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Abstract
Gaze behaviors such as eye-contact or shared attention

are important markers for diagnosing developmental dis-
orders in children. While previous studies have looked at
some of these elements, the analysis is usually performed on
private datasets and is restricted to lab settings. Further-
more, all publicly available gaze target prediction bench-
marks mostly contain instances of adults, which makes mod-
els trained on them less applicable to scenarios with young
children. In this paper, we propose the first study for pre-
dicting the gaze target of children and interacting adults. To
this end, we introduce the ChildPlay dataset: a curated col-
lection of short video clips featuring children playing and
interacting with adults in uncontrolled environments (e.g.
kindergarten, therapy centers, preschools etc.), which we
annotate with rich gaze information. We further propose a
new model for gaze target prediction that is geometrically
grounded by explicitly identifying the scene parts in the 3D
field of view (3DFoV) of the person, leveraging recent ge-
ometry preserving depth inference methods. Our model
achieves state of the art results on benchmark datasets
and ChildPlay. Furthermore, results show that looking at
faces prediction performance on children is much worse
than on adults, and can be significantly improved by fine-
tuning models using child gaze annotations. Our dataset
is available at https://www.idiap.ch/en/dataset/
childplay-gaze. Code will be made available soon.

1. Introduction
Gaze is a non-verbal cue that provides rich information

about people. In particular, it plays fundamental roles in so-
cial interactions and human communication, like initiating
interaction, showing attention, monitoring the floor, or reg-
ulating intimacy, and as such finds many applications in hu-
man interaction analysis. Hence, gaze extraction and anal-
ysis finds applications in human-human or human-robot in-
teraction [60, 46], including psychological studies [44] and
medical diagnoses.

* indicates equal contribution

Figure 1. Sample images from the ChildPlay dataset with head
bounding box and gaze point annotations. Such scenes strongly
depart from existing gaze benchmarks (e.g. standing adults).

Figure 2. Qualitative results of our geometrically grounded model
on ChildPlay. Our 3D Field of View (3DFoV) highlights potential
gaze targets, excluding objects where the depth does not match.
Gaze target predictions are given in green and GT ones in red.

In this regard, acquiring appropriate social gaze behavior
skills is important in the cognitive development of children.
For instance, gaze following has been shown to help chil-
dren with language acquisition [5, 6], while gaze aversion
can help children perform better in cognitively demanding
tasks [48]. Furthermore, abnormal gaze patterns are known
to correlate with several neuro-developmental disorders like
Autism Spectrum Disorder (ASD) [59, 43]. This has led to
the development of specific gold standard markers for the
screening of these impairments, e.g. by measuring deficits
in the initiation of joint attention or shared attention [13].
ChildPlay dataset. Due to this importance, several meth-
ods have been proposed to analyze children’s gaze, espe-
cially in the context of autism [54, 8, 24, 56, 1, 61, 62, 9,
35]. However, they are all tested on private datasets [12]
due to the sensitive nature of the data, hindering proper
comparison across algorithms. Some of them may be ac-
cessible in anonymized formats (e.g. pose skeletons), but
this makes them difficult to use for the study of gaze behav-
ior. While other datasets have gaze related labels involving
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autistic children [4, 53], they are usually recorded in a fixed
lab setting and with coarse annotations. Alternatively, we
could use standard public benchmarks like [11] for learn-
ing gaze prediction models, but children and the physical
situations and task performed (seating on the floor, playing
with objects) would be severely underrepresented. It has
been shown that training models on datasets with mainly
adults can lead to a significant drop in performance when
tested on children, e.g. for body landmark prediction [58].
Given the importance of pose information in gaze prediction
[23, 3] and the difference in gaze behavior between adults
and children [17], there is a need for gaze annotated datasets
featuring lower age groups in general settings.

To address this problem, we introduce the ChildPlay
dataset: a set of videos featuring children in free-play en-
vironments interacting with their surrounding. The dataset
is rich in unprompted social behaviors, communicative ges-
tures and interactions and features high quality dense gaze
annotations, including a gaze class to account for special
scenarios that arise in 2D gaze following. Further, the
2D gaze information can be used to model other attention-
related behaviors like shared attention, gaze shifts, eye con-
tact and fixation points with minimal processing. To the
best of our knowledge, we are the first to establish a more
representative gaze dataset aiming to cover children.

3D Field of View (3DFoV) for gaze target prediction.
Recasens et al. [52] introduced this task, also called gaze
following. In contrast with previous gaze objectives which
were mainly attempting at inferring the 3D gaze direction
from head and eye images [18, 39], it aims to predict the
image 2D gaze location of a person in the image for ar-
bitrary and general scenes. Since then, many works have
embraced this paradigm [37, 10, 69, 21, 45, 30], propos-
ing new models exploiting temporal information [11], or
exploiting further cues like depth [16, 2, 23]. Indeed, in-
ferring and understanding depth is crucial, as it provides
information about the scene structure enabling geometric
reasoning and ruling out salient objects or people which fall
along the 2D line of sight of a person, but are actually not
visible to the person in the 3D space. In this context, as
most datasets do not have depth information, some methods
opted for pre-trained monocular depth (or disparity) estima-
tors to extract scene depth cues [16, 2, 23]. However, such
algorithms [50, 67] typically estimate the depth up to an un-
known shift and scale factors which often result in stretched
and distorted scenes unsuitable for proper 3D analysis.

