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ABSTRACT
Gaze estimation allows robots to better understand users and thus
to more precisely meet their needs. In this paper, we are interested
in gaze sensing for analyzing collaborative tasks and manipulation
behaviors in human-robot interactions (HRI), which differs from
screen gazing and other communicative HRI settings. Our goal
is to study the accuracy that remote vision gaze estimators can
provide, as they are a promising alternative to current accurate but
intrusive wearable sensors. In this view, our contributions are: 1) we
collected and make public a labeled dataset involving manipulation
tasks and gazing behaviors in an HRI context; 2) we evaluate the
performance of a state-of-the-art gaze estimation system on this
dataset. Our results show a low default accuracy, which is improved
by calibration, but that more research is needed if one wishes to
distinguish gazing at one object amongst a dozen on a table.
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1 INTRODUCTION
As one of the main indicator of attention, gaze plays an important
role in many human activities, and being able to estimate it can be
useful in a large range of applications. In particular, as one very
important non-verbal communication cue [Cook 1977; Muralidhar
et al. 2018; Yarbus 1967], gaze has been much studied in Human-
Human or Human-Robot social interaction contexts, for modeling
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turn-taking patterns [Ishii et al. 2016; Sheikhi and Odobez 2015],
improving the dialog fluency [Andrist et al. 2013] or the robot
anticipation during collaborative tasks [Huang and Mutlu 2016].

The role of gaze has also been well studied in object manipula-
tion. Its importance has been demonstrated during handover, in
which gaze pointing to objects eliminates reference ambiguities and
allows partners to respond quicker [Moon et al. 2014]. Moreover,
during object manipulations, the proactive use of the gaze informs
about the intention and anticipation of the actor while its reactive
use enlightens a particular attention [Admoni and Scassellati 2017;
Bader et al. 2009; Hayhoe and Ballard 2005; Johansson et al. 2001].
Nevertheless, in spite of its importance, most studies in this domain
relied on either hand-coded gaze events or the use of intrusive
sensors like chin-rests [Johansson et al. 2001], head-mounted de-
vices, or wearable glasses [Aronson et al. 2018; Newman et al. 2018],
which can impact negatively the natural behavior of people. In fact,
gaze estimation in such conditions is a particularly challenging
task. Sensing conditions are usually quite different than in screen-
gazing applications: higher pose variability, lower eye and face
image resolution to accommodate potentially larger user mobility,
larger illumination variations, potentially unknown user and ab-
sence of user cooperation. Recent methods like [Mora and Odobez
2016] aims at overcoming these challenges, but their performance
remains to be investigated in the context of HRI.

In this paper, we investigate the use of non-intrusive remote sen-
sors for gaze estimation in the framework of object manipulation
tasks, which to the best of our knowledge had not been studied
before. To that end, we collected the ManiGaze dataset, in which
subjects performed different tasks related to this context and where
the gaze ground truth can be obtained. Indeed, traditional gaze
estimation datasets like Columbia Gaze [Smith et al. 2013], UT
Multiview [Sugano et al. 2014], Eyediap [Mora and Odobez 2014],
MPIIGaze [Zhang et al. 2017] and more recently RT-GENE [Fischer
et al. 2018] or Gaze360 [Kellnhofer et al. 2019] are very useful to
train and evaluate raw models, as they gather a lot of data with
variability in head poses, illuminations or gaze directions. However,
they may sometimes miss some higher natural variability and may
not allow evaluating directly the usability of gaze estimation meth-
ods. Collecting data in an environment where gaze tracking is used
in a system can address this issue, which is important as different
gaze tracking characteristics (accuracy, consistency, robustness)
might have different importance in different types of tasks.

To this end, we collected a medium-size gaze dataset involv-
ing natural interactions and behaviors which can help evaluate
gaze estimation methods beyond classical screen gazing setups.
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Figure 1: Experimental setup from the point of view of the
user (top), the field of view of the Kinect v2 (bottom left) and
of the Intel RealSense (bottom right).

The considered scenarios are characteristic of some human-robot
collaboration where the goal is to perform tasks involving the
environment (object manipulation, tool handover, etc.). In such
conditions, the gaze range of the user is big, going from objects
near his/her chest to targets at eye level, which is challenging for
remote gaze estimation methods [Kellnhofer et al. 2019].

