
Can ChatGPT Detect Intent? Evaluating Large Language Models for Spoken Language Understanding

Goal & Motivation

- Project STEADI: Automatic analysis of interview recordings
 - To extract past experience, to predict hirability, etc.
 - Require strong semantic understanding capabilities
- Introducing large language models
 - Leveraging strong zero/few-shot in-context semantic understanding capabilities
 - How different from smaller models?
 - Impact due to ASR transcription errors?
- Experimented on English SLURP and multilingual MINDS-14 benchmarks

Observations

- Emergent abilities identified
 - High zero/few-shot accuracy
 - Close to supervised SotA
 - But only on largest models
- Strong multilingual capabilities
 - Even on data-sparse languages
- Can't handle ASR errors well
 - Limited pronunciation knowledge

LLMs like ChatGPT get high accuracy with zero/few shots. More examples don't help much.

#Examples	0	10	20	30
GPT3.5	72.86%	74.55%	77.27%	77.44%
w/ bias	75.86%	75.59%	78.31%	77.87%
Curie w/ bias	5.01%	4.91%	3.80%	3.77%
ChatGPT	79.25%	80.33%	83.93%	80.16%
Turbo ver.	78.98%	80.03%	81.78%	79.62%

Not help much

On smaller models, accuracy depends on model size and #examples. They don't work with zero-shot.

#Examples	0	10	20	30
GPT2 (774M)	6.66%	8.88%	8.31%	-
OPT-1.3B	5.58%	10.69%	17.85%	17.01%
OPT-2.7B	7.06%	28.65%	26.66%	36.97%
OPT-6.7B	4.37%	28.18%	35.14%	42.40%