In this paper we provide a more geometrically grounded
approach leveraging a new algorithm [47] addressing these
points, correcting shifts, and yielding geometry-preserving
depth maps that can be used to derive a proper scene point
cloud, and explicitly match the predicted 3D gaze vector
with this point cloud to derive the 3DFoV of the person.
In experiments, we show that this method generalizes well,

providing better cross-dataset performance.
New gaze metric: looking at heads precision (P.Head).
Standard performance metric for gaze following either have
no physical interpretation (the Area Under Curve, AUC),
or may not provide rich enough information about perfor-
mance, as is the case of 2D distance metrics (how far is a
2D gaze prediction from the GT). In practice, one is more
interested at semantics, e.g. how accurate is a model at
predicting the category (person, body part, object) of im-
age regions being looked at. As objects might be hard to
annotate at scale, in this paper, leveraging highly accurate
head detectors and since heads are one of the most impor-
tant gaze category in many applications (ex. child looking
at clinician for ASD diagnosis [13]), we propose to exploit
looking at head precision (P.Head) metric for performance
evaluation. We show that this measure greatly varies across
datasets and can have rather low performance, that the dis-
tance and P.Head metrics may disagree and performance on
children is rather different than on adults. On ChildPlay,
while children exhibit a better distance performance, their
P.Head metric is much worse.
Contributions. Our main contributions are:

• We introduce the ChildPlay dataset, a curated collec-
tion of clips recording children playing and interacting
with adults in uncontrolled environments, annotated
with rich gaze information;

• We propose a new model for gaze target prediction that
relies on the explicit modeling of the 3DFoV by ex-
ploiting geometrically consistent inferred depth maps.

• We propose to use the Looking At Head Precision met-
ric to characterize performance.

Extensive experiments on the GazeFollow, VideoAttention-
Target and ChildPlay datasets demonstrate that our ap-
proach produces the best or state-of-the-art results, moti-
vating further studies on the topic. The dataset and models
are publicly available.

2. Related Work

We discuss works related to gaze target prediction and
highlight the methods that use depth information. We dis-
cuss datasets on gaze and children in Section 3.4.
Gaze Target Prediction. Traditional methods for gaze fol-
lowing rely on a 2-branch architecture consisting of a scene
branch to identify salient regions in the image and a human-
centric branch to infer the general gaze direction of the tar-
get person [51, 11, 37, 30, 16, 23]. Various ideas have since
been proposed in the literature to boost this typical archi-
tecture, namely, inferring a 2D gaze cone [37, 23], using
multimodal information [16, 23, 22], leveraging the tem-
poral context [11], or improving computational efficiency
for multi-person scenarios [65, 30]. There are also other
related tasks that incorporate semantic information such as



detecting eye-contact [41, 3], inferring the gaze target ob-
ject [64, 66], or shared attention behavior [14] to cite a few.
Gaze Target Prediction using Depth. Fang et al. [16]
used a pre-trained monocular depth estimator to extract the
scene depth. They split this map into three depth-based
saliency maps depending on the depth of the target person,
and used a pre-trained gaze estimation model to select the
corresponding one for a coarse matching. Jin et al. [31] at-
tach auxiliary branches during training to predict scene dis-
parity and predict a 3D orientation vector. However, these
are not used as input to the model and depth is implicitly en-
coded in the features. Hu et al [28] follow a similar strategy
as ours but match a coarse predicted 3D gaze vector with
the derived scene point cloud. Further, they mainly target
the use of RGB-D images, and their derived point cloud
when dealing with RGB images is not geometrically con-
sistent due to their pre-trained depth estimator [67]. Bao et
al. [2] also derive a scene point cloud and attempt to cor-
rect it by using humans as reference objects. However, they
do not predict a 3D gaze vector and hence do not perform
any explicit matching of predicted gaze and depth. Gupta
et al [23] treat the depth map as an input and hence do not
perform any matching of 3D gaze and depth.

3. ChildPlay Dataset
In the following, we describe several aspects of the

ChildPlay dataset i.e. data collection strategy, annotation
protocol, statistics and comparison to benchmarks.

3.1. Data collection strategy
Data selection. We relied on the YouTube video search
engine with queries like ”children playing toys”, ”childcare
center”, or ”kids observation” to retrieve videos matching
our aim 1. To foster quality we only looked for videos with
an aspect ratio of 16:9 and a resolution of 720p or 1080p.
We downloaded the audio files as well, although in many
cases they are not produced by the scene (e.g. commentary).
Clip selection. The scene context of our videos ranged
from childcare facilities and schools to homes and therapy
centers. As full videos contain many irrelevant parts, we
selected clips with children and featuring interesting gaze
movements and social interactions. We also made sure that
clips contain no scene cuts, blurriness, large overlaid graph-
ical items, heavy zooming or camera movement. Finally, to
foster diversity, we limited the duration and number of clips
taken from each video or Youtube channel.
Content. We obtain a dataset of 401 clips, mainly restricted
to indoor environments, showing at least 1 child, but often-
times include 1 or 2 adults and multiple children. The age
group of the children varies from toddlers to pre-teenagers.

1Around 10% of our data have the CC BY license, whereas the other
have no license, i.e. they follow the default YouTube license.

The dominant activity of children is ”playing with toys”,
but the dataset also includes a few clips containing other
interactions such as behavioral therapy exercises.

