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Abstract. In this paper, we use a general hill-climbing attack algorithm
based on Bayesian adaption to test the vulnerability of two face recogni-
tion systems to indirect attacks. The attacking technique uses the scores
provided by the matcher to adapt a global distribution computed from
an independent set of users, to the local specificities of the client being
attacked. The proposed attack is evaluated on an Eigenface-based and
a Parts-base face verification system using the XM2VTS database. Ex-
perimental results demonstrate that the hill-climbing algorithm is very
efficient and is able to bypass over 85% of the attacked accounts (for
both face recognition systems). The security flaws flaws of the analyzed
system are pointed out and possible countermeasures to avoid them are
also proposed.

1 Introduction

Automatic access of persons to services is becoming increasingly important in
the information era. This has resulted in the establishment of a new research
and technology area known as biometric recognition, or simply biometrics [1].
The basic aim of biometrics is to discriminate automatically between subjects
-in a reliable way and according to some target application- based on one or
more signals derived from physical or behavioral traits, such as fingerprint, face,
iris, voice, hand, or written signature.

Biometric technology presents several advantages over classical security meth-
ods that are based on a pass-phrase (Personal Identification Number or Pass-
word) or on a physical key (or access card) [2, 3]. A major disadvantage of tra-
ditional authentication systems is that they cannot discriminate between im-
postors who have illegally acquired the privileges to access a system and the
genuine user. Furthermore, in biometric systems there is no need for the user to
remember difficult PIN codes that could be easily forgotten or to carry a key
that could be lost or stolen.

Despite their advantages, biometric systems are still vulnerable to external
attacks which could decrease their level of security. Thus, it is of utmost impor-
tance to analyze the vulnerabilities of biometric systems, in order to find their
limitations and to develop useful countermeasures for foreseeable attacks.
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Fig. 1. Architecture of an automated biometric verification system. Possible attack
points are numbered from 1 to 8.

In [4] Ratha identified and classified eight possible attack points for biomet-
ric recognition systems. These vulnerability points, depicted in Fig. 1, can be
broadly divided into two groups:

– Direct attacks. In [4] the possibility to generate synthetic biometric sam-
ples (for instance, speech, fingerprints or face images) in order to illegally
access a system was defined as the first vulnerability point in a biometric
security system. These attacks at the sensor level are referred to as direct

attacks and require no specific knowledge about the system; no knowledge of
the matching algorithm, feature extraction process or feature vector format
is required. Furthermore, the attack is carried out in the analog domain,
outside the digital limits of the system, so digital protection mechanisms
(digital signature or watermarking) cannot be used.

– Indirect attacks. This group includes all the remaining seven points of at-
tack identified in Fig. 1. Attacks 3 and 5 might be carried out using a Trojan
Horse that bypasses the feature extractor and the matcher respectively. In
attack 6 the system database is manipulated (a template is changed, added
or deleted) in order to gain access to the application. The remaining points
of attack (2, 4, 7 and 8) are thought to exploit possible weak points in the
communication channels of the system by extracting, adding or changing
information from them. In this case the intruder needs to have some ad-
ditional information about the internal working of the recognition system
and, in most cases, physical access to some of the application components
(feature extractor, matcher or database) is required.

Previous work has studied the robustness of biometric systems to direct at-
tacks, specifically finger- and iris-based system [5–7]. Some efforts have also been
made in the study of indirect attacks to biometric systems. Most of these works
use some type of variant of the hill-climbing algorithm presented in [8]. Some
examples include an indirect attack to a face-based system in [9], and to stan-
dard and Match-on-Card minutiae-based fingerprint verification systems in [10]
and [11] respectively. These attacks, which belong to types 2 or 4 in Fig. 1, take
advantage of the score given by the matcher to iteratively change a synthetically
created template until the similarity score exceeds a fixed decision threshold and
thereby gain access to the system.
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Most of the hill-climbing approaches are all highly dependent on the technol-
ogy used, only being usable for a very specific type of matcher. However, in [12] a
general hill-climbing algorithm based on Bayesian adaptation was presented and
tested using an on-line signature verification system. In the present contribution
this attack is successfully applied to two automatic face recognition systems thus
proving its biometric independency and its ability to adapt to different matchers
which use fixed length feature vectors.

