

Feature Engineering for Place Category Classification
Yin Zhu, Erheng Zhong, Zhongqi Lu, and Qiang Yang

Hong Kong University of Science and Technology

{yinz, ezhong, zluab, qyang}@cse.ust.hk

ABSTRACT

MDC Task 1 is to infer the category of a place using the

smartphone sensing data obtained at the place. We

formulate this problem as a standard supervised learning

task: we extract discriminative features from the sensor data

and use state-of-the-art classifiers (SVM, Logistic

Regression and Decision Tree Family) to build

classification models. We have found that feature

engineering and feature selection are very effective for this

task. In particular, we have proposed a feature engineering

technique, Conditional Features (CF), a general method for

domain-specific feature extraction. In total, we have

generated 2,796,200 features and in our final five

submissions we use feature selection to select 100 to 2000

features. One of our key findings is that features

conditioned on fine-granularity time intervals, e.g. every 30

minutes, are most effective. Our best 10-fold CV accuracy

on training set is 75.1% by Gradient Boosted Trees, and the

second best accuracy is 74.6% by L1-regularied Logistic

Regression. Besides the good performance, we also report

briefly our experience of using F# language in dealing with

large-scale (~70GB raw data) feature processing.

Author Keywords

Feature Engineering, Domain Knowledge, Feature

Selection, Classification.

INTRODUCTION

MDC Task 1 [1] is to infer the category of a place,

therefore is a classification task in the general sense. The

discriminative information lies in the context data recorded

at the place. For example, using time context alone, we

would be able to classify working places and homes quite

accurately because after midnight we usually stay at home.

In addition to time context, calllog and other sensor data

recorded in the user’s smartphone during the user’s stay at a

place may also indicate the type of it.

Our main strategy is to extract as many useful features as

we can from the sensor data, and build good classifiers

using these features. By useful, we mean features that have

discriminability among the ten location categories. Once the

features are generated, we use state-of-the-art classifiers,

e.g. SVM and Decision Trees, to decide how to form rules

for place category classification.

This classification task is different from classification tasks

in previous data competitions. For instance, KDDCUP 2009

organized by Orange
1
 released a data table of 50,000 data

samples by 15,000 attributes. However, neither the meaning

of these 15,000 attributes is known to the contestants, nor

any auxiliary data is available for exploring the domain

knowledge to generate more features. In such a competition,

the challenge is limited to train the best classifier, or the

best ensemble of classifiers, rather than to find the most

effective way to tackle a specific data mining task. Nokia

MDC releases all the sensor data in the raw form, which

provides us the possibility to extract best features ourselves.

Because this competition does not have an online

leaderboard or a discussion forum, we have no knowledge

of what other teams are doing. If most of other teams

choose to use traditional classification
2
 as we do, then

feature extraction would be much more important than

other techniques, e.g. classifier ensemble. If we missed

several important features, then no matter what classifier

we use, we would fail to achieve a good performance in

classification. Therefore our time is mainly spent on feature

engineering – for each kind of sensing data, we use our

domain knowledge and the state-of-the-art feature

extraction methods in the literature to generate as many

features as possible.

In particular, we have designed a method, Conditional

Feature (CF), to explore the dependency and correlation

between features. For example, for each place, we can

calculate the average WiFi signal strength during the user’s

multiple stays at it. This is a single value feature, and we

call it as an Unconditional Feature (UF). A user’s

smartphone receives multiple WiFi signal strengths during

a single stay, and the user usually visits this place many

times. Compressing many signal strengths into a single

value, the average signal strength, obviously loses

information. Conditional feature method helps to calculate

multiple versions of average WiFi signal strengths. Each

version is on some condition, e.g. whether the WiFi

strength is in a trusted stay/interval. The most important

1
 http://www.kddcup-orange.com/

2
 We have considered using other methods, e.g. Conditional

Random Fields (CRFs) to explore the dependency structure

among the class labels. However, due to time constraint, we

were not able to generate a model with close accuracy to

our best classification model.