3.2. Annotation protocol
We performed a dense annotation of gaze information2.

In every clip we selected up to 3 people and for each of
them, in every frame we annotated the head bounding box,
a 2D gaze point, and a gaze label. We also provide the class
label for adult vs child. Two main points were taken into
account to ensure high quality and confidence in the 2D an-
notations: enforcing semantically consistent 2D gaze anno-
tations, i.e. the annotated 2D location has to be on the object
being looked at (cf Figure 3) in anticipation of a transition
to semantically aware gaze evaluation metrics (as motivated
by the P.Head metric), and the introduction of a gaze label.

The gaze label addresses an important limitation with ex-
isting datasets, in which annotating a 2D gaze point is en-
forced in every frame, with only a standard inside vs outside
label to denote if the person looks within the frame or not.
However, there are many situations where annotating 2D
gaze points is highly challenging, if not impossible. For ex-
ample, when a person shifts attention from one location to
another, in the VideoAttentionTarget dataset we often ob-
served that intermediate frames during the shift were an-
notated using the outside class which is inconsistent with
the definition. To avoid this, our gaze label was defined to
include 7 non-overlapping classes to properly account for
special scenarios (precise definition in appendix):

• inside-frame;
• outside-frame;
• gaze-shift;
• occluded;
• eyes-closed;
• uncertain, and
• not-annotated.

In practice, inside-frame (85.3%) and outside-frame (5.4%)
are the dominant classes, but all other ones where a confi-
dent annotation can not be made still represent 9.3% of the
frames.

Finally, to evaluate the inter-annotator agreement in
terms of 2D target localization we followed the usual prac-
tice. We had 2000 instances being double coded, and eval-
uated the performance of a human (as prediction) against
the other one (used as GT). Evaluation is reported in Ta-
ble 3 (under the ”Human” baseline), demonstrating similar
agreement as on other datasets (see 4).

2The collection and annotation of the dataset has been approved by our
Data and Research and Ethics Committee. According to the national law,
downloading Youtube data for training and annotation is allowed for re-
search purposes. For distribution, similarly to other datasets [20], we will
share the video links, scripts to extract frames, and corresponding annota-
tions.



Figure 3. Example of two annotations close in L2 distance but very
different semantically (i.e. on different objects) and distant depth-
wise. Green is correct, red is incorrect.

3.3. Statistics
Table 1 provides a summary of the main statistics of our

ChildPlay dataset. It contains 401 short clips averaging
10s, extracted from 95 videos originating from 44 different
YouTube channels. In total, there are around 258k anno-
tation instances (i.e. 62% for children) distributed across
120, 549 frames and annotated by 7 people using the La-
belBox platform [34]. Figure 1 shows sample images along
with the corresponding annotations.

Figure 4 summarizes the distribution of various geomet-
ric quantities, highlighting major differences between chil-
dren and adults. The distribution of head sizes covers a
fairly wide range, and reflecting that people are located at
various distances from the camera. Moreover, we can no-
tice that adults mostly look down to observe children and
their activities, whereas children mostly look down at their
toys with few instances where they raise their heads to gaze
back at the adults, an important behavior difference which
is also corroborated by the high difference in probability of
looking at faces (see Tab. 2). We can also observe that the
distance from the head to the gaze point is typically between
10% and 60% of image side, with again children more fo-
cused on close targets than adults.

3.4. Comparison to other datasets

Gaze Datasets. Table 1 presents an overview of existing
gaze prediction datasets that are publicly available. The two
most related datasets are GazeFollow and VideoAttention-
Target. GazeFollow [51] is a large-scale image dataset fea-
turing 130K independent instances, but it suffers from low
resolution, average annotation quality and lack of temporal
context. Nevertheless, given its rich diversity, it remains a
good dataset to use for pre-training. VideoAttentionTarget
[11] is a recent video dataset built from high resolution clips
taken from popular TV shows. Since it was extracted from
50 shows, the diversity of the scenes remains limited. In this
view, ChildPlay definitively offers complementary content
to VAT: much more children and a large diversity of pose,
behaviors and situations (looking up and down at children

or adults) as opposed to dominantly standing, sitting, and
talking people, and a very strong bias towards looking at
people’s faces, as shown in Table 2.

Our ChildPlay dataset is far more balanced. while also
having 50% more frames and twice as much scene variety.

Other datasets differ significantly from ChildPlay in their
scope (beyond having very little children). Several of them
address attention related tasks (Co-attention [14], looking-
at-each-other (LAEO) [41]), specific settings like retail
[64], or are much smaller in size and diversity hence can
mainly be used for evaluation, not training [37].
Children Datasets. The Multimodal Dyadic Behav-
ior (MMDB) dataset [53], the Self-Stimulatory Behaviors
dataset (SSBD) [49], DREAM [4] and 3D-AD [55] are all
datasets meant to tackle different aspects of autism, be it
stimming behaviors (arm flapping, head banging), speech
and vocalizations, communicative gestures (e.g. pointing,
reaching, etc.) or gaze patterns (e.g. shared attention, eye-
contact). However, they are either anonymized, limited in
terms of behaviors or restricted to lab environments (e.g.
screening or therapy sessions). In contrast, ChildPlay boasts
a higher diversity of scenes, people, gestures, viewing an-
gles and lighting conditions. More information about other
children datasets can be found in appendix.

4. Model Architecture
4.1. Approach overview

Our network architecture is illustrated in Figure 5. Simi-
lar to other methods [11, 16, 23], our architecture comprises
two main pathways. On one hand, the gaze pathway (GP)
aims at predicting the scene elements which are in the 3D
Field of View (3DFoV) of the person, represented by the
heatmap V. To do so, it takes as input the image crop Ih
of the person’s head and predicts its 3D gaze direction gp

as well as a gaze embedding eg. The gaze gp is then com-
bined with the scene consistent 3D point cloud P inferred
from the image to generate the 3DFoV heatmap.