Two case studies are presented in this work where several aspects of the at-
tack are investigated. The first one examines the effectiveness of the technique
on an Eigenface-based verification system while the second uses a more advanced
Gaussian Mixture Model (GMM) Parts-based approach. For both case studies
the experiments are conducted on the XM2VTS database [13] and it is shown
that the attack is able to bypass over 85% of the accounts attacked for the best
configuration of the algorithm found. Furthermore, the hill-climbing approach is
shown to be faster than a brute-force attack for all the operating points evalu-
ated.

The paper is structured as follows. The hill-climbing attack algorithm used in
the experiments is described in Sect. 2, while the two attacked systems are pre-
sented in Sect. 3. The database and experimental protocol followed are described
in Sect 4. The results on the Eigenface-based system and the GMM system are
detailed in Sect. 5.1 and Sect. 5.2 respectively. Conclusions are finally drawn in
Sect. 6.

2 Bayesian Hill-Climbing Algorithm

Problem statement. Consider the problem of finding a K-dimensional vector
y∗ which, compared to an unknown template C (in our case related to a specific
client), produces a similarity score bigger than a certain threshold δ, according
to some matching function J , i.e.: J(C,y∗) > δ. The template can be another
K-dimensional vector or a generative model of K-dimensional vectors.

Assumptions. Let us assume:

– That there exists a statistical model G (K-variate Gaussian with mean µG

and diagonal covariance matrix ΣG, with σ2

G = diag(ΣG)), in our case
related to a background set of users, overlapping to some extent with C.

– That we have access to the evaluation of the matching function J(C,y) for
several trials of y.

Algorithm. The problem of finding y∗ can be solved by adapting the global
distribution G to the local specificities of template C, through the following
iterative strategy:

1. Take N samples (yi) of the global distribution G, and compute the similarity
scores J(C,yi), with i = 1, . . . , N .

2. Select the M points (with M < N) which have generated highest scores.
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3. Compute the local distribution L(µL,σL), also K-variate Gaussian, based
on the M selected points.

4. Compute an adapted distribution A(µA,σA), also K-variate Gaussian, which
trades off the general knowledge provided by G(µG,σG) and the local in-
formation given by L(µL,σL). This is achieved by adapting the sufficient
statistics as follows:

µA = αµL + (1 − α)µG (1)

σ2

A = α(σ2

L + µ2

L) + (1 − α)(σ2

G + µ2

G) − µ2

A (2)

5. Redefine G = A and return to step 1.

In Eq. (1) and (2), µ2 is defined as µ2 = diag(µµT ), and α is an adaptation
coefficient in the range [0,1]. The algorithm finishes either when one of the N
similarity scores computed in step 2 exceeds the given threshold δ, or when the
maximum number of iterations is reached.

In the above algorithm there are two key concepts not to be confused, namely:
i) number of iterations (nit), which refers to the number of times that the sta-
tistical distribution G is adapted, and ii) number of comparisons (ncomp), which
denotes the total number of matchings carried out through the algorithm. Both
numbers are related through the parameter N , being ncomp = N · nit.

3 Face Verification Systems Attacked

The described Bayesian hill-climbing algorithm is used to test the robustness
against this type of attacks of two different face verification system. The first
system is based on the Eigenfaces technique [14] and the second system is based
on the GMM Parts-based approach [15]:

– Eigenface-based system. An Eigenfaces-based system is used as it is a
well known technique within the face verification community. It was first
introduced by Turk and Pentland in [14] and it was used to present initial
results for the recent Face Recognition Grand Challenge evaluation [16].
The evaluated Eigenfaces-based system uses cropped face images of size 64×
80. These images are used to train a PCA vector space where 80% of the
variance is retained. This leads to a system where the original image space
of 5120 dimensions is reduced to 91 dimensions (or eigenvectors).
Similarity scores are computed in this PCA vector space using the standard
correlation metric. The standard correlation metric, d(x,y) = 1− [(x−µx) ·
(y− µy)]/σxσy, is used as it showed the best performance out of the tested
similarity measures.