This material was prepared for the Mobile Data Challenge 2012 (by
Nokia) Workshop; June 18-19, 2012; Newcastle, UK. The copyright

belongs to the authors of this paper.

http://www.kddcup-orange.com/

condition is time – whether the WiFi strength is recorded

during weekend, or during a morning, etc. By using the CF

method here, we are exploring the relationship between the

average WiFi strength and the conditions when WiFi

strength is recorded. In our experiments, we find that

conditional features, especially those that are conditioned

on fine-granary time intervals, are far more effective than

their unconditioned versions in classification.

Our contributions are summarized as follows:

1. We propose the Conditional Feature method to explore

the relationship among features. And in our experiments,

we find that time conditions are very useful in place type

classification.

2. We analyze what features are useful for place type

prediction. Although most of the features are already

proposed in the literature, our work is a systematic analysis

on their usefulness in this specific task, therefore provides

important insights on place type prediction.

CONDITIONAL FEATURES

In this section, we formally describe the Conditional

Feature method.

For a user u and a place p, we may collect all the

smartphone data recorded during user u’s visits to place p.

The sensor data include accelerometer strength, call logs

system status, etc. We extract features from these sensor

logs using common sense knowledge. In particular, we

distinguish the condition under which the sensor log is

recorded. These conditions include:

 Weekday/weekend,

 Under trust interval or not,

 Time of the day,

These three conditions are independent to each other. Let’s

continue to use the average WiFi signal strength feature to

illustrate the idea of conditional features. This feature is

simply the mean value of strength from all the WiFi points

that the user’s smartphone encountered at place p. We

denote this value as , and call it an Unconditional

Feature.

To calculate conditional versions of , we split the

whole WiFi records from user u’s at place p into groups

defined by the conditions: , and/or , and use the

following notations to represent them:

 ,

 ,

 , ,

There are three conditions, therefore combinations

of conditioning in total. One of them, when all three

conditions are turned off, is the Unconditional Feature.

Obviously and are binary conditions. The third

condition, time of the day, requires more discussion. We

discretize time of the day by splitting a whole day into a

number of equally-sized intervals. We have tried the

different numbers from 4 (every 6 hours) to 144 (every 10

minutes), and we choose the best number by cross

validation. For one feature, the 8 combinations of

conditions generate , where is the number

of conditnal time intervals during a day, e.g. when the time

interval is set to 30 minutes,

FEATURE ENGINEERING

In the previous section, we use the average WiFi signal

strength feature to introduce Conditional Features Method.

In this section, we describe in details more features.

We define a super interval for a pair (u, p) as the intervals

in visit_sequence_10min.csv that are labeled as

place-ID p for user u. visit_sequence_10min.csv

contains all the intervals with over 10-minute duration for

some user. Thus any feature for user-place pair (u, p) is

extracted from the context raw data within this supper

interval.

In the following, we list important features for each type of

context data.

Time features

We first calculate the summary statistics of the staying

durations at this place. They are average, variance, min,

max, and the second maximum. One of the summary

statistics is average value of duration, which is an obvious

feature to classify many places, say home and a coffee

shop.

Accelerometer features

Each data point from 3D accelerometer is a (x,y,z) tuple,

and it is common practice to use its signal strength:

 √

where 680 is the unit gravity in the Nokia phone’s

accelerometer
3

. For a one-minute sequence of

accelerometer strength, we extract the following six

features:

 average

 variance

 energy (average of squares)

 sum of FFT coefficients

 weighted sum of FFT coefficients

In a previous study [4], we found that these six features are

very effective to discriminate people’s daily activities.

Application features

The numbers of application “close”, “foreground”,

“started”, and “view” are counted.

3
 Some other phones use 9.8 or 0.98 as the unit gravity, that

depends on the accelerometer and OS the phone uses.

Bluetooth and Wlan features

The numbers of different Bluetooth/Wlan devices are

recorded. For the top-five frequently encountered devices,

their ratio relative to the total number of scanned devices

are also calculated. The summary statistics of the signal

strength are also used as features.