On the other hand, the scene pathway combines the im-
age with the GP information (the location of the head repre-
sented by the head mask Im, V and the gaze embedding
eg) to infer the in-out label op (i.e. looking inside the
frame or outside) and the attention heatmap Ap. We de-
tails these elements below. However, given the importance
of the scene structure representation, we first describe how
the scene point cloud is obtained.

4.2. Point cloud generation
To obtain our point cloud in the camera coordinate sys-

tem Pc = {Pc
i = (Xc

i , Y
c
i , Z

c
i )} associated to the 2D pix-

els defined in the image plane pi = (xi, yi), we need to
know the scene depth as well as the intrinsic parameters of
the camera. As these are not available, we need to infer
them from the data and make assumptions.



Figure 4. Geometric statistics of the ChildPlay annotations. [Top-Left] Distribution of head bounding box area normalized w.r.t image size.
[Top-Right] Distribution of gaze angles in the image frame. [Bottom-Left] 2D histogram of gaze points. [Bottom-Right] Distribution of
the distance between each person (i.e. center of the head) and their gaze point, normalized w.r.t the image sides.

Name Type Shows Frames Instances Origin Annotations

GazeFollow [51] image - 122, 143 130, 339 SUN, MS-COCO, Im-
ageNet, ...

eye location · 2D gaze point · in-
side/outside

VideoAttentionTarget [11] video 50 (606) 71, 666 164, 541 TV shows gaze point · inside/outside

VideoCoAtt [14] video 20 (400) 493, 242 138, 203 TV shows shared gaze object bbox

DL Gaze [37] video 4 (86) 95, 000 6, 348 Manual collection gaze point

UCO-LAEO [41] video 4 (129) 18, 000 36, 358 TV shows LAEO class

AVA-LAEO [41] video 298 1.4M 172, 330 Movies LAEO class

VACATION [15] video 50 96, 993 164, 365 TV Shows gaze object bbox · gaze communication la-
bel

GOO [64] image - 201, 552 172, 330 Manual collection
Synthetic

gaze point · gaze object · object bbox

ChildPlay video 95 (401) 120, 549 257, 928 YouTube gaze point · gaze class

Table 1. Summary of gaze estimation datasets. All datasets provide head bounding boxes (or pairs of them for LAEO).

Regarding depth, we leverage the pre-trained model
of [47] to predict the depth Zc

i of each pixel. As explained
earlier, we chose this model as it generates geometrically
consistent depth maps which are crucial for doing a proper
3D analysis of the scene. As to camera parameters, we
make standard assumptions: square pixels, no skew, and the
principal point at the image center. The more important pa-
rameter is the focal length, which is required to avoid scene
stretching. In this paper, we estimate it using the pre-trained
model of [68]. As a result, denoting by W and H the im-
age width and height, we obtain the simplified projection

equation:Xc
i

Y c
i

Zc
i

 =

f 0 W/2
0 f H/2
0 0 1

−1

.

xi.Z
c
i

yi.Z
c
i

Zc
i

 (1)

enabling us to build our point cloud Pc.
Note that Pc is defined in the camera coordinate system.

However, as our aim is to evaluate the scene elements visi-
ble from the person’s viewpoint, we transform it in the local
eye coordinate system Ceye in which the gaze vector is pre-
dicted (see next section), resulting in Pe. Following [33],
the origin of Ceye is defined by the eye location Pc

eye, and
the basis vectors (Ex, Ey, Ez) are such that Ez is the unit



Figure 5. Overview of our proposed architecture. The Gaze Network processes the head crop to predict a 3D gaze vector, which is then
used with inferred point cloud to generate a heatmap of the 3D Field-of-view. The Scene Pathway further combines this map with the
image and a head location mask to predict a feature map highlighting salient items in the scene. This map is further used to predict on one
hand the visual attention map Ap, and on the other hand, with the gaze embedding eg, the in-vs-out gaze label.

vector from the camera to the eye, and Ex and Ey are in the
plane perpendicular to Ez .

Pe =

ET
x

ET
y

ET
z

 .(Pc −Pc
eye) (2)

We provide an analysis of the quality of the generated
point clouds in the appendix.

4.3. Gaze pathway

This pathway comprises several steps to generate the
3DFoV heatmap V, as described below.
Gaze Prediction Network. Its aim is to predict the gaze
direction gp defined in the local coordinate system Ceye as-
sociated with the head crop Ih [33]. Ceye is used rather than
the camera coordinate system, as the gaze depends mainly
on appearance (head pose and eyes) and not on the head
location within the image. This network is composed of a
gaze prediction backbone Gb and of a gaze prediction head
Gh. The first one, Gb, is a ResNet-18 [25] network that pre-
dicts the gaze embedding eg from the head crop Ih, while
the second is an MLP with 2 layers followed by tanh activa-
tion which transforms this gaze embedding into the unit 3D
gaze vector prediction gp:

eg = Gb(Ih) and gp = Gh(eg) (3)

3DFoV heatmap V generation. Its goal is to highlight

the scene parts lying in the gaze direction of the person.
To do so, given the point cloud Pe and the gaze prediction
gp, we simply compute the cosine similarity c between gp

and every point Pe
i in Pe, and further apply an exponential

decay function for values with lower similarity to enhance
the scene parts which are more in the gaze focus:

Vi =

{
ci, if ci > 0.9

0.9× exp(5×ci)
exp(5×0.9) , otherwise.