Using this dataset, we evaluated the performances of state-of-
the-art 3D gaze estimations method. As an approach, we explored
Appearance Based Method (ABM) methods since amongst existing
systems [Chennamma and Yuan 2013], computer vision ones have
a good ability to achieve non-invasive user-friendly remote gaze
sensing. ABM algorithms (esp. thanks to deep learning) have also
been shown to present the best trade-off between accuracy and
operational range [Zhang et al. 2019]. More precisely, we adapted
the approach proposed by [Mora and Odobez 2016], using the more
recent GazeNet deep neural network (DNN) [Zhang et al. 2017]
for learning the mapping from the eye image to the gaze direc-
tion. Furthermore, since due to eye variabilities (e.g. dominant eye,
fovea point, eye shape, ...) across people, gaze trackers usually need
person-specific calibration procedures to perform better, we study
the effect of such calibration considering intra and cross-session
situations as well as two bias models (constant and linear bias).
Contributions. In this context our contributions are:
Dataset. To evaluate gaze estimation and calibration during object
manipulation tasks, we collected a multimodal dataset providing
several scenarios with different characteristics (looking at objects
on a table, picking objects), which we will make publicly available.
Remote sensor based gaze estimation evaluation. We evaluated gaze
estimation within this context based on an unintrusive remote
sensor. Experiments were designed to evaluate both the gaze esti-
mation raw accuracy (error in degree) and the ability to distinguish
between targets in the manipulation space (classification error).

2 DATASET
The multimodal dataset we collected involved 16 participants (24-36
years old, 4 women / 12 men, 6 glasses wearers). We described below
its main characteristics. Both raw media files (e.g. videos) and anno-
tations will be provided publicly (www.idiap.ch/dataset/manigaze).
Some statistics on the dataset are provided in experiments.

2.1 Set-up and Calibration
The physical setup is illustrated in Fig. 1. It consists of a Baxter robot
separated from the participant by a table on which the manipulation
tasks take place. On this table, 14 markers (numbered black dots)
were placed on three rows as a regular grid of points with a distance
of around 20 cm between two rows and two markers within the
same row. We used different sensors recording 3 modalities (color,
depth, and audio): 2 RGB-D cameras and a microphone. Finding a
good place to sense the gaze of the participants was difficult because
of the place taken by Baxter, which is a rather big robot and the
position of the potential targets (objects on the table, robot arms,
and head) which were very spread in space. The best location we
found was at the height of the table, and we used a Kinect v2 sensor
due to its depth accuracy and large field of view. The low camera
angle is unusual compared to classical gaze estimation datasets, but
it can be cumbersome to get ideal sensing conditions (i.e. frontal
view) in real-life setup, as sensors can not reasonably be placed in
the workspace (here: the table). A second RGB-D Intel RealSense
D435 camera was also placed on the robot head to record the table
and participant hands from above. In addition to the sensor data,
several features related to the interaction like mouse clicks, robot
speech, or robot arms position were recorded.
Wizard-of-Oz approach. The recordings were made using a WoZ
approach. The robot introduced himself at the beginning of the
experiment and asked a few questions to make the participant used
to the robot. Then it guided the participant through the whole set of
experiments using voice to encourage interactions and natural be-
haviors. Randomness was introduced in the robot utterances ("look
at X", "Can you look at X", "Now, look at X") and in the feedbacks
("ok", "congratulations", "well done") to make the interaction more
natural. The robot also randomly asked sometimes to look at it
to break the task monotony and gather gaze points to the robot.
Also, at any time the participant could ask the robot to repeat the
previous instruction. The result was qualitatively satisfactory: par-
ticipants tend to ignore the experimenter, speaking naturally to the
robot and turning the head toward it when the robot was speaking.

2.2 Recorded sessions
The experiment was organized in 4 sessions, going from the most
artificial to the most natural, and the participant received some
basic instructions before the start.
Markers on the Table Targets (MT). The participant stood ap-
proximately 1 meter in front of the robot and had the computer
mouse in hand. The robot asked the participant to look at a num-
bered marker. The participant would then press the mouse button
upon gazing at the target marker without blinking. After feedback,
the procedure would repeat, with the robot designating another
marker. The participants’ gaze fixation locations and their occur-
rence time were deduced from the mouse events and the marker
target. This session can be used to evaluate gaze estimation and
calibration algorithms, as the markers build a dense and regular
grid distributed on the whole manipulation space.
End-effector Targets (ET). This session is similar to the MT one
except that the participants are asked to continuously look at one
of the robot end-effectors and to press the mouse button when it
stops moving (37 positions) while continuing to look at it without
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Figure 2: Gaze histogram for MT and ET sessions.

