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Active Learning of Bayesian Probabilistic
Movement Primitives

Thibaut Kulak, Hakan Girgin, Jean-Marc Odobez and Sylvain Calinon

Abstract—Learning from Demonstration permits non-expert
users to easily and intuitively reprogram robots. Among ap-
proaches embracing this paradigm, probabilistic movement prim-
itives (ProMPs) are a well-established and widely used method to
learn trajectory distributions. However, providing or requesting
useful demonstrations is not easy, as quantifying what constitutes
a good demonstration in terms of generalization capabilities
is not trivial. In this paper, we propose an active learning
method for contextual ProMPs for addressing this problem. More
specifically, we learn the trajectory distributions using a Bayesian
Gaussian mixture model (BGMM) and then leverage the notion
of epistemic uncertainties to iteratively choose new context query
points for demonstrations. We show that this approach reduces
the required number of human demonstrations. We demonstrate
the effectiveness of the approach on a pouring task, both in
simulation and on a real 7-DoF Franka Emika robot.

Index Terms—Imitation Learning, Learning from Demonstra-
tion, Incremental Learning

I. INTRODUCTION

LEARNING from demonstration (LfD) offers an intuitive
framework for non-expert users to easily (re)program

robots. One well-established LfD approach is called prob-
abilistic movement primitives (ProMPs) [1], which permits
movement representation and generation. ProMPs have been
successfully used for learning different robotic tasks from
demonstrations, including rhythmic tasks [2], striking tasks
[3], or human-robot collaboration tasks [4]. One of the main
capabilities of ProMPs lies in the task generalization, which
is usually achieved by conditioning the trajectory distribution
to some desired keypoints. It is also desirable and possible
to generalize with respect to a context or external variable,
which is known before executing the task (such as the mass
of an object or the volume of a liquid to pour), by learning the
joint distribution of the context variable and the trajectory [5,
6]. Task generalization is crucial for robotic applications. This
requires a set of demonstrations to provide various executions
of the task, whose acquisition is often costly. Thus, we want
to collect these demonstrations in an efficient manner. Often,
non-expert users struggle to identify what demonstration will
be the most informative to the robot [7]. One way to alleviate
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Fig. 1: Overview of the pouring task with a 7-axis robot.

this limitation is to provide the user with some feedback, such
as a visual illustration of what the robot has currently learned
[8]. Yet, such an approach requires the appropriate design of
a feedback mechanism, which might not be trivial in a high-
dimensional task, and still requires the user to choose the
demonstration eventually. In contrast, we propose to automat-
ically determine what constitutes a good demonstration.

Active learning is a promising approach as it allows the
robot to actively request a demonstration to improve its
comprehension of the task. This alleviates the human burden
of choosing which demonstration to provide, and is expected
to reduce the number of demonstrations required for effective
generalization. The main component of an active learning
framework is a metric allowing to select the demonstration that
is expected to yield the greatest improvement. Traditionally,
this metric is based on uncertainties [9]. When building statis-
tical models, two different kinds of uncertainties arise, namely
aleatoric uncertainties and epistemic uncertainties. Aleatoric
uncertainties represent the variations in the demonstrations,
i.e., different possible ways to perform the task. This is the
uncertainty that is captured by ProMPs when fitting a Gaussian
or a Gaussian mixture model (GMM) to the demonstrations.
Such uncertainty is then typically used to define when the
robot must be stiff and where it can be compliant. In contrast,
epistemic uncertainties represent the uncertainties due to the
lack of data. In other words, aleatoric uncertainties cannot be
reduced by adding more data, while epistemic uncertainties
can be. For this reason, the quantification of epistemic uncer-
tainties is crucial for active learning frameworks.

In this paper, we propose an active learning approach
for ProMPs with the aim of improving the generalization
capabilities by relying on fewer demonstrations. To do so,
we use Bayesian inference [10] to quantify both aleatoric and
epistemic uncertainties in ProMPs. Specifically, we propose
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to learn the ProMP with a Bayesian Gaussian mixture model
(BGMM). In Sec. III, we introduce Bayesian ProMPs. Then,
in Sec. IV, we propose an active learning method based on the
epistemic uncertainties captured by the BGMM. We demon-
strate the applicability of our approach in Sec. V on three
different pouring task experiments. The first two experiments
are performed in simulation to allow quantitative comparisons
and for reproducibility purposes. The last experiment shows
the applicability of the approach on a real 7-DoF robot pouring
task.