(4)

and ci = gp.
Pe

i

||Pe
i ||

. Note that this formulation of the
3DFoV is differentiable, allowing end-to-end training.

4.4. Scene Pathway

The scene pathway combines the scene information (the
image I) with the 3DFoV heatmap V of the person (to
which we add the head location mask Im to better char-
acterize the location and scale of the person in the scene)
and the gaze embedding eg to infer his attention (in-out in-
dicator op and visual attention heatmap Ap), according to:

F = F([I,V, Im]) (5)

Ap = R(F) and op = O([es, eg]) with es = C(F) (6)

which we explain below.
Saliency feature extraction. The scene backbone network
F is an encoder-decoder architecture producing a set F of



gaze saliency feature maps. The encoder is an EfficientNet-
B1 [63] network while the decoder is a Feature Pyramid
Network (FPN) [38]. The FPN contains skip connections
that help retain high resolution spatial information which
will improve gaze target localization. The concatenation of
inputs in Eq. 5 can be considered as early fusion of the scene
and gaze information and has been shown to give better per-
formance compared to late fusion schemes, e.g. [23].
Attention prediction. It is summarized in Eq. 6, and com-
prises two parts. The main one is the attention prediction
head network R which process the feature maps F to pre-
dict the gaze target heatmap Ap, whose maximum gives us
the gaze target location. It is a CNN block with 6 layers of
dilated convolutions, and a 1x1 conv regression layer.

The second one is the in-out prediction head O decid-
ing whether the gaze target is within the frame. It is an
MLP with 2 layers followed by a sigmoid activation that
fuses the gaze embedding eg with the scene embedding es
to reach a decision. The embedding es is derived from the
gaze saliency feature maps F through the compression net-
work C (a CNN block with 3 strided convolution layers fol-
lowed by max pooling).

4.5. Ground truth and loss definition

Heatmap GT. The gaze target location is encoded in a stan-
dard way [11] as a GT heatmap Agt with a 2D isotropic
gaussian centered at the annotated gaze target location, and
with a standard deviation σ defined in proportion to the
heatmap size according to σ = (Whm+Hhm)

2 . 3
64 , where

(Whm, Hhm) are the heatmap dimensions. This results in
σ = 3 pixels for a heatmap of size (64, 64) which corre-
sponds to the value used in other methods [11].
3D Gaze Vector pseudo GT. While other methods only use
the 2D information to drive the gaze pathway estimation, we
propose to use our geometrically consistent point cloud to
define a pseudo 3D gaze direction ground truth. Given the
2D gaze target GT, we obtain the corresponding 3D gaze
point Pe

gaze in the point cloud defined in the eye coordinate
system Ceye (see Section 4.2), and simply derive the 3D
gaze unit vector accordingly as ggt =

Pe
gaze

||Pe
gaze||

Loss definitions. Learning is driven by three losses:

L = λhmLhm + λdirLdir + λioLio (7)

The first loss is the visual attention heatmap loss, defined
as in other works as the L2 loss between the predicted and
GT heatmaps: Lhm = ∥Ap − Agt∥22. The second loss is
the in-out loss Lio, and is classically defined as the binary
cross entropy between the predicted op and ground truth ogt

in-vs-out of frame label.
Finally, to the contrary of previous works which relied

only on 2D (in plane) gaze losses, we propose in this work
to introduce a 3D direction loss to drive the gaze pathway

%Head GazeFollow
[52]

VAT
[11]

ChildPlay
children

ChildPlay
adults

All 23.0 69.0 15.7 44.4
Multi 30.6 71.0 16.9 44.6

Table 2. GT percentage of looking at head instances. Statistics for
all images (1st row) or images with at least 2 persons (2nd row).

network. It is defined so as to maximizes the cosine simi-
larity between the prediction and the GT 3D gaze ggt:

Ldir = 1− < gp,ggt > (8)

where < a, b > denotes the inner product between a and b.

5. Experiments
5.1. Experimental Protocol.

Implementation Details. The gaze network head Gh is pre-
trained on the Gaze360 dataset [33] and processes the head
crop at a resolution of 224 × 224. The Scene Pathway en-
coder is pre-trained on the ImageNet dataset [57] and pro-
cesses the scene image at a resolution of 512× 288. During
the test phase, we maintain the original aspect ratio of the
scene image and scale the longer side to 512.
Datasets. We train our models on 3 datasets - GazeFollow,
ChildPlay and VideoAttentionTarget. More details about
these datasets are provided in Section 3.4.
Training. We train for 40 epochs on GazeFollow. Follow-
ing the protocol of [11], we fine-tune the model trained on
GazeFollow for 20 epochs on VideoAttentionTarget. We
adopt the same protocol for ChildPlay, and fine-tune the
model trained on GazeFollow for 20 epochs. We use the
AdamW optimizer [40] and set the learning rate as 2.5e− 4
for training on GazeFollow, and as 2.5e− 5 for fine-tuning
on VideoAttentionTarget and ChildPlay. The loss coeffi-
cients are set as λhm = 100, λdir = 0.1 and λio = 1.
Validation. As GazeFollow and VideoAttentionTarget do
not propose any validation set, we split a portion of the
training set and use it for validation. Our GazeFollow val-
idation split contains 4499 instances, and our VideoAtten-
tionTarget validation split contains 6726 instances from 3
shows. The epoch with the best distance score on the vali-
dation set is used for testing.