– GMM Parts-based system. The GMM Parts-based system used in the
evaluation tesselates the 64 × 80 images into 8 × 8 blocks with a horizontal
and vertical overlap of 4 pixels. This tessalation process results in 285 blocks
and from each block a feature vector is obtained by applying the Discrete
Cosine Transform (DCT); from the possible 64 DCT coefficients only the
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Fig. 2. Examples of the images that can be found in XM2VTS.

first 15 coefficients are retained [15]. The blocks are used to derive a world
GMM ωw and a client GMM ωc. Experimentation found that using a 512
mixture component GMM gave optimal results.
When performing a query, or match, the average score of the 285 blocks
from the input image are used. The DCT feature vector from each block
vi (where i = [1...285]) is matched to both Ωw and Ωc to produce a log-
likelihood score. These scores are then combined using the log-likelihood
ratio, Sllr,j = log[P (Ωc|vj)]− log[P (Ωw|vj)], and the average of these scores

is used as the final score, SGMM = 1

285

∑
285

j=1
Sllr,j . This means that the

query template can be considered to be a feature matrix of size 285 × 15.

4 Experimental Protocol

The experiments are carried out on the XM2VTS face database [13], compris-
ing 295 users. This database was acquired in four time-spaced capture sessions
in which two different face images of each client were taken under controlled
conditions (pose and illumination) to complete the total 295 × 8 = 2, 360 sam-
ples of the database. Two evaluation protocols are defined for this database, the
Lausanne Protocol (LP) 1 and 2 [13]. In Fig. 2 some example images from the
XM2VTS database are shown.

4.1 Performance Evaluation

The performance of the evaluated systems is computed based on the LP2 proto-
col. This protocol is chosen as it provided the most number of samples for train-
ing, however, due to the limited number of samples the protocol was changed
slightly to maximise the number of samples to estiamte G.

There are two data sets which could be used to estimate the initial distri-
bution G, either the development data or test data. The test data has almost
three times the number of impostor samples (when compared to the development
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Fig. 3. FAR and FRR curves for the Eigenface-based system (left) and the GMM-based
system (right).

data) and consequently the test data set is used to estimate G. The remainder of
the protocol is the same, as the enrollment samples are drawn from the training
data. Further details on the Attack Protocol are presented in Sect. 4.2.

As a result of using the same subjects for PCA training and client enrollment,
the system performance is optimistically biased, and therefore harder to attack
than in a practical situation (in which the enrolled clients may not have been
used for PCA training). This means that the results presented in this paper are
a conservative estimate of the attack’s success rate. In Fig. 4 a general diagram
showing the LP2 evaluation protocol is given.

The resulting experimental protocol leads to p = 4 enrollment for each client.
Therefore, the final score produced by Eigenfaces-based system is the ystem is
the average of the p scores obtained after matching the input vector to the
p templates of the attacked client model C. while in the GMM system the p
templates are used to estimate the GMM client model.

The performance of the two face recognition systems is presented in Fig. 3.
The system performance is presented in terms of the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR) curves for the Eigenfaces-based
system (left) and for the GMM Parts-based system (right). The Eigenface-based
system has an Equal Error Rate (EER) of 4.74%, while the GMM system shows
a better performance with an EER of 1.24%.

Three operating points are used to evaluate the hill climbing algorithm. These
points correspond to FAR=0.1%, FAR=0.05% and FAR=0.01% which corre-
spond to low, medium, and high security applications respectively [17].

4.2 Experimental Protocol for the Attacks

Following the LP2 protocol Attack Protocol is as follows:

– the Training set of LP2 is used to compute the PCA transformation matrix,
the GMM world model and to enrol clients, and
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Fig. 4. Diagram showing the partitioning of the XM2VTS database according to the
LP2 protocol (which was used in the performance evaluation of the present work).

  XM2VTS DB (295 Users) 
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Fig. 5. Diagram showing the partitioning of the XM2VTS database followed in the
attacks protocol.

– the Test set of impostors are used to estiamte G.

The Training set of LP2 corresponds to the first two sessions of 200 users and all
of this information is used to enrol the user, as well as calculating the PCA trans-
formation matrix and GMM world model. The Test set of impostors corresponds
to four sessions of 70 user and this data is used to calculate G.

