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ABSTRACT miss detection increases. In this paper we propose analtern

o ) _ ) tive scanning strategy, to speed up the search, while niainta
The sliding window approach is the most widely used techjng the detection rate. We analyze the probability for a-clas
nique to detect faces in an image. Usually a classifier is apsjfier to fall within its detection range both for the staraiar
plied on a regular grid and to speed up the scanning, the grigsanning technique and for the proposed approach. The key
spacing is increased, which increases the number of miss dgy oy alternative scanning technigue is to build a classifie
tections. In this paper we propose an alternative scanningat predicts the face bounding box with high performance
method which minimize the number of misses, while IMProv-(hoth in speed and accuracy).
ing the speed of detection. To achieve this we use an addi- This paper is organized as follows. Section 2 gives the
tional classifier that predicts the bounding box of {i_fac.da'wit motivation behind our approach. The baseline face/noe-fac
alocal search area. Then a face/non-face classifier is 0sed {jassifier is described in Section 3. In Section 4 we present
verify the presence or absence of a face. We propose a nge proposed approach and the face patch classifier which is
combination of binary features which we termagerns for  seq to estimate the bounding box. We show our experiment

bounding box estimation, which performs comparable or betragyits in Section 5 and finally conclude and provide future
ter than former techniques. Experiment evaluation on benchyirections in Section 6.

mark database show that we can achieve 15-30% improve-
ment in detection rate or speed when compared to the stan-

dard scanning technique. 2. MOTIVATION

Index Terms— Face detection, Binary features, Naive In this section we describe the motivation for coming up with
Bayesian, Boosting alternative scanning technique. We start by formulatirey th
probability of hit P,, as the probability for the target object
to be within the classifier detection range, with respechéo t
scanning grid intervalg(,, s;), and to the translation toler-

. ) __ance {, t,) of the classifielCopject, (SE€ Fig. 1a).
The most popular technique to detect an object from an im-

age is the sliding window approach since the pioneering work twth

from Rowley [1]. With the introduction of cascade of clas- Py~ SwSh @)

sifiers and fast computation of features [2], it is possible t

speed up the search for face in an image. As more and more As an example, lets assume that the object present in the

appiications are integrating more processing (face tr@ki image is of the same size as the classifier is trained Wlth, if

and recognition) in addition to face detection, but stilede tw =t = 3 ands,, = s, = 6 then the probability of getting

to run in real-time, it is necessary to speed up further witho @ hit?;, is 0.25, which is very low. As we decreasg andsy,

loosing much of the performance. (afiner search)P, increases, while scanning speed decreases
Most of the work on face detection concentrated on build{slower). Our goal is to increas®, without decreasing too

ing a good classifier using Neural Networks [1, 3], SVM [4] much _the scanning _speed _(make it faster). We describe our

or boosting [2, 5], but not much work was done to developscanning technique in Section 4.

alternative scanning techniques. Given an image the stdnda

scanning technique creates a pyramid of images according to

a scale factor. Then a classifier is applied at every location 3. BASELINE FACE CLASSIFIER

the image (usually applying a regular grid) to detect an ob-

ject. The grid spacing controls the speed of scanning psocesMany different classifiers and features are available foe fa

Unfortunately, as the grid spacing is increased the number aletection task. We choose Modified Census Transform

1. INTRODUCTION
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. . . Fig. 2. Example of some overlapping face patches. All
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patches lie within the face region.