Figure 3: Framework. a) Head pose estimation [Yu et al.
2018]. b) Face image frontalization. c-d) Mapping of eye im-
ages to gaze angles g. e) Computation of gaze direction v
from g and p. f) Extraction of the angle error e between the
vector pointing to the target ut and the gaze vector v.

blinking. Each robot’s arm is used to cover half the space, to avoid
participant’s face occlusion. This session provides additional targets
not limited to the manipulation area (the table) to evaluate gaze
estimation and calibration. In this paper, we focus on the fixations
indicated by the mouse events, but participants perform successions
of smooth pursuits that could also be exploited in further studies.
Object Manipulation (OM). In this session, a backgammon pawn,
a chess pawn, a spoon, a glass, and a plate are initially placed on
markers on the table. The robot asks sometimes the participant to
move objects to a designated numbered marker or on/in another
object, and sometimes questions related to the actual position of
the objects. Each participant repeats the recording for two out of
three defined initial object positions. As pick and place actions of
the participant are guided by the robot instructions and objects are
always placed on markers, the positions of the objects are known
at each robot’s occurrence (i.e. before and after each pick and place
action). This session simulates an object manipulation task to study
gaze behavior during pick and place actions (pick and place mo-
ments were annotated). It is less controlled than previous ones and
as a result, participants act even more naturally.
Set a Table (ST). In this final session, the participant is asked to set
a table while explaining to the robot how to do it without referring
to the markers on the table. The robot does not act or speak and the
participant is free to choose how to proceed in order to encourage
natural eye-hand coordination (e.g. usage of both hands at the same
time, faster transitions between objects).

3 GAZE ESTIMATION APPROACH
The framework we evaluated comprised 3 steps: gaze estimation,
bias calibration, and visual focus of attention estimation.
Gaze estimation. We followed the head pose independent gaze
estimation framework of [Mora and Odobez 2016] with differences
(see Fig. 3). The head pose p = (R, t), where R and t are the rotation
matrix and translation vector, is tracked in RGB-D videos using the

Figure 4: Gaze estimation example showing: head pose (red-
green-blue coordinate system on the nose); gaze (cyan rays);
extracted and exploited eye images after frontalization (top,
together with the VFOA estimate).

Headfusion method [Yu et al. 2018] which relies on the automatic
fitting of both a 3D Morphable Model of the face and a 3D raw
representation of the head. This method was shown to be highly
accurate (≃ 2◦errors) and much more robust to large head poses
than [Mora and Odobez 2016] or color-based landmarks detection
methods. Then, eyes were cropped using 3D frontalization and
landmark alignment [Siegfried et al. 2017].

To infer the gaze directions from the cropped eye images, we
investigated two methods. The first one is the original approach
presented in [Mora and Odobez 2016], which relies on a multi-level
HoG SVR trained on the Eyediap dataset. The second one is the
GazeNet model proposed by [Zhang et al. 2017]. It is based on a
vgg16 architecture and takes head pose angles as additional inputs.
We validated our implementation on the Columbia Gaze and the
UT Multiview datasets and obtained results consistent with the
state-of-the-art (respectively 3.45◦and 5.08◦).

As a result, at each time we have for each eye its gaze g =
(ϕ,θ ) defined by its yaw (ϕ) and tilt elevation (θ ) angles, which can
be mapped into a corresponding gaze direction unitary vector v
through a transform Φ, i.e. v = Φ(g). See Fig. 4 for a result example.
Finally, to have a unique estimation, we keep the gaze estimated
from the closest eye to the camera, because it is usually the most
visible and thus less prone to occlusions and deformations from the
frontalization, resulting in more precise and stable estimations.
Bias computation. We relied on a set of calibration frames F =
{(ĝi , gi )} with ĝ the gaze estimate and g the ground truth gaze
obtained by applying the reverse gaze transform Φ−1 to the vector
defined by the 3D eye position xei and the known 3D target position
ti of the ith calibration event, gi = Φ−1(ti − xei ). To perform
calibration, given F , we searched for the calibration function C so
that gi = CF(ĝi ). In this work, we investigated two models:
Constant: it considers a constant bias in both dimensions (yaw and
elevation angles) that we want to compensate so that gi = ĝi − b.
The bias is estimated by taking the mean of the gaze angle error

b̂ =
1
|F |

∑
i ∈F

(ĝi − gi ). (1)