5.2. Metrics

For evaluation, we use standard metric (AUC, Distance,
AP) that we complement with a more semantic one: The
precision of looking at heads (P.Head), as described below.
AUC. The predicted gaze heatmap is compared against the
binarized GT gaze heatmap. This is used to plot the TPR vs
FPR curve. AUC is the area under this curve.
Distance. The predicted gaze location is obtained from the



Children Adults Full data
Model AUC↑ Dist↓ AP↑ P.Head↑ AUC↑ Dist↓ AP↑ P.Head↑ AUC↑ Dist↓ AP↑ P.Head↑
Gupta [23]† 0.926 0.136 - 0.435 0.919 0.151 - 0.621 0.923 0.142 - 0.518
Ours - 2D cone† 0.929 0.125 - 0.472 0.934 0.131 - 0.664 0.931 0.127 - 0.567
Ours† 0.934 0.112 - 0.509 0.930 0.119 - 0.681 0.932 0.115 - 0.602
Gupta [23] 0.923 0.106 0.980 0.648 0.914 0.123 0.987 0.731 0.919 0.113 0.983 0.694
Ours - 2D cone 0.925 0.118 0.937 0.564 0.927 0.125 0.955 0.717 0.926 0.121 0.944 0.644
Ours 0.939 0.098 0.989 0.604 0.928 0.121 0.983 0.704 0.935 0.107 0.986 0.663
Human - - - - - - - - 0.911 0.048 0.993 -

Table 3. Results on the ChildPlay dataset. The best results are given in red and the second best results are given in blue. † indicates that the
model was not fine-tuned on ChildPlay.

A: Model AUC↑ Avg.Dist↓ Min.Dist↓ P.Head↑
Fang [16] 0.922 0.124 0.067 -
Hu [28] - 0.135 0.075 -
Bao [2] 0.928 0.122 - -
Jin [31] 0.920 0.118 0.063 -
Chong [11] 0.921 0.137 0.077 0.708
Gupta [23] 0.933 0.134 0.071 0.750
Ours - 2D cone* 0.939 0.122 0.062 0.762
Ours* 0.936 0.125 0.064 0.760
Human 0.924 0.096 0.040 -

B: Model AUC↑ Dist↓ AP↑ P.Head↑
Gupta [23]† 0.907 0.137 - 0.887
Ours - 2D cone† 0.915 0.128 - 0.894
Ours† 0.911 0.123 - 0.900
Fang [16] 0.878 0.124 0.872 -
Bao [2] 0.885 0.120 0.869 -
Jin [31] 0.898 0.109 0.897 -
Chong [11] 0.854 0.147 0.848 -
Gupta [23]* 0.897 0.134 0.864 0.903
Ours - 2D cone* 0.909 0.120 0.856 0.892
Ours* 0.914 0.109 0.834 0.902
Human 0.921 0.051 0.925 -

Table 4. Results on GazeFollow (A) and VideoAttentionTarget (B)
with the best results in red and second best results in blue. * indi-
cates that the model follows a proper protocol, using a validation
split to select the model. † indicates that the model was not fine-
tuned on VAT.

arg max of the predicted gaze heatmap. The Distance is
the L2 distance between the predicted and GT gaze location
on a 1 × 1 image. When multiple annotations are available
(ex. GazeFollow) we can compute the minimum and aver-
age distance statistics.

Average Precision (AP). It is used to compute the perfor-
mance for in vs out of frame gaze classification.

Looking at Heads (P.Head). The GT to compute this met-
ric was obtained as follows. We first run a robust and power-
ful pre-trained Yolo-v5 [32] based head detector on images
to get the head bounding boxes of everyone in the scene,
and apply tracking [26]. We verified and further validated

the obtained tracks. To obtain the GT, we then check if the
annotated gaze target of a person falls inside a detected head
box. As the GazeFollow test set contains multiple annota-
tion, we check that at least two annotations fall inside the
same detected head box. We provide the GT statistics for
our datasets in Table 2.

At evaluation time, we perform the same procedure for
each prediction to decide whether it is a gaze on a face.
Finally, we compare the results with the GT, and compute
the precision score.

5.3. Tested Models

ChildPlay. Other than our proposed model, we train the
Image model of Gupta et al. [23] on our ChildPlay dataset.
We also show results without any fine-tuning on ChildPlay,
i.e. the models are only trained on GazeFollow.
GazeFollow and VideoAttentionTarget. We train our pro-
posed model on the GazeFollow and VideoAttentionTarget
benchmarks. We also re-train the Image model of Gupta et
al. [23] on VideoAttentionTarget following our new train-
ing and validation splits. For state of the art, we compare
results with the static model of Chong et al. [11], as well
as models using depth information and using the same head
crop input: Fang et al. [16], Hu et al. [28], Gupta et al. [23],
Bao et al. [2] and Jin et al. [31].
Ablation: 3DFoV vs 2D cone. To see the benefit of us-
ing an explicit 3DFoV, we compare our approach to us-
ing a standard 2D gaze cone (similar to [23]) on the three
datasets. Here the 2D gaze cone is derived by computing
the similarity of the projected 3D gaze vector and the 2D
scene locations (no decay factor).

5.4. Results

GazeFollow and VideoAttentionTarget (VAT). Our re-
sults on GazeFollow and VideoAttentionTarget are given in
Table 4. As can be seen, our model achieves high results.
Compared to the state-of-the-art, it is in par with the best
method [31], which also used depth but without modeling
an explicit 3DFoV, and may not use a validation set for eval-
uation. Indeed, on GazeFollow, although the Avg.Dist is



slightly worse for our approach, the Min.Dist metric is the
same, and on VAT dataset both methods perform equally
for Dist (0.109). Compared to [23] which follows the same
protocol, our method performs much better.

