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ABSTRACT
The standard approach to speaker verification is to extegustral

features from the speech spectrum and model them by gemerati
or discriminative techniques. We propose a novel approdoérev

a set of client-specific binary features carrying maximatdmina-
tive information specific to the individual client are eséited from

an ensemble of pair-wise comparisons of frequency compsrien

magnitude spectra, using Adaboost algorithm. The finalsdias
is a simple linear combination of these selected featuregel

iments on the XM2VTS database strictly according to a stahda

evaluation protocol have shown that although the proposmud-
work yields comparatively lower performance on clean speéc
significantly outperforms the state-of-the-art MFCC-GMystem
in mismatched conditions with training on clean speech astirg
on speech corrupted by four types of additive noise fromtidyedard
Noisex-92 database.

Index Terms— Speaker verification, binary features, speaker-

specific features, noise robustness, Adaboost

1. INTRODUCTION

The standard approach to speaker verification is to paraizethe
short-term magnitude spectra extracted from speech frampeslly
by cepstral coefficients [1] and model these parameterg istan-
dard techniques like Gaussian Mixture Models (GMM) [1]. tist
work, we propose a novel approach that aims to extract spepke
cific information directly from the magnitude spectrum. histap-
proach, a small set of binary features, typically numbeg@iido 30,
are iteratively selected from a very large set of featuresmting to
their discriminative ability on the training data. Thesatfees are
data-driven and optimized for each individual client. Theficlas-
sifier is a weighted linear combination of single stump dfags
using the selected features.

The motivation for the proposed binary features is the resac:
cess of binary-valued features based on pixel comparikeriLbcal

Binary Patterns (LBP), Modified Census Transform and Haar fe

tures [2] in the vision research community particularly fast ob-
ject detection. These features are robust to illuminati@nations
since their value depends only on the comparison of two piakl
ues, not on the pixel values themselves. In this work, we ajipis
approach to extract features for speaker verification,guie 1-D
spectral vectors as object instances to be classified & bighong-
ing to the client or impostor classes, analogous to faogon-face
classification problem in vision. These binary featuresdigerimi-
natively selected for each client individually using Adabb [3], a
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standard ensemble learning technique. While testing, thdehtan
be evaluated and a decision can be taken relatively fast iecclas-
sifier is a simple weighted linear combination of binary aut$p each
depending on a comparison operation on two frequency coantsn
of the spectrum. Experiments show that the intrinsic illnation-
robustness of such features in the vision domain possilalgsieo
their robustness against several additive noise typegisgbech do-
main. We have compared the proposed framwork with the stdnda
Mel Frequency Cepstral Coeffecient (MFCC)-GMM framewadtk [

The rest of the paper is organized as follows. In Sec.2, we de-
scribe the proposed speaker verification framework. Weridtesour
experiments in Sec.3. In Sec.4, we discuss the results ghtighit
certain aspects of our method. Finally, Sec.5 outlines thim iton-
clusions of our work.

2. THE PROPOSED FRAMEWORK

2.1. Binary Features

In the first step, the input speech waveform is blocked inaonfes
and a spectral transforf is applied to it to yield a sequence of

spectral magnitude vectors. L = [X(1),---,X(N)]T be an
instance of such a vector. The spectral transféroan be either 1) a

simple Ny-point Discrete Fourier Transform (DFT) (In this caé_)é,
comprises of one half of the magnitude spectrum componémte s
they are symmetric, anty = 22 + 1.) or 2) DFT followed by Mel

filtering [1] (In this case,)_() represents the Mel filter outputs and
N = number of filters). The proposed binary features are cated|

on the vectorX as follows. A binary feature; : R — {0,1}

is defined completely by the following 3 parameters: two ¢egi
ki.1,k:,2 which can vary froml to N but cannot be equal and one
threshold parametefl;, selected according to a certain criterion (ref.
Sec. 2.2). For the DFT case, thig; ; } represent frequency indices.
For the Mel filter case, they represent indices of Mel filtef$ie
featureg; is defined as,

N 1 if X(kin) — X(ks2) > 65,
¢I(X) o {0 if X(kjiJ) — X (ks 2) < ;.