Calllog features

We extract most of the calllog features described in Table 3

in [2], a previous study by Nokia. The features include the

ratio between incoming and outgoing, the ratio of missed

calls, etc. Intuitively, these features capture important

calling/messaging behavior at a place.

System features

There are nine statuses of a phone (e.g. charging and

silence). The ratio of the status at a place has a high

indication of the place type. For example, during working,

we usually switch the phone to meeting/silent.

Media feature

We calculate the number of songs the user has listened to at

a place. We also calculate the time length.

Bag-of-Words (BoW) features

The counts such as how many times the user has used

“Message” application and how many times the user has

scanned a specific MAC address during his/her stay at a

place may also quite useful. Following the conventions in

text processing and classification, we call application

names, country prefixes of call numbers, and MAC prefixes

of Bluetooth and WiFi as words, and we use their counts

within a specific place to represent a document.

There are two important post-processing steps on the

number features listed above.

 Feature Normalization. Some of the above

features are already normalized, e.g. the average

WiFi signal strength; some of them are not,

especially those raw counts, e.g. the number of

calls at a place. For these count features, we create

two extra features by dividing them by two factors,

the number of visits to place p by user u, and the

total duration of the user’s visits.

 Construct Conditional Features. Each feature

has 8 conditional variants. As calculated before,

each feature has conditional versions.

FEATURE SELECTION AND CLASSIFIER BUILDING

Feature selection

Using the conditional feature technique, we generate many

features, approximately two million when the conditional

time interval is set to 30 minutes. Unrelated features may

hurt the classification accuracy for many classifiers; and

building a classifier with many feature costs a long

computational time. Therefore we need feature selection,

and we perform the following two stages of feature

selection.

First, we drop those features with more than 99% percent of

zeros. This filter typically reduces the number of features to

about 6k to 30k depending on the size of conditional time

interval. Considering the number of training samples is 366,

the resulting data table is manageable by most of the

classifiers.

Second, we use the Relief feature selection method in

Weka
4
 to select 50 to 2000 most relevant features. We also

use L1-regularized Logistic Regression (L1-LogReg) as a

feature selection method. L1-LogReg is effective at forcing

many redundant features to have zero weights, i.e., these

features have no effect in the prediction model. We can

control the number of features with non-zero coefficients by

changing the regularization coefficient in L1-LogReg.

Classifiers and parameters

We use four state-of-the-art classifiers, one of which is

from linear-classifier family, one of which is a kernel-based

method, and two of which are from decision tree family.

Logistic regression (LogReg). We use LibLinear

package, which implements both L1-regularized and L2-

regularized Logistic Regressions. LogReg has only one

parameter, the regularization coefficient C. We vary this

value from to .

Support Vector Machines (SVM). We use kernel

SVM implemented in LibSVM package. We use three

kernels, linear kernel, polynomial kernel, and RBF kernel.

The regularization coefficient C follows the same setting as

that in LogReg. For kernel-specific parameters, we vary the

degree parameter in polynomial kernel from 2 to 10, and

vary the window parameter in RBF kernel from to

 .

Gradient Boosted Trees (GBT). We used an in-

house gradient boost tree implemented by Nathan N. Liu,

who also uses it successfully in his winning solutions in

KDDCup’2011 [6] and WSDM Challenge 2012 [7]. There

are two main parameters in GBT, the max depth of a tree,

and the number of boosting iterations. We vary the first

parameter from 2 to 10. The GBT tool calculates the CV

accuracy at each iteration; therefore we may choose best

CV accuracy from the first 1000 iterations.

RandomForest (RF). We use the implementation

in Weka. We set the number of random features from

 √ to √ , where is the number of features.

Unbiased classification

In Figure 1, we plot the label distribution from the total 336

training place IDs. Although the data is unbalanced, we

decided to use unit weight over class labels. The main

reason for using unit weight over all class labels is that the

evaluation metric is classification accuracy, which is

defined as

4
 www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

Assuming that the places in the testing data have similar

labeling distribution with that of the training data, we

should take majority classes and minority classes with equal

weights.