Looking at the P.Head metric, we can notice that perfor-
mance is in general quite high, esp. on the VAT dataset that
has a large bias towards looking at heads (Table 2), so the
true positives dominate the false positives.

ChildPlay. Our results on ChildPlay are given in Table 3.
As it can be seen, our model shows much better cross-
dataset generalization performance compared to our model
with a 2D gaze cone and the model of Gupta et al. [23].
We see a general improvement in performance for all mod-
els after fine-tuning, with Gupta et al. [23] benefiting more
from it and potentially slightly overfiting the dataset statis-
tics and priors. Nevertheless, although the benefit is lower
for our model, it is still the best on all metrics but the P.Head
metric. Ultimately and interestingly, the gap in performance
compared to human performance suggests a large potential
for improvement.

Children vs Adults. Looking more in details, ChildPlay
results show that the distance scores are slightly better for
children compared to adults. However, this can mainly be
attributed to the fact that gaze targets are on average closer
to the child than to the adult (see Fig 4), a point also reported
by Tu et al. [65] who showed that gaze target prediction
models have lower performance (using a distance metric)
for targets further away.

This contrasts with the P.Head metric, which shows that
in this case, the performance is significantly lower for chil-
dren than for adults (18.7% lower). This validates our hy-
pothesis that different performance metrics are needed to
fully assess models, and that models trained on existing
datasets suffer when tested on children. This last point is
corroborated by the fact that after fine-tuning, all models
have a much larger improvement for children compared to
adults whether for the distance or P.Head metrics, highlight-
ing the importance of training the model with children data.

3DFoV vs 2D cone saliency. Results show that our model
(Ours) with an explicit 3DFoV performs on par or much
better than a model relying only a 2D saliency cone (Ours-
2D cone). On GazeFollow, results are very slightly worse,
which can be due to the fact that GazeFollow contains rel-
atively simple scenes where depth is less important, and
with a bias towards people being in the foreground (in
the vast majority of a images, only the gaze of the person
with the largest face in the scene is annotated). However,
on VideoAttentionTarget and ChildPlay, our model with
3DFoV demonstrates much better cross-dataset generaliza-
tion, and remains significantly better after fine-tuning. All
this highlights the importance of depth information and the
interest of using a geometrically consistent 3DFoV method.

6. Conclusion
In this paper we proposed a new dataset of children play-

ing and interacting with adults. Our dataset has rich gaze
annotations which is of interest for analysis of child gaze
behaviour and gaze target prediction generally. We also
proposed a new model that uses depth information to con-
struct a geometrically grounded 3D field of view of a per-
son. Our models achieve state of the art results on public
benchmarks and ChildPlay. In particular, experiments indi-
cate that training on ChildPlay can yield performance im-
provements for child gaze prediction, and that using seman-
tic metrics (looking at faces) is useful to further characterize
gaze models. In the future we will supplement ChildPlay
with other layers of annotations (e.g. human-human-object
interaction labels) and we encourage the research commu-
nity to do the same.
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7. Supplementary
7.1. More information on ChildPlay

Gaze Classes. ChildPlay is annotated with 7 non-
overlapping gaze classes to enable high quality gaze anno-
tations. These are defined as follows:

• inside-frame: when the gaze target is located within
the frame and is visible;

• outside-frame: the gaze target is outside the frame;

• gaze-shift: when the person shifts attention from one
location to the next during at least two frames. In case
of interest, shorter shifts (i.e. saccades) can be recov-
ered by identifying sudden changes in gaze points that
are annotated as inside-frame;

• occluded: the 2D gaze target is within the frame but is
totally occluded (hence cannot be annotated);

• uncertain: the gaze target cannot be determined confi-
dently (lack of salient elements in the gaze direction,
several possible targets);

• eyes-closed: used in rare cases where a child closes
their eyes (e.g. during hide-and-seek);

• not-annotated: none of the options above is applicable.

Semantics. We compare the semantics of the gaze targets
for ChildPlay and VideoAttentionTarget in Table 5. Our
ChildPlay dataset is far more balanced3, while also having
50% more frames and twice as much scene variety.

7.2. More Children Datasets

One of the major motivations behind building datasets of
children is the study of neurodevelopmental disorders ex-
hibiting symptoms in humans from an early age. For this
reason, many benchmarks studied in the literature cover
topics such as motor control, brain imaging, emotions,
speech, and social interactions. Nevertheless, most of them
are ultimately never shared due to privacy considerations
and ethics regulations [12]. We previously listed some of
the children datasets directly related to autism behaviors,
in this section, we cover a few publicly available ones that
feature pose annotations. Since the body proportions of hu-
mans change significantly from birth to adulthood [58], it is
important for younger age groups to be well represented in
research benchmarks, particularly for applications targeting
them. Table 6 summarizes the notable ones.

3After manual inspection, we found that most of the not-detected
instances in ChildPlay correspond to objects that were not detected by the
segmentation, and which would fall into the things-other category.

Dataset things-
person

things-
other

stuff not-
detected

VideoAttention
[11]

80.85% 8.05% 3.60% 7.50%

ChildPlay 45.19% 18.66% 12.62% 23.53%

Table 5. Comparison of gaze target semantic class between Child-
Play and VideoAttentionTarget. Numbers were obtained by run-
ning a panoptic segmentation model [7] on images and retrieving
the semantic class of each annotated gaze point.