)

1)

From the range of thé&; values, the total number of such binary
featuresisV(N —1). Let® = {¢;} YV~ represent the complete

set of such features.

2.2. Feature selection

Out of the complete set of binary featur®s a certain number of
features are iteratively selectfmt each clientaccording to their dis-
criminative ability with respect to that client. This sdiea is based
on the Discrete Adaboost algorithm [3] with weighted samgli
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which is widely used for such binary feature selection tag{sand

is known for its robust performance [3]. The algorithm, whis to

be run once for each client, is as follows: oo
96 (3KkHZ)F

Algorithm: Feature selection by Discrete Adaboost

Inputs: N, training vectors{X }]\Eq, the corresponding class la-

bels,y; € {0, 1} (O:impostor 1: cllent), Ny, the number of features <
to be selected)Vy;., the number of training vectors to be randomly
sampled at each iteratioV§,. < Ny,.).

32 (1kH2) f,

e Initialize the weights{w ;} «— fory; =0,1

1
2N N(l)

respectively, whereV{” and N, are the number of impos-

tor and client training vectors respectively. % 3”2 W) & (i) S 138 (o)

e Repeatfom =1,2, - Ny: Koy (o)

— Normalize weightsw, ; — W
o4 Fig. 1. Distribution of the selected binary featurgs;, },~ f for
— Randomly sampleV;, training vectors, according to all clients in the database, in terms of their frequency desli

the distribution{w., ; } (kn,1, kn,2) and the equivalent value in Hz (A = 8kHz).
— For eachg; in ®, choosed; to minimize misclassifi-
i o 1 N
cation errone; = e 30520 Ly, (% ),) OVEr the 3. SPEAKER VERIFICATION EXPERIMENTS
sampled set.
— Select the next best feature? = ¢F wheres* =  3.1. Description of the database used
arg mini & All experiments are performed on the standard XM2VTS audio
- Setf, — = database [4], [5] having 200 clients and 95 impostors. ditees
I of around Ssecduration are recorded across 4 sessions, 2 utterances
— Update the weightsy, 1.; « wn B, "= per session. Sampling frequengy = 8 kHz. Speech is relatively
N clean (SNR>30dB), there is a certain amount of session variability
Output: The sequence of selected best feat{irds . /,. between the 4 sessions. For all experiments undemikmatched

condition (Sec.3.3), the noisy speech utterances werenebltdoy

For the database and framing parameters used (ref. SAg,3)yas  adding randomly selected segments from the standard NOBex
around 80,000, and/", which varies for each client, was around database [6] to the original speech from the XM2VTS databatse

350. N, was set to 4000 and/; to 30. Figure 1 shows the dis- 7 different SNR levels. Four noise types were used, whitek,pi

tribution of the selected binary featurés;, jf;l for the DFT case, babble and factory noise [6].
in terms of their frequency indicen,,1, k»,2) and the equivalent
value in Hz (atf; = 8kHz). It is observed that the client-specific 3.2. Description of the systems tested

features are spread relatively uniformly throughout thecspm, ]
with slightly higher concentration below 1kHz and abovekPi5. In the proposed framework, the following 5 systems weretesthe
primary systenBBF uses a frame length of 20ms and/6@verlap,

i . a silence removal step based on frame energies, retalafidgf the
2.3. Feature Modelling and Classifier structure higher energy frames during training ahe% while testing, a 256-
point DFT and a spectral subtraction step which subtraetsrtban
of the 15% lowest energy frames from all the retained frames. The
binary features are calculated directly from Fourier sgecBince
Ny the spectrum is symmetric, half of it is discarded, giviNg=129
F()_()) - Z an¢j()_(>). (2) frequency points and a total of 16512 binary features. Ouhisf
the number of selected featur® is 30. A variant of this system
BBFais exactly the same but without the spectral subtractiop. ste
The weights{a,} are calculated to minimize the exponential VariantBBFquses only a quarter of the full Fourier spectrum, i.e, till

