)Load from a Configuration log_likelihood((GMMMachine)self, (object)x, …)Output the log likelihood of the sample, x, i.e. log_likelihood_((GMMMachine)self, (object)x, …)Output the log likelihood of the sample, x, i.e. resize((GMMMachine)self, (int)n_gaussians, …)Reset the input dimensionality, and the number of Gaussian components. save((GMMMachine)self, (HDF5File)config)Save to a Configuration set_variance_thresholds((GMMMachine)self, …)Set the variance flooring thresholds in each dimension to the same vector for all Gaussian components if the argument is a 1D numpy arrray, and equal for all Gaussian components and dimensions if the parameter is a scalar. update_gaussian((GMMMachine)self, (int)i)Get the specified Gaussian component. Attributes
dim_cThe number of Gaussian components C dim_dThe feature dimensionality D mean_supervectorThe mean supervector of the GMMMachine (concatenation of the mean vectors of each Gaussian of the GMMMachine meansThe means of the gaussians shapeA tuple that represents the dimensionality of the GMMMachine (n_gaussians, n_inputs).variance_supervectorThe variance supervector of the GMMMachine (concatenation of the variance vectors of each Gaussian of the GMMMachine variance_thresholdsThe variance flooring thresholds for each Gaussian in each dimension variancesThe (diagonal) variances of the Gaussians weightsThe weights (also known as “mixing coefficients”) -
__call__((MachineDoubleBase)self, (object)input) → float :¶ Executes the machine on the given 1D numpy array of float64, and returns the output. NO CHECK is performed.
-
acc_statistics((GMMMachine)self, (object)x, (GMMStats)stats) → None :¶ Accumulate the GMM statistics for this sample(s). Inputs are checked.
-
acc_statistics_((GMMMachine)self, (object)x, (GMMStats)stats) → None :¶ Accumulate the GMM statistics for this sample(s). Inputs are NOT checked.
-
dim_c¶ The number of Gaussian components C
-
dim_d¶ The feature dimensionality D
-
forward((MachineDoubleBase)self, (object)input) → float :¶ Executes the machine on the given 1D numpy array of float64, and returns the output.
-
forward_((MachineDoubleBase)self, (object)input) → float :¶ Executes the machine on the given 1D numpy array of float64, and returns the output. NO CHECK is performed.
-
is_similar_to((GMMMachine)self, (GMMMachine)other[, (float)r_epsilon=1e-05[, (float)a_epsilon=1e-08]]) → bool :¶ Compares this GMMMachine with the ‘other’ one to be approximately the same.
-
load((GMMMachine)self, (HDF5File)config) → None :¶ Load from a Configuration
-
log_likelihood((GMMMachine)self, (object)x, (object)log_weighted_gaussian_likelihoods) → float :¶ Output the log likelihood of the sample, x, i.e. log(p(x|bob::machine::GMMMachine)). Inputs are checked.
- log_likelihood( (GMMMachine)self, (object)x) -> float :
- Output the log likelihood of the sample, x, i.e. log(p(x|GMM)). Inputs are checked.
-
log_likelihood_((GMMMachine)self, (object)x, (object)log_weighted_gaussian_likelihoods) → float :¶ Output the log likelihood of the sample, x, i.e. log(p(x|bob::machine::GMMMachine)). Inputs are NOT checked.
- log_likelihood_( (GMMMachine)self, (object)x) -> float :
- Output the log likelihood of the sample, x, i.e. log(p(x|GMM)). Inputs are checked.
-
mean_supervector¶ The mean supervector of the GMMMachine (concatenation of the mean vectors of each Gaussian of the GMMMachine
-
means¶ The means of the gaussians
-
resize((GMMMachine)self, (int)n_gaussians, (int)n_inputs) → None :¶ Reset the input dimensionality, and the number of Gaussian components. Initialises the weights to uniform distribution.
-
save((GMMMachine)self, (HDF5File)config) → None :¶ Save to a Configuration
-
set_variance_thresholds((GMMMachine)self, (object)variance_threshold) → None :¶ Set the variance flooring thresholds in each dimension to the same vector for all Gaussian components if the argument is a 1D numpy arrray, and equal for all Gaussian components and dimensions if the parameter is a scalar.
-
shape¶ A tuple that represents the dimensionality of the GMMMachine
(n_gaussians, n_inputs).
-
update_gaussian((GMMMachine)self, (int)i) → Gaussian :¶ Get the specified Gaussian component. An exception is thrown if i is out of range.
-
variance_supervector¶ The variance supervector of the GMMMachine (concatenation of the variance vectors of each Gaussian of the GMMMachine
-
variance_thresholds¶ The variance flooring thresholds for each Gaussian in each dimension
-
variances¶ The (diagonal) variances of the Gaussians
-
weights¶ The weights (also known as “mixing coefficients”)