Figure 1. Class Distribution Among the 366 Training Samples.

EXPERIMENTS

Because Nokia MDC gives no feedback or leaderboard on

the submitted predictions of the testing data, we must rely

on the training data for model evaluation. Following the

common practice, we use the accuracy from 10-fold Cross

Validation as the evaluation criterion to select best models.

We also notice that the testing data come from 32 users

who are different from the 80 users in the training data. So

when we split the training data samples to 10 folds, we

restrict that the labeled places from one user all go to one

fold. In this way, the predicted model for each fold when it

is used as testing is trained from data of different users in

that fold.

The effectiveness of feature selection

When we set the conditional time interval to 30 minutes, we

got totally 2,796,200 features. With so many features, not

only the computational time of classifiers increases, but the

accuracy may also drop. In particular, we find that when

there are many features, the performance of the classifiers

may be very sensitive and unstable to its parameters. In

Figure 2, we plot the 10-CV accuracies of LogReg models

on two sets of features, the full set and 2000 of them

selected by Relief method. When we change the

regularization coefficient in LogReg models, the models

trained on the full feature set is very unstable – a small

change in C may result in a big fluctuation on the 10-CV

accuracy. In this case, we are not sure about which is the

best parameter for the test data. The performances on the

models trained on the good feature subset are quite stable

even for extreme values.

Figure 2. Effectiveness of Feature Selection.

We also compared two feature selection methods, Relief

and L1-LogReg, and we found that the performance of L1-

LogReg can be greatly boosted by using a feature selection

of L1-LogReg first, while other classifiers perform closely

with these two selection methods. Please see the 10-fold

CV results below for details.

10-fold CV results

We use 10-fold CV on the 366 training samples to select

the best parameter for each classifier. We set the

conditional time interval to 30 minutes in all the

experiments.

Table 1. Performance of Different Classifiers

Classifiers

of selected features

Relief L1-LogReg

1000 2000 1132

(C=10)

1925

(C=1)

LogReg 0.697 0.735 0.746

SVM-RBF 0.645 0.639 0.669 0.672

SVM-Poly 0.656 0.648 0.669 0.637

SVM-Linear 0.680 0.678 0.675 0.683

GBT 0.727 0.751 0.730 0.740

RF 0.702 0.719 0.724 0.716

In the table, we find that LogReg and GBT perform the

best, RF a close third, but all SVM classifiers perform much

worse than others. One possible reason is that, both feature

selectors work in a linear manner and hence the selected

features may be not suitable for kernel-based methods.

The size of the conditional time interval

In all the above experiments, we set the conditional time

interval to 30 minutes. To study the influence of the size of

H
o

m
e

H
o

m
e

 o
f

a
 f

ri
e

n
d

M
y
 w

o
rk

p
la

c
e

/s
c
h

o
o

l

tr
a

n
s
p

o
rt

a
ti
o

n

T
h

e
 w

o
rk

p
la

c
e

/s
c
h

o
o

l
o

f
a

 f
ri

e
n

d

o
u

td
o

o
r

s
p

o
rt

s

in
d

o
o

r
s
p

o
rt

s

R
e

s
ta

u
ra

n
t

o
r

b
a

r

S
h

o
p

 o
r

s
h

o
p

p
in

g
 c

e
n

te
r

v
a

c
a

ti
o

n
 s

p
o

t

0
2

0
4

0
6

0
8

0
1

0
0

10
-4

10
-2

10
0

10
2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

 L1-regularization coefficient C in LogReg

1
0

-C
V

 A
c
c
u

ra
c
y
 o

f
L

o
g

R
e

g

full feature set

selected 2000

it, we change it from 6 hours to 10 minutes, and plot the

accuracy changes of two classifiers LogReg and GBT in

Figure 3. The feature selection method used in both

classifiers are LogReg with C=1. To illustrate the

usefulness of conditional features, we also plot the accuracy

of the unconditional features as a reference.