For each client, the selected features are combined lineadive a
strong classifieF’ [3]:

n=1

loss [3] and normalized to sum to unity for each client, = 1 kHz, instead of the full 4 kHz, motivated by the concentnatof
N;"g%. Since a decision is only required at the utterancethe selected features (using the full spectrum) below 1kefz fig.
iy bog(Bpr) 1). The other variantSBmexuse Mel spectra instead of Fourier

—
level and not at the frame level, the responsgX ) of each frame  spectra, i.e. the spectral vectaXs represent Mel filter outputs. We
X in an utterance are added and normalized by the number afport using 24 and 40 filter8BFm24 BBFm40respectively).
frames, to obtain the final scor® for the utterance. This is com- For comparison, following 3 reference systems were tested.
pared with a preset threshold to decide if the utterance wadem MC33 A state-of-the-art system using 33 features [1] (16 MFCC
by a client or an impostor. This preset thresh@lds calculated by  (from 24 filters), 16A-MFCC andA-energy), silence removal by bi-
minimizing the Equal Error Rate [1] on a separate Develogmen  Gaussian modelling [1] and Cepstral Mean Substraction(CM$b
(ref. Sec.3.) Frame length and overlap are same a8BF. Modelling is by 32



Systems Dev. set| Test set Test set O T 5o ‘

PEEEA -
tested (EER%) | apriori thr. | apost thr. sl | o e . ;,,/‘4
Reference| MC33 18 1.4 15 || T % 2l
systems | MC16 1.7 34 2.8 - = -t Jott
MS24 6.5 5.9 5.8 S P o 3
BBF 43 91 8.2 e ’
Proposed | BBFa 4.7 10.8 9.2 @l
systems [ BBFq 85 11.4 115 E
BBFmM24 5.5 9.8 9.3 »or
BBFmM40 5.0 8.6 8.3 sk
Table 1 Verification performance (HTER) under matched condi- “r
tion. Js

“ SAR (dB)
Gaussian UBM-GMM system [1]. 2MC16: It uses 16 MFCC fea-
tures modelled by 32 Gaussian UBM-GMM, silence removal thase

on frame energies as BBF, and no CMS. This second system using rig 2 verification performance (HTER) vs. SNR, mismatched

only static features was motivated by the fact that the pseddi-  ~gngition: test speech corrupted additively by white noise
nary features exploit information from a single frame oldyMS24

It uses log spectra from a Mel filterbank with 24 filters to micai82

Gaussian UBM-GMM system. It uses the same spectral sulistrac
setup aBBF. This system was included in order to find whether the a5
noise-robustness of the proposed framework is due to uspeaf s
tra instead of cepstra or is it an intrinsic property of thedoy fea-

tures themselves, because spectral features have beenltyeol- s
served to be more robust than cepstral features in noisyitommsl sl
for speech applications.

HTER %
N
&
T

3.3. Experimental conditions

Two different conditions were tested. 1) Matched-cleandton: 11
The standard Lausanne Protocol variant 1 [5] associate vt
XM2VTS database was followed. According to this protocaktfi
utterance from sessions 1, 2 and 3 (Training set) are uséfoing. sf
For training a client model, the remaining speakers in tientket
are treated as impostors. Second utterance from same ®rsessi
(Development set) are used to set the thresiodd Equal Error Rate
(EER) [1]. Itis a global threshold. For testing, the 2 utter@s from
the remaining session 4 and a dedicated impostor set diffénam Fig. 3. Verification performance (HTER) vs. SNR, mismatched
all clients are used (Test set). Performance is reportedring of  condition: test speech corrupted additively by pink noise.

the Half Total Error Rate (HTER) %(False Acceptance Rate(FAR)
+ False Rejection Rate(FAR)) [1] on the Test set, usingatpeiori
threshold®. 2) Mismatched-noisy condition: The same protocol
was followed. Training and development (setting the tholebhwas
done on original clean speech but the testing was carriedronbisy
speech [6] (ref. Sec.3.1).