The initial K-variate distribution G of the algorithm is estimated using the
first session of all the impostors of the Test set (70 users) defined in LP2. This
ensures there is no overlap between the attacked set of users (200 accounts) and
the subjects used to initialize the algorithm; if there was overlap there could be
a bias introduced into the success rate (SR) of the attack.

The SR is defined as the number of accounts broken (Ab) by the attack di-
vided by the total number of accounts attacked (AT ), SR = Ab/AT . An account
is considered to be broken when the hill-climbing scheme reaches the decision
threshold δ and for these experiments there are a total of AT = 200 accounts
attacked for these experiments. In Fig. 5 the partitioning of the database used
for the attacks is shown.
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5 Experiments

The goal of these experiments is to study the vulnerability of automatic face
recognition systems to hill-climbing attacks. This is achieved by examinig the
effectiveness of the Bayesian-based hill-climbing algorithm in attacking two dif-
feret face recognition systems at several operating points. By performing these
attacks it will also be demonstrated that the Bayesian-based hill-climbing al-
gorithm can be applied to other biometric traits; it was already shown to be
successful in attack an on-line signature verification system [12].

Two case studies are presented for the attacks on the two separate face veri-
fication systems. The first case study examines the effectiveness of the Bayesian-
based hill-climbing attack on an Eigenface-based system. The second study uses
the previously found optimal configuration to attack a GMM Parts-based sys-
tem. By using the same optimal configuration between studies we can determine
if the performance of the attack is highly dependent on the values of the param-
eters selected.

5.1 Case study 1: Attacking an Eigenface-Based Face Verification
System

In the first set of experiments, we study the effect of varying the three parameters
of the algorithm (N , M , and α) on the success rate. The attack is performed on
the Eigenface-based system (described in Sect. 3) in order to find the optimal
configuration by maximizing the number of broken accounts while minimizing
the average number of comparisons (ncomp) needed to reach the fixed threshold
δ.

The parameters optimised in these experiments are:

– N = [10, 25, 50, 100, 200] the number of sampled points of the adapted dis-
tribution at a given iteration,

– M = [3, 5, 10, 25, 50, 100] the number of top ranked samples used at each
iteration to adapt the global distribution, and

– α = [0.0, 0.1, . . . , 1.0] the adaptation coefficient.

The importance of the initial distribution G is also examined by evaluating the
attack performance when a smaller number of samples is used to compute G,
the case where G is randomly selected is also examined.

When presenting results the brute-force approach is used to provide a base-
line to compare with the hill-climbing algorithm. We compare ncomp the number
of matchings necessary for a successful brute-force attack at the operating point
under consideration (nbf = 1/FAR). However, the proposed hill-climbing algo-
rithm and a brute-force are not fully comparable because a successful brute-force
attack requires much greater resources, for instance a database of thousands of
samples is needed.
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Table 1. Success Rate (in %) of the hill-climbing attack for increasing values of N

(number of sampled points) and M (best ranked points). The maximum number of
iterations allowed is given in brackets. The Success Rate (in %) appears in plain text,
while the average number of iterations needed to break an account appears in bold.
The best configuration of parameters N and M is highlighted in grey.

N

10
(2500)

25
(1000)

50
(500)

100
(250)

200
(125)

3
84.5

5,162

86.0
4,413

86.0
4,669

86.0
5,226

86.0
6,296

5
81.5

5,796

86.0
4,275

86.0
4,512

86.0
5,022

86.0
5,988

M 10
85.5

4,534

86.0
4,540

86.0
5,019

86.0
5,941

25
86.0

5,213

86.0
5,379

86.0
6,256

50
86.0

6,455

86.0
6,934

100
86.0

8,954

Analysis of N and M (sampled and retained points). For the initial
evaluation of the algorithm an operating point of (FRR=50%, FAR=0.01%) was
fixed. This FA implies that an eventual brute-force attack would be successful,
on average, after 10,000 comparisons. Given this threshold the algorithm was
executed for different values of N and M (fixing α = 0.5) and the results are given
in Table 1. The maximum number of iterations (nit) allowed for the algorithm
appears in brackets. This value changes according to N in order to maintain
constant the maximum number of comparisons permitted (ncomp = N · nit). In
plain text we show the success rate of the attack (in % over the total 200 accounts
tested), while the average number of comparisons needed for a successful attack
is represented in bold.