Linear: it considers a linear relation between the estimation and
the real gaze, so that gi =

(
sϕ 0
0 sθ

)
ĝi +

(
tϕ
tθ

)
. The coefficients are

estimated by solving two independent linear regression problems.
Visual focus of attention (VFOA) estimation. In collaborative
tasks, the VFOA, i.e. which object or location the user is looking at,
is often more useful than the gaze estimate itself. Deciding whether
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Table 1: Mean angular errors (angErr) measured on MT or
ET, as well as VFOA accuracy (vfoaAcc) measured on MT.

Method angErr MT [deg] angErr ET [deg] vfoaAcc MT [%]
Baselines
HSVR [Mora and Odobez 2016] 16.26 13.67 .26
GazeNet [Zhang et al. 2017] 22.35 17.90 .18
Supervised intra-session calibration (calibrated on session X, tested on session X)
HSVR-cst 7.22 9.26 .44
HSVR-lin 5.63 8.11 .61
GazeNet-cst 6.00 9.97 .59
GazeNet-lin 4.67 8.96 .70
Supervised cross-session calibration (calibrated on session Y, tested on session X)
HSVR-cst 9.04 11.12 .37
HSVR-lin 8.48 15.79 .42
GazeNet-cst 9.75 12.20 .43
GazeNet-lin 8.30 16.41 .50

a person looks at a target t (defined by the direction ut ) can be done
by comparing the gaze direction to ut (see Fig. 3). It can be achieved
by computing their angle difference: et = arccos (Φ(CF(g)) · ut ).
VFOA is estimated as the target t which has the lowest related et .

4 EXPERIMENTS
In this work, we let the less controlled OM and ST sessions aside, as
they do not provide ground truth data (no VFOA or manipulation
information). However, they open possibilities for further work, e.g.
on hand-gaze coordination, at the cost of manual annotations.
Data statistics. Experiments were done using the 16 subjects in
MT and ET sessions, for a total of respectively 75 and 49 minutes
of video. There are an average of 807 ground truth labeled frames
for the MT session (14 different targets) and 337 labeled frames
for the ET session (37 different targets) by subject, for a total of
respectively 5894 and 5396 annotated frames. The Fig. 2 presents the
gaze ground truth distributions of the two sessions and shows that
the ET session has a wider coverage of the gaze space compared to
MT in which subjects only look at the table, resulting in challenging
elevation angles range (-50◦to -20◦) as gaze estimation is usually
less accurate when people look down [Kellnhofer et al. 2019].
Experimental protocol. As metrics, we use the mean angular
error for MT and ET session and the VFOA accuracy for the MT
session where 14 concurrent targets are present. Those metrics
were computed for each subject, using all available gaze ground
truth points and then averaged by session (see Tab. 1). The cali-
bration function C was estimated using 20 annotated points taken
at random in the calibration session and evaluated either on the
same session (intra-session calibration) or on the other session
(cross-session calibration). Experiments were repeated 10 times and
results averaged to account for random effects.
Baseline results. Gaze estimation methods (see Sec. 3), namely
HSVR and GazeNet, were trained in a cross-dataset fashion, using
the Eyediap dataset (pose: M, scenario: FT, resolution: VGA). From
Tab. 1, we see that without additional correction, bothmethods have
high errors, above those reported in more traditional screen-based
setups, and that the traditional method beats the neural network
by a large margin. This can be explained by the experimental setup:
the camera angle is unusual (i.e. far from a frontal view), and in
the MT session, participants are looking at markers on the table
which are close to them and below the camera. This is a difficult
situation for gaze estimators, as eyelids cover a large portion of the
eyeball. In ET, visual targets are on average higher in the user field

of view and gaze estimation is more accurate, somehow confirming
the impact of the visual target positions on performance.
Calibration.We tested both the constant (-cst) and linear (-lin) cal-
ibration models. After calibration, the difference between both gaze
estimation methods fades away. As expected, absolute errors are
much smaller since calibration provides person-specific correction
and performs some kind of domain adaptation at the same time.