7.3. Point Cloud Comparison

Monocular Depth Estimation. Depth datasets can be put
under three categories:

• Absolute Depth: These datasets provide the absolute
depth of the scene. The data is recorded using sen-
sors such as LiDARS, time of flight cameras etc. ex.
KITTI [19]

• Up to Scale (UTS) Depth: These datasets provide the
depth of the scene up to an unknown scale C1. The
absolute depth d∗ can be recovered from UTS depth d
as d∗−1 = C1.d

−1. ex. Megadepth [36]

• Up to Shift and Scale (UTSS) Depth: These datasets
provide the disparity of scene. They are obtained
from stereo movies and photos by computing the op-
tical flow. The absolute depth can be recovered from
the disparity D as d∗−1 = C1.(D + C2). C2, also
known as shift, depends on the camera parameters and
is crucial for reconstructing geometry preserving point
clouds. However, the shift is typically unknown. ex.
MiDaS [50]

Recent methods for monocular depth estimation [50][67]
have leveraged UTSS depth data due to it’s high diver-
sity, and shown better generalization when tested on unseen
datasets. However, they can only predict UTSS depth so
the reconstructed point clouds are not geometry preserving.
Hence, methods for gaze target prediction that use these al-
gorithms rely on course matching [16] or attempt to correct
the point cloud based on prior assumptions [2].

We study two recent methods for monocular depth es-
timation that aim to generate geometry-preserving point
clouds while still leveraging UTSS data. Wei et al. [68] pre-
dict UTSS depth and use it to construct a (distorted) point
cloud. A point cloud module then recovers the shift factor
from the distorted point cloud. On the other hand, Patakin
et al. [47] train on a mix of absolute, UTS and UTSS depth
data. The absolute and UTS depth data provide supervision
such that the algorithm predicts UTS depth.
Qualitative Results. We provide a qualitative comparison
of point clouds generated using the depth maps from Ranftl



Name Type Setting Size Annotations

Sciortino et al. [58] Video SSBD dataset + youtube 1176 images of 104 sub-
jects

2D pose keypoints

DREAM [4] Video Interactions with robot
No raw data, only extracted
features and annotations

306 hours of therapy
(102) subjects

3D pose keypoints

BabyPose [42] Video
Depth

Preterm Infant movement in
NICUs

16000 frames · 16 depth
videos · 16 patients

2D pose keypoints

SyRIP [29] Image Hybrid: real + synthetic
YouTube and Google images

Real: 700 images (140+
subjects)
Synthetic: 1000 images

2D pose keypoints

MINI-RGBD [27] Video
Depth

Synthetic: obtained by regis-
tering SMIL to real sequences
of moving infants.
Constrained environment

12000 frames · 12 se-
quences

2D and 3D key-
points

Table 6. Summary of selected pose estimation children datasets.

et al. [50], Wei et al [68] and Patakin et al. [47] in Figure 6.
We observe that the point clouds generated using the depth
maps from Wei et al. and Patakin et al. generally have less
distortion of scene elements, and better maintain the depth
between objects. The point clouds from Patakin et al. in
particular seem to preserve the geometry of the scene best.
Gaze Vector Stability. To quantitatively compare the meth-
ods of Wei et al. [68] and Patakin et al. [47], we investigate
which algorithm generates more stable gaze vectors. This is
crucial as we rely on their generated gaze vectors as ground
truth. The test is based on the fact that the gaze vector for a
person (camera coordinate system) should be the same irre-
spective of their distance from the camera. We perform the
test as follows:

• We take 5 random crops of an image

• For each crop, we compute the depth (Wei et al. or
Patakin et al.) and focal length

• We then reconstruct the point cloud Pc following the
protocol defined in Section 4.2, and obtain the gaze
vector for each crop as ggt

c =
Pc

gaze−Pc
eye

||Pc
gaze−Pc

eye||

• The stability is given by the standard deviation of the
gaze vector across the crops

For a more robust estimate, we perform this procedure
for the first frame of every clip in the ChildPlay training set,
and compute the median standard deviation. The values for
the method of Wei et al. are [0.041, 0.032, 0.095] while the
values for the method of Patakin et al. are [0.026, 0.019,
0.075]. The median standard deviation for Patakin et al.
is lower, especially for the z component, indicating that it
generates more stable gaze vectors.

7.4. Training Details

Head Bounding Boxes. The provided head box annota-
tions for GazeFollow are not consistent and sometimes in-
clude the whole head, and at other times just the face of
the person. Hence, we re-extract the head boxes using a
pre-trained Yolov5 model [32] and use these for all our ex-
periments.
Eye Location. For GazeFollow, we use the annotated eye
location, and for the VideoAttentionTarget and ChildPlay
datasets we use the center of the annotated head bounding
box as the eye location.
Input Aspect Ratio. Previous methods [11][23] distort the
scene and head images to the model input size. To avoid
this, we expand the head bounding box to a square to match
the Human-Centric module’s input aspect ratio. We also
carefully crop and pad scene images to the Scene-Centric
module’s input aspect ratio during training and validation so
that there is no distortion. During the test phase, we do not
perform any cropping/padding and instead scale the longer
side of the scene image to the Scene-Centric module’s input
width.



Figure 6. Comparison of point clouds generated using the depth maps from Ranftl et al. [50] (row 2), Wei et al. [68] (row 3) and Patakin et
al. [47] (row 4) on ChildPlay images. The point clouds generated using Patakin et al. appear to best preserve the geometry of the scene.