Examining Table 1, the optimal configuration is [N = 25,M = 5]. For this
point, the number of accounts broken is maximized (86%) and ncomp is mini-
mized (4,275). This minimum represents less than half of the expected number of
matchings required for a successful brute-force attack (nbf = 1/FAR= 10, 000).

Further analysis of Table 1 provides two interesting results. The first is that
optimising N is more important than optimising M , this is because N is the
number of scores produced at each iteration and consequently has a direct impact
on the number of comparisons performed ncomp. For instance once N becomes
large (¿50) then the number of comparisons increases significantly. The second
is that varying M has an impact on performance and that choosing a value such
that M < N provides significantly fewer comparisons than if M ≃ N . However,
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Fig. 6. The four enrollment images (columns) constituting the model of three of the
unbroken accounts (rows).

this effect cannot be observed in the success rate of the attack, which is 86% for
most of the configurations evaluated (172 broken accounts out of a total of 200.

The 28 clients who remain robust to the attack are the same in all cases. To
search for an explanation, the 28 unbroken client models (comprising the four
images of the first two database sessions) were matched to the other four images
of the user (those corresponding to sessions three and four). None of the client
models produced a score high enough to enter the system, which means that
these 28 clients would not be suitable for face recognition under the considered
system working at the selected operating point. We can then conclude that the
attack successfully broke all the models that would be used in a real application.
In Fig. 6 the enrollment images which form three of the resistant accounts are
shown. In all cases we can observe a great variance among the samples of a given
model (glasses/not glasses, different poses, and blurred images).

Analysis of α (adaptation coefficient). For the optimal configuration of N
and M the effect of varying α is studied. This value is varied from 0 (only the
global distribution G is taken into account) to 1 (only the local distribution L
affects the adaptation stage). The results are presented in Table. 2 where the
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Table 2. Success Rate (in %) of the hill-climbing attack for increasing values of α and
for [N, M ] = [25, 5]. The Success Rate (in %) appears in plain text, while the average
number of iterations needed to break an account appears in bold.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SR(%)
ncomp

0
25,000

84.5
6,468

86.0
5,121

86.0
4,617

86.0
4,381

86.0
4,273

86.0
4,380

81.0
4,990

71.5
7,901

51
10,404

20.0
14,154

Table 3. Success Rate (in %) of the hill-climbing attack for increasing number of
samples used to compute the initial distribution G. N ,M , and α are set to 25, 5, and
0.5 respectively. The Success Rate (in %) appears in plain text, while the average
number of iterations needed to break an account appears in bold.

Number of real samples used to compute G

5 10 35 70 140 280 560
Random

(µ=0,σ=1)

86.0
4353

86.0
4307

86.0
4287

86.0
4283

86.0
4,279

86.0
4,285

86.0
4,281

86.0
4,492

success rate of the attack appears in plain text (%), while the average number
of comparisons needed for a successful attack is shown in bold.

From Table. 2 it can be seen that the optimal point is α = 0.5. This corre-
sponds to the case where both the global and local distribution are given approx-
imately the same importance. As in the previous experiment, it can be noticed
that 14% percent of the accounts (the same 28 clients as in the previous exper-
iments) is never bypassed as a consequence of the large user intra-variability.

Analysis of the initial distribution G. In the previous experiments the K-
variate initial distribution G was computed using the first two images from the
first session of the 70 impostors comprised in the development set. In this section
the effect of estimating G using:

– fewer impostors to estimate G and
– a random initialisation of G

are both explored.
In Table 3 we show how the performance of the attack varies depending on the

number of samples used to estimate this distribution G, for the best configuration
of the attack [N,M,α] = [25, 5, 0.5]. Because there are 70 impostors when the
number of images which is equal to or smaller than 70 then one image per
impostor is used. For larger numbers 2, 4 and 8 samples from each impostor are
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Table 4. Results of the attack for different points of operation and the best configu-
ration found of the attacking algorithm (N = 25, M = 5, α = 0.5). The Success Rate
is given in plain text (over a total of 200 accounts), and ncomp in bold. The average
number of matchings needed for a successful brute-force attack (nbf ) is also given for
reference.