Cross-session calibration, which is closer to a real application
case, performs worse than intra-session calibration. It still reaches
decent performances on the MT session, but not on the ET ses-
sion, especially when the linear correction is used. This is due to
overfitting: the linear model trained on the MT session where the
distribution of gazes is much smaller than in ET (esp. in elevation,
see Fig.2) does not generalize well to the range of gazes of the ET
session which were not contained in the (MT) calibration set. It
also means that the proposed calibration models do not fully grasp
the error sources. Indeed they make the hypothesis that the error
only depends on the gaze, but it could also be related to the head
pose or the eye location. Further experiments are needed to explore
more complex models.
VFOA accuracy. The last column of Tab. 1 reports the VFOA esti-
mation accuracy. Calibration improves significantly the results in
all cases and the GazeNet model together with the linear correction
outperforms all other methods. Interestingly, although the GazeNet
performances are usually on par or worse than that of HSVR (on
the more realistic cross-session case) its VFOA accuracy is better,
suggesting that the gaze errors are not distributed similarly for both
methods. Regarding the overall absolute performance, none of the
presented methods provide a very satisfying estimation of attention
on objects (which are separated by 20 cm). This means that for such
task VFOA estimation remains difficult using the current system,
even with supervised calibration.

5 CONCLUSION AND FUTUREWORK
We studied gaze estimation in an HRI scenario related to object
manipulation. We presented a new public dataset that will allow
the analysis of pick and place types of actions, involving static and
dynamical visual targets in both the manipulation space (table) and
the space between the user and the robot. We evaluated a state-of-
the-art gaze estimation method and reported the difficulty to design
a setup that can accurately estimate gaze with visual targets in a
large space. The overall results indicate the need for further work to
make gaze estimation fully exploitable in this kind of setup. Besides
improving the base gaze estimator accuracy, research may include
searching for a better bias model accounting for a potential head
pose dependency and using task gaze priors (e.g. picking objects
or hand activities) and other gaze priors (dialog between the user
and the robot [Siegfried et al. 2017]) to sample more data points for
online calibration and going beyond supervised calibration which
has poor usability [Morimoto and Mimica 2005].

ACKNOWLEDGMENTS
This research has been supported by the European Union Horizon
2020 research and innovation program (grant agreement no. 688147,
MuMMER project) and by the SNSF (grant agreement no. 30214,
project ROSALIS).



ManiGaze: a Dataset for Evaluating Remote Gaze Estimator ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany

REFERENCES
Henny Admoni and Brian Scassellati. 2017. Social Eye Gaze in Human-Robot Interac-

tion: A Review. Journal of Human-Robot Interaction 6, 1 (2017), 25–53.
Sean Andrist, Bilge Mutlu, and Michael Gleicher. 2013. Conversational Gaze Aversion

for Virtual Agents.. In IVA, Vol. 8108. 249–262.
Reuben M Aronson, Thiago Santini, Thomas C Kübler, Enkelejda Kasneci, Siddhartha

Srinivasa, and Henny Admoni. 2018. Eye-hand behavior in human-robot shared
manipulation. In Proceedings of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction. 4–13.

Thomas Bader,Matthias Vogelgesang, and EdmundKlaus. 2009. Multimodal Integration
of Natural Gaze Behavior for Intention Recognition During Object Manipulation.
In Proceedings of the 2009 International Conference on Multimodal Interfaces (ICMI-
MLMI ’09). 199–206.

H. R. Chennamma and Xiaohui Yuan. 2013. A Survey on Eye-Gaze Tracking Techniques.
CoRR abs/1312.6410 (2013). http://arxiv.org/abs/1312.6410

Mark Cook. 1977. Gaze and Mutual Gaze in Social Encounters: How long—and when—
we look others "in the eye" is one of the main signals in nonverbal communication.
American Scientist 65, 3 (1977), 328–333. http://www.jstor.org/stable/27847843

Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris. 2018. Rt-gene: Real-time eye
gaze estimation in natural environments. In Proceedings of the European Conference
on Computer Vision (ECCV). 334–352.

Mary Hayhoe and Dana Ballard. 2005. Eye movements in natural behavior. Trends in
Cognitive Sciences 9, 4 (2005), 188–194.

Chien-Ming Huang and Bilge Mutlu. 2016. Anticipatory Robot Control for Efficient
Human-Robot Collaboration. In The Eleventh ACM/IEEE International Conference
on Human Robot Interaction (HRI ’16). IEEE Press, 83–90.