The contributions of this paper are threefold: (i) we propose
a principled methodology for deriving epistemic uncertainties
in ProMPs; (ii) we propose to use a closed-form lower bound
of the differential entropy of the epistemic uncertainty as an
information gain metric for an active learning of ProMPs; (iii)
we show the applicability of the approach on a robotic pouring
task.

II. RELATED WORK

As the data acquisition process is usually costly in robotics,
active learning has emerged as a viable solution. It has been
shown that active learning permits a faster exploration of the
action space [11], which is particularly true in the context of
developmental robotics, where active learning is often referred
to as curiosity-driven learning [12, 13]. In the context of
learning from demonstrations, active imitation learning [14] is
a topic gaining interest. It has indeed been successfully used
in a variety of robotic tasks, such as autonomous navigation
[15, 16]. In [17], the authors leverage the uncertainties on a
discrete hypothesis space to request meaningful demonstra-
tions to a human teacher. Several approaches have also been
proposed in the context where the learner does not request full
demonstrations, but only the action to take at a given state
[14, 18]. In [19], the authors propose to use active learning
with BGMMs to learn control policies from demonstrations,
and show the effectiveness of the approach on a reaching
task with obstacles. One important limitation of this work
is that the uncertainties are computed for an action given
the current state. Hence, it is not applicable to robotic tasks
where one needs to reason about the uncertainty over the
whole task (e.g., over the whole trajectory), which is often the
case in robotics (for instance for object grasping, assembly or
navigation tasks). Also, the method requires the possibility to
start and show a demonstration from any given state, which
is not always possible (for instance, starting a demonstration
in the middle of a dynamic throwing task or a pouring task is
not feasible).

Closer to our work is [4], in which Gaussian process
regression (GPR) is used to learn a trajectory given a context.
It is applied to a reaching task where the context is the desired
end-effector position. Although Gaussian processes are very
efficient for capturing epistemic uncertainties, they do not
capture aleatoric uncertainties (variations of the task). It is
therefore not applicable to tasks where one wants to use the
aleatoric uncertainties for compliant control. As there is no
guarantee of convergence of the retrieved trajectory to the
desired final location, they combine the trajectory predicted

by GPR with a dynamic movement primitive (DMP) approach
that attracts the robot to the desired goal. Thus, their approach
might not be applicable for tasks where the context is not the
desired end-effector position.

In [20] the authors propose an active learning method for
learning ProMPs. The distribution is learned in the ProMP
weight space using a GMM. They then use the marginal dis-
tribution over the internal context space (trajectory keypoint)
to request demonstrations for contexts that are the furthest
from any Gaussian (as Mahalanobis distance). Their approach
is evaluated for a reaching task where different grasps are
possible, with attempts to generalize over different poses
of the object. This approach has several limitations. First,
they choose the next context to query based only on some
distance in the context space. While in their application this
can make sense since the contexts (keypoints) are closely
correlated with the trajectory distributions, this is not relevant
for a more general external context. Indeed, representing
the context space well is not so useful, as our ProMPs are
used to generate trajectory distributions for a given context.
Rather, what matters is whether a given context influences the
trajectory distribution. In this regard, their method would aim
to represent a context variable with no influence on trajectories
equally well as other more meaningful context variables. In
contrast, our method focuses on the conditional distribution of
the weights given the context, hence learning dependencies and
correlations between the context variables and the movement.
A second limitation is that the use of a GMM does not take
into account epistemic uncertainties but only aleatoric ones,
while work in active learning [9] has shown that metrics based
on aleatoric uncertainties are less effective than those based on
epistemic uncertainties. Lastly, their approach uses a heuristics
to add Gaussians during learning using a threshold. Indeed,
the Mahalanobis distance does not depend on the weights
attributed to the different Gaussians, which might bias the
learning towards unlikely portions of the context space. In
contrast, we use Bayesian inference to infer the number of
Gaussians using a Dirichlet prior on the mixing coefficients.