Operating points (in %)

FAR=0.1,FRR=25 FAR=0.05,FRR=30 FAR=0.01,FRR=50

Success Rate (in %) 99.0 98.5 86.0

ncomp 840 1,068 4,492

nbf 1,000 2,000 10,000

used. In all cases, the resulting multivariate gaussian G results in [−0.8 < µi <
0.5] and [0.2 < σi < 18], where µi and σi are respectively the mean and variance
of the i-th dimension, with i = 1 . . . 91. When using a random initialisation of G
no real samples are used and the multivariate Gaussian is set to zero mean and
unit variance.

From the results shown in Table 3 we can see that the number of samples
used to compute the initial distribution G has little effect on the performance of
the attack. In fact, the experiment proves that the algorithm can be successfully
run starting from a general initial distribution G of zero mean and unit variance.
This means that an attacker does not need to have any real face images to carry
out the attack, this is in startk contrast to a brute force attack which requires a
large database to perform a successful attack.

Analysis of different operating points. The attacks conducted at two ad-
ditional operating points of FAR = 0.05% and FAR = 0.1%. The evaluation
was conducted using the optimal configuration [N,M,α] = [25, 5, 0.5] and with a
general initial distribution G (with zero mean and unit variance). The operating
point of FAR = 0.05% results in FRR = 30% and implies nbf = 2, 000 while the
operating point of FAR = 0.1% results in FRR = 25% and implies nbf = 1, 000.
The smaller values of the FAR imply a larger value for the threshold δ and this
causes a rise in the average number of iterations required for a successful attack.

The results in Table 4 demonstrate that this technique is effective across
mulitple operating points. In all cases it can be seen that the number of com-
parisons needed to break the system (using the Bayesian hill-climbing attack) is
lower than that of a brute force attack. The Bayesian hill-climbing attack has the
added advantage that it does not need any real face images to begin (initialise)
the attack.

In Figs. 7 and 8 two examples of broken and non-broken accounts (corre-
sponding to two of the users presented in Fig. 6) are shown. For each of the
examples, the evolution of the score through the iterations of the algorithm is



IDIAP Research Report 13

BROKEN ACCOUNTS

Original 

Original-PCA 

0 10 20 30 40 50 60 70 80
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

A

B

C

D

E

F

Iterations

SCORE EVOLUTION

     

Iteration A Iteration B Iteration C Iteration D Iteration E Iteration F 

Original 

Original-PCA 

0 10 20 30 40 50 60 70 80
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

A

B

C

D

E

F

Iterations

SCORE EVOLUTION

     

Iteration A Iteration B Iteration C Iteration D Iteration E Iteration F 

Fig. 7. Examples of the evolution of the score and the synthetic eigenfaces through
the iterations of the attack for broken and accounts. The dashed line represents the
objective threshold.

depicted, together with six points (including the first and the last one) of the
iterative process (marked with letters A to F). The dashed line represents the
objective value to be reached (i.e., the threshold δ). The two upper faces corre-
spond to one of the original images of the attacked user and its representation
in the PCA space (where part of the information has been lost). The sequence
of the six faces below correspond to the feature vectors that produced each of
the six scores marked with A to F, including the first one A which is produced
by randomly sampling the estimated general distribution G and the last one F
which is able to break the system.
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Fig. 8. Examples of the evolution of the score and the synthetic eigenfaces through the
iterations of the attack for non-broken and accounts. The dashed line represents the
objective threshold.

In Figs. 7 and 8 we can observe that the hill-climbing algorithm starts from a
totally random face which is iteratively modified to make it resemble as much as
possible to the PCA projection of the attacked users face (labeled as “Original-
PCA”). In both cases (broken and non-broken accounts) the attack successfully
finds a final image which is very similar to the objective face, however, in the
case of the accounts resistant to the attack, the threshold is not reached as a
consequence of the large user intra-variability, which leads to low scores even
when compared with images of the same client.
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Table 5. Success Rate (in %) of the hill-climbing attack when performing a single
(top) and a multiple (bottom) block search, for increasing number of real samples used
to compute the initial distribution G. The Success Rate (in %) appears in plain text,
while the average number of iterations needed to break an account appears in bold.