Figure 3. Performance with Different Lengths of Time

Interval.

Most useful features

The GDT classifier supports to rank the contribution of

features by looking at their occurring frequency in the

ensembed trees. Table 2 shows the most useful features and

their scores.

Table 2. Weights of Different Features.

Morning 8-10am 100.0

mac_r1 71.57

Ratio of Sunday 67.47

Evening 8-10pm 53.93

Accelerometer FFT 53.76

Num Bluetooth 44.74

N night 39.57

N morning 39.41

Duration div by max 39.30

Ave signal 36.6

Acc mean 34.26

It would be illustrative to show some explainable

classification rules. We build a classification model for the

three majority classes (Home/WorkPlace/Other’s Home)

using R’s party package, and plot the decision tree in

Figure 4.

Figure 4. A Decision Tree for Three Major Class Labels.

Illustration of What Are The Most Useful Features.

FIVE SUBMISSION MODELS

The contest rule allows us to submit five different

predictions and the one with best performance will be used

for ranking. We submit the four best models from the three

classifiers (L1-LogReg, GBT and RF
5
). For the fourth one,

we submit an ensemble of their results. For each classifier,

we use three models trained by different parameter settings.

Therefore, we have 4*3 = 12 models in total. The ensemble

is simply a majority voting among the 12 predictions; in

case of a tie, we use the label predicted by the best GBT

model. We also submit a sub-optimal prediction as the fifth

prediction, which is predicted by a GBT model on only 50

unconditional features. The best 10-fold CV accuracy by

GBT on this dataset is 65.3%. We include this suboptimal

model because all other four submissions use too many

features and there is a sight possibility that the training set

and testing set have some distribution shift so that models

using many features can easily overfit the training data.

Figure 5. The 3043 Testing Predictions over 10 Categories by

L1-LogReg.

5
 SVM performs worse than other classifiers, thus we don’t

submit any single model from SVM.

10 M 30 M 1 H 2 H 4 H 6 H
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Conditional Time Interval (H-hours, M-minutes)

1
0

-C
V

 A
c
c
u

ra
c
y

LogReg

GBT

GBT (unconditional)

LogReg (unconditional)

dur_div_max_11050

p < 0.001

1

0.389 0.389

n_weekend_21797

p < 0.001

2

0.303 0.303

time3_2_190

p < 0.001

3

0.208 0.208

acc_mean_min_5381

p < 0.001

4

0.354 0.354

std_inactive_10864

p < 0.001

5

0.053 0.053

Node 6 (n = 83)

Home

0
0.2
0.4
0.6
0.8

1
Node 7 (n = 7)

Home

0
0.2
0.4
0.6
0.8

1
Node 8 (n = 18)

Home

0
0.2
0.4
0.6
0.8

1
Node 9 (n = 7)

Home

0
0.2
0.4
0.6
0.8

1

time3_div_max7_16323

p = 0.003

10

0.16 0.16

Node 11 (n = 26)

Home

0
0.2
0.4
0.6
0.8

1
Node 12 (n = 7)

Home

0
0.2
0.4
0.6
0.8

1

dur_t_5_11035

p = 0.002

13

0.0940.094

Node 14 (n = 67)

Home

0
0.2
0.4
0.6
0.8

1
Node 15 (n = 17)

Home

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

In Figure 5, we plot the histogram of our prediction over the

3043 testing samples. We found that a lot of instances are

classified as 4/“transportation”. By looking at those

instances, we found that most of them actually have no

sensor data recorded in their time intervals defined

visit_sequence_10min.csv files. For these places,

only time related features, e.g. average interval length, are

used for classification. In training data, places with short

time intervals are labeled as transportation.

TOOLS AND COMPUTATION

Our feature extraction program is written in F# and C#.

Because the feature extraction is done user by user, we can

easily archive data parallelism, which is extremely

convenient in F# [5]. Generating all the 2,796,200 features

for both training and testing dataset costs about 1 hour on

an 8-core Windows server.