III. BAYESIAN PROMPS

In this section, we present the BGMM framework for
learning contextual ProMPs.

A. Contextual ProMP

A ProMP is a probability distribution over trajectories built
from a series of N demonstrations (trajectories) of length
T and of D dimensions. A demonstration τ ∈ R(T×D) is
approximated by a sum of M basis functions, which are often
chosen as radial basis functions (RBF)

τi = Φwi+ε, with Φ = Φ1d⊗ID, (1)

where ⊗ represents the Kronecker product, ε is zero-mean
i.i.d. Gaussian noise, wi of size MD×1 is the weight asso-
ciated to the ith demonstration, Φ1d

T×M is the basis function
matrix with Φ1d

t,m = Φm(t) corresponding to the mth basis
function indexed at time t, and ID is an identity matrix. The
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weight vectors associated to each demonstration are computed
with least squares as

wi = (Φ>Φ)−1Φ>τi. (2)

A probability distribution p(w) can then be learned from the
demonstrations {wi}Ni=1, usually with a multivariate Gaussian
or a GMM.

We focus on tasks where adaptation with respect to an
external context variable is required. Such context variable
can be any environmental property such as an object mass,
an object position, or the amount of liquid in a pitcher for a
pouring task. Note that the method is general and would be
applicable to internal context variables as well (e.g., trajectory
keypoints). A common way [2, 5] to take into account context
variables is to learn the joint distribution of contexts and
weights p(c,w), where c is the context variable of size Dc.
For notation convenience, we introduce w̃i = [c>i ,w

>
i ]
>,

hence p(c,w) = p(w̃).

B. Problem formulation

The goal of the task lies in how to modulate the movement
w based on different contexts c. We denote the context space C
as the space of all possible contexts we would like our robot to
be able to generalize to. Formally, this means that there exists
an unknown ground truth target distribution pGT(c,w) that can
be used to generate robot movements pGT(w|c) adapted for
context c. We aim to learn this unknown joint distribution by
active imitation learning.

C. Bayesian Gaussian Mixture Model (BGMM)

In this section, we present the learning of the joint distribu-
tion of contexts and weights with a BGMM using variational
inference. The joint distribution is defined with a mixture
of K multivariate normal distributions (MVNs) with means
µ={µk}Kk=1, precision matrices Λ={Λk}Kk=1 and mixing
coefficients π={πk}Kk=1 as

p(w̃|π,µ,Λ) =

K∑
k=1

πkN (w̃|µk,Λ−1k ).

A Normal-Wishart prior is used for means and precision
matrices, and a Dirichlet prior is put on the mixing coefficients:

p(µ,Λ) =

K∏
k=1

N (µk|(β0Λk)−1)W(Λk|Sk, νk), (3)

p(π) = Dir(π|α0). (4)

The means, the precision matrices and the mixing coeffi-
cients maximizing the posterior distribution are estimated
using closed-form update equations similar to those of the
Expectation-Maximization algorithm for the maximum likeli-
hood solution, see Section 10.2.1 in [10] for further details.
Also, they are available as parts of standard machine learning
libraries (e.g., scikit-learn for Python).

Given N demonstrations W̃ = {w̃}Ni=1, the predictive
density of a new pair of context and weight ˆ̃w = [ĉ>, ŵ>]

>

is equivalent to a mixture of multivariate t-distributions with

mean m̂k, covariance matrix L̂k, mixing coefficients π̂k and
degrees of freedom ν̂k

p( ˆ̃w|W̃ ) =

K∑
k=1

π̂k t( ˆ̃w|m̂k, L̂k, ν̂k), where

π̂k =
αk∑K
k=1 αk

,

ν̂k = νk+1−D−Dc,

L̂k =
(νk+1−D−Dc)βk

1+βk
Sk,

m̂k = mk,

(5)

where αk, βk and mk are derived from statistics of the data.
We do not include the full equations here, but the reader can
refer to Equations 10.41–10.63 of [10] for more details.