Number of real samples used to compute G

5 10 35 70 140 280 560

Sing. Block Search 100
25

100
25

100
25

100
25

100
25

100
25

100
25

Mult. Block Search 100
1,031

100
1,025

100
1,631

100
1,514

99.5
1,328

100
1,293

100
1,254

5.2 Case study 2: Attacking a GMM Face Verification System

In order to attack the GMM-based system, the best configuration of the algo-
rithm found in the previous experiments was used. Using the optimal parameters
(N = 25, M = 5, and α = 0.5) from the previous case study meant that we
could see if the attack configuration is highly dependent on the matcher tested,
or if, on the contrary, a good set of parameter values can perform successfully on
different systems. If it is not specified, the operating point selected to attack the
system corresponds to FAR=0.01% (this means that a brute force attack would
need on average to be successful nbf = 10, 000 matchings), and FRR=16%.

Two different approaches to the problem of attacking the GMM system are
tested in these experiments:

– Single block search. This attack searches for one block to break the client’s
account. As explained in Sect. 3, the client score Sc is computed by taking
the average score from all the blocks, therefore, if we are able to find one good
matching block and replicate it for all the other blocks we should be able to
produce a score high enough to be granted access. With these premises, this
attack uses the Bayesian adaptation to search for one 15 dimensional vector
which is repeated 285 times in order to produce the final synthetic template
capable of breaking the system.

– Multiple block search. In this case we search for a unique set vectors which
are capable of breaking into the client’s account. Like the single block search
this attack undertakes a search for a 15 dimensional vector, however, in this
search 285 appropriate points which are all different (all unique) are searched
for. This makes the multiple block search more difficult to accomplish and
also more difficult to detect.

Experiments starting from an average initial distribution G. For these
experiments we computed an initial distribution G representing the average block
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Fig. 9. Evolution of the score for four of the broken accounts using the single block
search approach on the GMM-based face verification system. The dashed line represents
the objective threshold.

(i.e., mean and average of the 15 dimensional vectors found in an image). The
distribution was computed using a different number of images selected from the
development set defined in LP2, the protocol used for previous case study 5.1 is
reproduced here; for numbers of images smaller than 70, one sample per impostor
(randomly selected) is picked, while for larger numbers 140, 280, and 560 then
2, 4, and 8 samples per impostor are selected respectively. In Table 5 the results
for the single and multiple block search approaches are shown.

For the single block search all the accounts are broken at the first iteration
of the attack. This means that the Bayesian adaptation hill-climbing algorithm
is not necessary and that the system can be broken using synthetic templates
built replicating 285 times a random average block computed using as few as 5
images; since each iteration consists of 25 comparisons. This is a serious security
flaw, however, it can easily be countermeasured by checking if all the blocks in
the template trying to access the system are different.

The multiple block search attack has at least a 99.5% success rate. This
success rate is regardless of the number of images used to compute the initial
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Fig. 10. Evolution of the score for four of the broken accounts using the multiple
block search approach on the GMM-based face verification system. The dashed line
represents the objective threshold.

distribution G. However, for this attack there are, on average, around 1,200
comparisons (corresponding to around 55 iterations of the attack) to break the
system. This represents less than one sixth of the matchings required by a suc-
cessful brute force attack (nbf10, 000) with the added advantage that just 5 real
face images are needed to perform the hill-climbing attack. Although the mul-
tiple block search is slower than the single block search approach, in this case
countermeasuring the attack is significantly more difficult as all the vectors,
which form the synthetic template, are different amongst themselves.

Experiments starting from a random initial distribution G. The GMM-
based system was also attacked starting from a random initial distribution G
with zero mean and unit variance. For the single block search approach 98% of
the accounts (out of the total 200 tested) were bypassed, and the average number
of matchings needed to enter the system was 1,102. Although that success rate is
very high, we can observe in Fig. 9 that the hill-climbing is not working properly
as the score remains unaltered and equal to zero throughout the iterations (there



18 Galbally et al.

is no increasing or hill-climbing effect) until at one point it very rapidly (two or
three iterations) reaches the objective value (shown with a dashed line).