(a) Standard scanning technique

Image trained and for each stage a threshold is estimated on valida
tion dataset by fixing the detection rate. The non-face sasnpl
» - Bounding Box Prediction for each stage are collected from many images containing no
° ¢ ° °y ° ¢ face using bootstrapping technique. The final baseline face
;«»’—/: C object classifierC's,.. has a detection rate of 99% with false posi-
oo L ° . tive rate of 0.02%.
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“Uw! 4. THE PROPOSED APPROACH
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The approach in this section tries to increase the prolabili

(b) Our proposed scanning framework of hit by using a patch classifier which identifies a part of
face and infers the bounding box location (see Fig. 1b). If

Fia. 1 Standard . hni q the bounding box estimation is good enough, we can achieve
'g. 1. Standard scanning technique vs our proposed scayg e chances to detect a face with larger grid spacing.
ning framework. The dots represent the scanning grid with

interval (s.,, sp), target object sizeo(,, o3), translation tol-
erance {y, t5) of target object classifiel;..+, target patch
size (., un), and target patch classifi€l,...,. The classifier
Cpaten predicts the bounding box f@F, je.. in our approach.

4.1. Probability of hit with our approach

In this subsection we explain how our method increases
the probability of hit. Assuming that we have a classifier

(MCT) features as it has been shown to be robust to lightind vetch that predicts the patch location with prediction rate

variations and does not require any preprocessing [5]. Alpatcn Within the translation toleranci.,, ) of the classi-
face/non-face classifie€ ;... is built using boosted MCT fier Copject, then the probability of hit can be approximately

features as described in [5]. A single stage classifier isrgiv 91V€N by:
by Ph ~ dpatchpi (3)

48,8
of any patch falling exactly on the scanning grid. Where

where! is the input images represents the stage number, (u,,, uy,) is the patch width and height, ad,,, o, ) is the ob-

wy, is the weight associated with the weak classifig(I),  ject width and height, with constrainis, < o,, andu; < o,

and K, is the number of features in each stage. The weaksee Fig. 2). Fou, = up = 14, 0, = o, = 19, 5, =

classifierh (1) in this case is parameterized by a location ands;, = 6, anddpa:., = 0.8 (this value is taken from our ex-

a look up table (see [5] for more details). periment results), we ge&t, = 0.79, which is approximately
For building our baseline face classifier we obtain approx50% greater than standard scanning approach. The smaller

imately 35,000 cropped face images (19x19) from standarthe patch size is, the more the spacing between the grid can

face database (BANCA, Purdue, and XM2VTS). A subset obe, for a increase in scanning speed. Unfortunately, it also

15,000 face images are used for training, 10,000 are used forcreases the number of classifiers that needs to be evédluate

validation and the rest 10,000 are used for testing. We usBur goal is to build a patch classifier with high performance

the non-face test dataset from [6]. A cascade of 5 stages (both in speed and accuracy of estimation).

K,
H,(I) = ;w’“hkm (2) wherep; = 1 — Ww=ouwtsw)h=ontsh) jg the probability



4.2. Face patch classifier patchU; has an associated (;, y.,,) location within the face
region. We considerq,,, y.,,) to be the top left corner of the

atch in the face region. Since we want to measure how close
he estimated patch location is to the true patch locatian, w
gse squared., norm to evaluate the estimation error:

A patchU;, ¢ = 1,..,N is a rectangular block of size
(uyw,up) inside the object region as shown in Fig 2. We hav
N = (0w — uy + 1) x (0, — up + 1) possible overlapping
patches. We use similar approach as described in [7] to buil
class conditional probabilities of binary features (F¢arsd A= (70, — 2uw)* + Wy — Yu,)? (6)

at run-time use these probabilities to select the patteth wi .~ .

highest likelihood. Ferrr)15 are considered over SIFI):T fezatureWhere Cu:, yu,) @nd @, y,) are the estimated and true

L . : atch location. We defing(\) as the number of test patches

[c%]rr?sl,::altsiosnht(i)nvxg I?Ng] Egatsg Es:gogﬂsev?/et:}r?;ranfganifelerse{hat have estimation error of, and the cumulative distribu-
P : prop . y ..., _tion of estimation error ag(\) = ZA._O p(j). Fig. 3 shows

ered to agi-Ferns, as a simple comparison of a pixel with the, J=

. : the cumulative distribution of estimation error fprFerns
average value of pixels in patéh, where as Ferns compare ;
; . ) . and Ferns for square patch sizes of 14, 13 and 12. From
two pixels at two pixels at random locations. The binary

featurefy is defined as Fig. 3, we see that—F.ems perform_ slightly better than-Ferns.
The best patch prediction is obtained for the patch size of 14