The size of uncompressed data files is ~70GB, with training

~50 GB and testing ~20 GB. Except for the FFT for

calculating accelerometer features, computing other

features is IO-bounded, not CPU-bounded. Modern IO

devices usually support hundreds, if not thousands,

concurrent accesses. To boost the IO speed, we use F#’s

asynchronous programming model [8] to start many parallel

async tasks. The number of tasks is decided by .Net

runtime, and is far more than the number of CPU cores. By

using this programming model, we are able to load IO and

CPU both near to 100%. While if we use a traditional

concurrent programming model, e.g. simply using 8 threads

and use the same thread for both IO and CPU, the CPU is

not fully loaded.

The fast feature extraction gives us the advantage to quickly

debug the programs, construct more discriminative features

and evaluate more model building strategies.

CONCLUSION AND DISCUSSIONS

The task 1 of Nokia MDC requires a board range of data

mining skills: Feature Extraction, Feature Selection, and

applying state-of-the-art classifiers. In this task, we found

that each step is vital for accurate prediction, and working

through all the three steps greatly sharps our ability to apply

data mining algorithms to real world applications.

1. In feature extraction phase, we use conditional

feature engineering technique to extract many

features under different conditions, mostly time.

2. In feature selection phase, we need to reduce the

tens of thousands of features to a small set so that

the subsequent classifier building is robust and

fast.

3. In classifier building phase, we have found that

different classifiers have a noticeable difference in

classification accuracy. We have found that L1-

LogReg and GBT get the best 10-fold CV

accuracy on training data. LogReg classifiers are

suitable for situations where the number of

instances is smaller than the number of attributes

[9].

In summary, we find that time dependent features are very

helpful for place category classification and our conditional

feature extraction effectively extracts these features in a

principled way.

ACKNOWLEDGEMENT

We thank the support of Hong Kong RGC GRF Projects

621010 and 621211. We thank Xing Xie, Nathan N. Liu,

Liuhang Zhang, and Derek Hao Hu for discussions.

REFERENCES

1. Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, Jan

Blom, Olivier Bornet, Trinh-Minh-Tri Do, Olivier

Dousse, Julien Eberle, and Markus Miettinen. The

Mobile Data Challenge: Big Data for Mobile Computing

Research. In Proc. Mobile Data Challenge by Nokia

Workshop, in conjunction with Int. Conf.. on Pervasive

Computing, Newcastle, June 2012.

2. G. Chittaranjan, J. Blom, and D. Gatica-Perez. Mining

Large-Scale Smartphone Data for Personality Studies.

Personal and Ubiquitous Computing. Published online

Dec 2011.

3. Rich Caruana, and Alexandre Niculescu-Mizil. An

empirical comparison of supervised learning algorithms.

ICML’06.

4. Yin Zhu, Yuki Arase, Xing Xie and Qiang Yang.

Bayesian Nonparametric Modeling of User Activities.

The 13th International Conference Ubiquitous

Computing (UbiComp 2011), TDMA'11: Workshop on

Trajectory Data Mining and Analysis.

5. Yin Zhu and Tomas Petricek. Numerical Computing in

F#. Chapter 4 of Real-World Functional Programming

Online Book, Manning Publications Co. and Microsoft,

2011.

6. Tianqi Chen, Nathan N. Liu, Qiang Yang, et. al.

Informative Ensemble of MultiResolution Dynamic

Factorization Models. KDDCup 2011 Workshop, 2011.

7. Botao Hu, Nathan N. Liu, and Weizhu Chen. Learning

from Click Model and Latent Factor Model for

Relevance Prediction Challenge. Workshop on Web

Search Click Data (WSCD’12), 2012.

8. Don Syme, Tomas Petricek, Dmitry Lomov. The F#

Asynchronous Programming Model. PADL’11.

9. Saharon Rosset, Grzegorz Swirszcz, Nathan Srebro, Ji

Zhu: l1 Regularization in Infinite Dimensional Feature

Spaces. COLT 2007: 544-558.