This behaviour can be explained by the fact that the score given by the
system is the substraction of the client and the world scores (see Sect. 3). As
the synthetic templates are built duplicating a block randomly selected from a
general distribution G, their appearance is completely different to that of a face
and so both similarity scores (those obtained from the world and client model)
are the same, leading to a zero final score. As the final score obtained by all
the synthetic templates is the same (zero), we have no feedback as about the
local distribution L (representing those templates which are more similar to the
attacked one). Therefore, the algorithm ends up doing a random search until at
some point one of the templates produces (by chance) a non-zero score.

Even though this attack is the equivalent of a random search it successfully
breaks the system at the first attempt (corresponding to 25 matchings) for 43%
of the tested accounts. Therefore, even this security breach should be taken into
account when designing countermeasures (e.g., checking that all the blocks of
the template are different) for final applications.

The above experiments were repeated using the multiple block search scheme.
In this case, all 200 accounts were bypassed and the average number of compar-
isons needed to break the system was 3,016. In Fig. 10 it can be observed that
the hill-climbing algorithm is able to produce the desired increasing effect in the
score throughout the iterations. We can see that the synthetic templates produce
a negative final score (they get a better matching score from the world model
than from the client model, S = Sc − Sw) and thus, the algorithm gets the
necessary feedback to iteratively improve the estimate of the vector distribution
G. Again, this approach is slower than the single block search, but on the other
hand it is more difficult to countermeasure as all the image blocks are different
amongst themselves.

Analysis of different operating points. The GMM-based system was eval-
uated at two additional operating points, these being:

– FAR=0.05%, FRR=7% (which implies nbf = 2, 000), and

– FAR=0.1%, FRR=5% (which implies nbf = 1, 000).

For these experiments the initial distribution G was chosen as a Gaussian dis-
tribution with zero mean and unit variance and the two different attacking ap-
proaches (single block search and multiple block search) were tested.

The results indicate that the Bayesian hill-climbing attack is effective for
all of the operating points. It is considered to be effective because for all of
the operating points the number of comparisons needed to break the system
is always lower than that of a brute force attack. Also, the number of broken
accounts remains unaltered.
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Table 6. Results of the attack for different points of operation and the best config-
uration found of the attacking algorithm (N=25, M=5, α = 0.5). The Success Rate
is given in plain text (over a total 200), and ncomp in (bold). The average number of
matchings needed for a successful brute-force attack (nbf ) is also given for reference.

Operating points (in %)

FAR=0.1,FRR=5 FAR=0.05,FRR=7 FAR=0.01,FRR=16

Sing. Block Search
100 100 98

123 413 1,102

Mult. Block Search
100 100 100

724 1,835 3,016

nbf 1,000 2,000 10,000

6 Conclusions

The effectiveness of the Bayesian hill-climbing attack to break two different face
verification systems was examined. Experimental results show that the two face
verification systems studied are highly vulnerable to this type of attack, with
over an 85% success rate for all of the attacks; even when no real images were
used to initialize the algorithm.

The performance of the Bayesian hill-climbing algorithm was compared to a
brute force attack. It was found that the Bayesian hill-climbing attack is more
efficient under all tested conditions. In addition, it is worth noting that the
resources required by both approaches differ greatly. In order to perform an
efficient brute-force attack, the attacker must have a database of more than a
thousand real different templates, while the hill-climbing approach does not need
any real templates to be successful.

It has also been found that the GMM Parts-based system is very vulnerable
to random attacks carried out with templates formed by a replicated random or
average block. This important security flaw can be solved by incorporating to
the system a mechanism to detect duplicated patterns in the image.

Finally, it has been proven that the Bayesian hill-climbing algorithm can be
successfully applied not only to different matchers but also to different biomet-
ric traits. In [12] it was shown to be an effective method to attack an on-line
signature verification system and for these experiments it has been shown to be
very effective at breaking two different face verification systems. Therefore, this
threat should be taken into account when designing any biometric security sys-
tem working with fixed length feature vectors and the necessary countermeasures
against the attack should be introduced.
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