We can then condition on the context to get the conditional
posterior predictive distribution of the weights for a given
context variable as in [10] (Section 10.2.3)

p(ŵ|ĉ, W̃ ) =
K∑
k=1

π̂
w|c
k t(ŵ|m̂w|c

k , L̂
w|c
k , ν̂

w|c
k ), (6)

with π̂
w|c
k =

π̂k t(ĉ|m̂c
k, L̂

c
k, ν

c
k)∑K

j=1 π̂j t(ĉ|m̂c
j , L̂

c
j , ν

c
j )
, (7)

ν̂
w|c
k = ν̂k+Dc, (8)

m̂
w|c
k = m̂w

k +L̂wck L̂
cc−1

k (ĉ−m̂c
k), (9)

L̂
w|c
k =

ν̂k+(ĉ−m̂c
k)>L̂cc

−1

k (ĉ−m̂c
k)

ν̂
w|c
k

·

(L̂wwk −L̂wck L̂cc
−1

k L̂wc
>

k ), (10)

where we have decomposed L̂k =

[
L̂cck L̂wc

>

k

L̂wck L̂wwk

]
.

We have shown how contextual ProMPs can be learned with
Bayesian GMMs. We will now propose an active learning
strategy leveraging the uncertainties learned by the Bayesian
model.

IV. ACTIVE LEARNING OF PROMPS
In this section, we propose an active learning strategy for

Bayesian ProMPs. First, we show how aleatoric and epistemic
uncertainties can be separated when conditioning. Then, we
propose a closed-form information gain metric based on the
entropy of the conditional distribution. Finally, the full active
learning process is summarized.

A. Uncertainty decomposition
The conditional posterior predictive distribution of the

Bayesian ProMP encodes two types of uncertainties: the
aleatoric uncertainty (possible variations of the task, the one
learned with standard ProMPs) and the epistemic uncertainty
(representing the lack of knowledge). Indeed, from Eq. (10),
we can see that the covariance matrix of the conditional
posterior predictive distribution can be decomposed into two
parts (see also [19])

L̂
w|c
k = L̂al

k +L̂ep
k , where (11)
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L̂al
k =

ν̂k

ν̂
w|c
k

(L̂wwk −L̂wck L̂cc
−1

k L̂wc
>

k ), (12)

L̂ep
k =

(ĉ−m̂c
k)>L̂cc

−1

k (ĉ−m̂c
k)

ν̂
w|c
k

(L̂wwk −L̂wck L̂cc
−1

k L̂wc
>

k ).

(13)

Notice that the first part does not depend on the context
ĉ, while the second part grows quadratically with it. This
was observed in [10] (Section 3.3.2) for Bayesian linear
regression. In that sense, we argue that the first part can
be attributed to the aleatoric uncertainty, and the second to
the epistemic uncertainty. Indeed, the first part cannot be
reduced when adding more data as it models the variability
in the demonstrations due to the fact that for the same given
context ĉ different movements can be executed to achieve the
task. On the other hand, the second term can be reduced
when having more data. Actually, in the limit where the
amount of data and the number of Gaussians would grow
to infinity, the context space would be perfectly represented
and the term (ĉ−m̂c

k)>L̂cc
−1

k (ĉ−m̂c
k) would tend to zero.

In practice, the above decomposition is particularly useful in
the context of ProMPs, because we can have access to the
aleatoric uncertainty to design compliant behaviors, or to the
epistemic uncertainty for quantifying the lack of knowledge
of the model.

B. Uncertainty measurement

The most general and common uncertainty measure is the
Shannon entropy [21]. Initially proposed for discrete random
variables, the Shannon entropy has been extended to con-
tinuous probability distributions, in which case it is called
continuous (or differential) entropy. We propose to quantify
the uncertainty of our conditional ProMP by calculating the
(continuous) entropy of its epistemic part.

The entropy of a mixture of multivariate t-distributions
cannot be obtained analytically. To avoid computationally
expensive Monte Carlo sampling methods, we propose to
approximate the distribution with a GMM, for which there is
a closed-form lower bound of the entropy. The epistemic part
of the conditional ProMP distribution can be approximated by
a mixture of K Gaussians using moment matching:

π̃k(c) = π̂
w|c
k , µ̃k(c) = m̂

w|c
k , Σ̃k(c) =

ν̂
w|c
k

ν̂
w|c
k −2

L̂ep
k (c).