{ 1 it U (25, yr) < avg(Uy) for both features. Ideally we would like to have a smaller
fr= 0  otherwise patch size so that the grid spacing could be increased talspee
up the search, but we see that the accuracy of estimatios drop
where @i, yx) is the pixel location within patchlU;,  asthe number of classifier grows. There is a trade off between
k =1,..,K, andK is the total number of binary features. the grid spacing and the patch size. We select patch size of 14
Given a set of featureg,, fo, ..., fx the idea is to find the for our proposed scanning framework, since it achieves good
best clasg such that detection rate with less computation time compared to other

smaller patch sizes.

i = argmax P(Uilfy, f2, ... fxc) (4)

Using Bayes’ Formula, assuming uniform pri&(U;) T '
and independence between features, the problem is reduc T T b e S b
to:

i = argmax ITX P(f;|U;) (5)
K3
07 —ll— u-Ferns, patch size 14

To obtain the probabilityP(f;|U;), we just count the = 1:;;;;:;%;;:;;:;;
number of times the featur§; takes the value 1 and 0. It o™ e e e e
is then normalized by dividing by the number of training osf = B Ferns, patch sive 12
examples. ol

5. EXPERIMENT EVALUATION
We evaluate the performance of the face patch classifier an estimation error A

then use this classifier with our proposed scanning frame-

work. The detection rate and scanning speed are evaluatggy. 3. Cumulative distribution of patch estimation ervofor
with respect to the scanning grid interval. patch sizes of 14,13 and 12, ferFerns and Ferns.

5.1. Evaluation of face patch estimation

5.2. Evaluati f d ing f k
We compare the performance of our proposed feattiferns vaiuation of proposed scanning framewor

with Ferns for patch estimation. We use the same training and/e now evaluate the performance of standard scanning tech-
test dataset as described in Section 3 for this evaluatian. Whique and our proposed scanning approach. For this task we
follow the same procedure as described in [7] to train Ferntake CMU+MIT [9] and Fleuret [10] face databases, with a

for a patch. Since the pixel pairs in Ferns are selected ranetal of 375 images and 1085 faces of various size. We use
domly, the performance at each run varies. Therefore we rua pyramid based scanning to detect faces at different scales
many trials and keep the one with best performance. We havehe scaling parameter is set to 1.2. Multiple detections are
considered the location:(, i) to be on a uniform grid for merged by averaging the detection within a certain radius

u-Ferns. To make a fair comparison we use the same numbweihich is a function of scale. The estimated eye coordinate of
of binary features for both the approaches. Given a teshpatcmerged detection are compared with ground truth eye coordi-
we use Equation 5 to estimate the best face patch. Each fanates using Jesorsky measure [11], which is set to 0.3 for alll



our experiments. We obtain for each parameter (patch size 6. CONCLUSION AND FUTURE WORK
and grid spacing), the number of correct detection and time
taken to scan 375 images. Fig. 4 shows the performance 1 this paper we proposed an alternative scanning strategy t
both scanning techniques with respect to grid spacing. Wepeed up the scanning process while maintaining the detecti
can see clearly that we obtain higher detection rate foelarg rate. We also proposed a new featur&ern which is com-
grid spacing. We also plot the average time taken to scan d@arable or better than Ferns for our task. For our future work
image with respect to detection rate in Fig. 5. We achievave would like to investigate if any further improvements in
15-30% improvement in detection rate or speed when usingpeed can be achieved. One of the immediate extension of
the bounding box estimation for scanning. We also notic®ur approach is to predict the scale or rotation or different
that when the grid spacing gets smaller and smalléferns  views of an object. The other extension would be to detect
are faster than Ferns. interest points first and use the bounding box predictioy onl
at those locations.
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Fig. 5. Average time taken to scan an image in seconds vs
detection rate.