5
SNR (dB)

session 4 (used for testing). A slightly different protoedhich
takes into account this variability (selective trainingngsall ses-
sions) lowered the test HTER f&BF from 9.1% to 5.4%.
In mismatched-noisy condition, the proposed framework out
3.4. Results performs the reference systems significantly for mediumigh h
L ~_ levels of noise. In white noise case, improvement is visfbben
The verllflcatlon performance (HTER under matched condition is gNR=15dB. For other types, it is visible from SNR around 10dB
shown in Table 1. We also report EERon the Development set, pjease note that systeBBFa s to be compared wittMC16 and
and HTERY on the Test set with the threshold agtosteriorionthe ot with MC33 because it uses a similar restricted framework.
Test set. The mismatched condition is reported in Figs. 288d 5 |t js noteworthy thatBBFq compares reasonably well with other
for white, pink, babble and factory noise types respegtieowing  proposed systems even by using only a quarter of the spectrum
HTER % against SNR of the test speech. Results are discussed ffurther, the proposed framework performs significantlyesehan
Sec.4. reference systerMS24indicating that the noise-robustness of the
proposed framework is more due to the intrinsic robustnésheo
4. DISCUSSIONS binary features. A brief feature level analysis of the rabess of
the proposed features against the four noise types is showigi6
In matched-clean Condition’ the proposed framework is @Htp Wherelf)]e variation in probablllty of the first selected (Eetvalue,
formed by the reference systems. A major reason can be due #B(¢47(X) = 1) for a client from the database is plotted against
channel variability between sessions 1,2,3 (used foritrgjnand  noise level, for both the client and all impostors. The satain
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Fig. 4. Verification performance (HTER) vs. SNR, mismatched

condition: test speech corrupted additively by babbleeois
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Fig. 5. Verification performance (HTER) vs. SNR, mismatched

condition: test speech corrupted additively by factoryseoi

between client and impostor probabilities remain reldyivsable

over a wide SNR range, which can possibly lead to stable score

over the same range (ref. Eqn.2).

The proposed framework leads to significant reduction incom[
putation time compared to the reference MFCC-GMM systems.

While testing the client model, it involves only; = 30 comparison

and addition operations per frame, which can even be hatdeco [4]

because the summation is over preset weidhts}. In contrast,
MC33requires33 x 32 subtractions33 x 32 multiplications and
32 exponentiations. This makes the proposed system martgala
for real-time operations. Another interesting aspect efgfoposed
framework is that the client models do not directly storecszé
shape information. They only store discriminative frequepoints

(kn,1,kn,2) and thresholds. Thus, the proposed models may b

more robust against efforts to reconstruct a syntheticevaiodel

from stolen model parameters than an equivalent MFCC-GMM

model, although such a claim remains to be validated.
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Fig. 6. Effect of 4 noise types on the proposed features, in terms
of P(¢1(X) = 1). The blue lines represent data from a particular

client, the boxplots represent data over all impostors.

5. CONCLUSIONS

We propose a new set of binary features for speaker verditati
based on comparison of points in magnitude spectra. Tharésat
are selected individually for each client using Adaboost, ssmple
and relatively fast to calculate and show robustness agséveral
additive noise types in mismatched conditions. As part ofiri
work, the feature set could be augmented by joint modelinthe
spectro-temporal plane. The features could be generaizetbre
than 2 frequency points to capture more speaker-specifiens-
tion. Fusions between different proposed systems and betive

proposed systems and the MFCC-GMM system could result in im-

proved performance in both clean and noisy conditions.
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