Ryo Ishii, Kazuhiro Otsuka, Shiro Kumano, and Junji Yamato. 2016. Prediction of Who
Will Be the Next Speaker and When Using Gaze Behavior in Multiparty Meetings.
ACM Trans. Interact. Intell. Syst. 6, 1, Article 4 (2016), 31 pages.

Roland S. Johansson, Göran Westling, Anders Bäckström, and J. Randall Flanagan.
2001. Eye–Hand Coordination in Object Manipulation. Journal of Neuroscience 21,
17 (2001), 6917–6932.

Petr Kellnhofer, Adria Recasens, Simon Stent, Wojciech Matusik, and Antonio Torralba.
2019. Gaze360: Physically unconstrained gaze estimation in the wild. In Proceedings
of the IEEE International Conference on Computer Vision. 6912–6921.

Ajung Moon, Minhua Zheng, Daniel M. Troniak, Benjamin A. Blumer, Brian Gleeson,
Karon MacLean, Matthew K.X.J. Pan, and Elizabeth A. Croft. 2014. Meet me where
I’m gazing: How shared attention gaze affects human-robot handover timing. InHRI

2014 - Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot
Interaction. IEEE, Institute of Electrical and Electronics Engineers, 334–341.

Kenneth Alberto Funes Mora and Jean-Marc Odobez. 2014. Geometric Generative
Gaze Estimation (G3E) for Remote RGB-D Cameras.. In CVPR. 1773–1780.

Kenneth Alberto Funes Mora and Jean-Marc Odobez. 2016. Gaze Estimation in the 3D
Space Using RGB-D Sensors - Towards Head-Pose and User Invariance. International
Journal of Computer Vision 118, 2 (2016), 194–216.

Carlos H. Morimoto and Marcio R. M. Mimica. 2005. Eye Gaze Tracking Techniques
for Interactive Applications. Comput. Vis. Image Underst. 98, 1 (2005), 4–24.

Skanda Muralidhar, Rémy Siegfried, Jean-Marc Odobez, and Daniel Gatica-Perez.
2018. Facing Employers and Customers: What Do Gaze and Expressions Tell
About Soft Skills?. In Proceedings of the 17th International Conference on Mobile and
Ubiquitous Multimedia, MUM 2018, Cairo, Egypt, November 25-28, 2018. 121–126.
https://doi.org/10.1145/3282894.3282925

Benjamin A Newman, Reuben M Aronson, Siddartha S Srinivasa, Kris Kitani, and
Henny Admoni. 2018. HARMONIC: A Multimodal Dataset of Assistive Human-
Robot Collaboration. arXiv preprint arXiv:1807.11154 (2018).

S. Sheikhi and J.M. Odobez. 2015. Combining dynamic head pose and gaze map-
ping with the robot conversational state for attention recognition in human-robot
interactions. Pattern Recognition Letters 66 (Nov. 2015), 81–90.

Rémy Siegfried, Yu Yu, and Jean-Marc Odobez. 2017. Towards the use of social interac-
tion conventions as prior for gaze model adaptation.. In ICMI. ACM, 154–162.

Brian A Smith, Qi Yin, Steven K Feiner, and Shree K Nayar. 2013. Gaze locking: passive
eye contact detection for human-object interaction. In Proceedings of the 26th annual
ACM symposium on User interface software and technology. ACM, 271–280.

Yusuke Sugano, Yasuyuki Matsushita, and Yoichi Sato. 2014. Learning-by-synthesis
for appearance-based 3d gaze estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1821–1828.

Yarbus. 1967. Eye Movements and Vision. Plenum (1967).
Y. Yu, K. Funes, and J.-M. Odobez. 2018. HeadFusion: 360 degree Head Pose tracking

combining 3D Morphable Model and 3D Reconstruction. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 40, 1 (Nov. 2018), 2653–2667.

Xucong Zhang, Yusuke Sugano, and Andreas Bulling. 2019. Evaluation of Appearance-
Based Methods and Implications for Gaze-Based Applications. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. ACM, 416.

Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2017. Mpiigaze:
Real-world dataset and deep appearance-based gaze estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 41, 1 (2017), 162–175.

http://arxiv.org/abs/1312.6410
http://www.jstor.org/stable/27847843
https://doi.org/10.1145/3282894.3282925

	Abstract
	1 Introduction
	2 Dataset
	2.1 Set-up and Calibration
	2.2 Recorded sessions

	3 Gaze estimation approach
	4 Experiments
	5 Conclusion and Future work
	Acknowledgments
	References