(14)
We propose to use the closed-form lower bound introduced in
[22], which has been shown to be tight. It is expressed as (for
clarity purposes we omit the fact that all GMM parameters
depend on c)

Hlower(p
ep(ŵ|ĉ, W̃ )) =

1

2

(
K log 2π+K+

K∑
i=1

π̃i log|Σ̃i|
)

−
K∑
i=1

π̃i log

K∑
j=1

π̃je
−Cα(pi,pj), (15)

where Cα(pi, pj) is the Chernoff α-divergence distance func-
tion between the ith and jth Gaussians for α ∈ [0, 1]:

Cα(pi, pj) =
(1−α)α

2
·

(µ̃i−µ̃j)>
(

(1−α)Σ̃i+αΣ̃j

)−1
(µ̃i−µ̃j) +

1

2
log

(
|(1−α)Σ̃i+αΣ̃j |
|Σ̃i|1−α|Σ̃j |α

)
. (16)

In practice we choose α = 1/2, in which case the Chernoff
divergence is the Bhattacharyya distance.

The full active learning process is summarized in Algorithm
1. Finding the context which maximizes the epistemic entropy
can be done either using a grid search if the context space is
of low dimension, or using a Bayesian optimization algorithm.

Algorithm 1: Choosing the demonstration context.
Data: demonstrations W̃ = {ci,wi}Ni=1, context

search space C
Result: context c∗ at which to request a

demonstration

Learn joint distribution of p(c,w) = p(w̃) with
BGMM;

Calculate p(ŵ|ĉ, W̃ ) using Equations (6) to (10);
Isolate the epistemic uncertainty
pep(ŵ|ĉ, W̃ ) with Equations (11) and (13);

Approximate the entropy of
pep(ŵ|ĉ, W̃ ) with Equations (14) to (16);

Find c∗ = arg maxĉ∈C Hlower(p
ep(ŵ|ĉ, W̃ ))

V. EXPERIMENTS

In this section, we evaluate our active learning method
in four different ways related to the pouring task. The first
three favor quantitative results and reproducibility by using a
simulated environment and a given database of demonstrations
to choose from. In the last experiment, we consider the pouring
task on a real 7 DoF Franka Emika robot.

In all experiments, we use N = 20 evenly spread Gaussian
radial basis functions (RBFs) for ProMP. The width of the
RBFs are set as h = (T−1N )2. The hyperparameters of the
BGMM are the default hyperparameters of the scikit-learn
library. We choose a diagonal covariance matrix prior, with a
standard deviation of 0.1 for the context variables and 1 for the
ProMP weights. We use a maximum number of 5 Gaussians,
or strictly less than the number of demonstrations if there are
less than 6 demonstrations.

Throughout the experiments, we compare our method to
three baselines. The first one (Random) is a random strategy
using the same BGMM representation as our method. The
second one (GP) is an adaptation of [4] for external context
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Fig. 2: Overview of the simulated pouring environment.

variables: we learn the conditional model of the trajecto-
ries given the context with a Gaussian process (GP)1 using
a squared exponential kernel (hyperparameters optimization
gave a length scale of 1 and output variance of 0.12). The
active learning approach for the GP baseline selects the
context for which the conditional distribution of the trajectories
given the context has the most variance. The third baseline
(Conkey19) is an adaptation of [20] (introduced in Sec. II)
for external context variables: we learn the joint distribution
of contexts and ProMP weights with a GMM and use the
Mahalanobis distance in the context space as an active learning
measure. We use the same covariance prior as with our
approach, and we use β = 3 for the hyperparameter governing
how many outliers are discarded when adding a new datapoint
to the Gaussian mixture, see Eq. (7) of [20] for more details2.

A. Simulated pouring

We use here a simulated pouring environment implementing
the Franka Emika robot in the PyBullet simulator [23]. The
goal of this task is to pour liquid (simulated as rigid spherical
particles because PyBullet does not support fluids simulation)
from a pitcher into a mug. An overview of the simulated setup
is shown in Fig. 2. In the first two simulated environments,
we avoid learning the affordances of the object and control
directly the orientation of the edge of the pitcher, from where
the liquid is poured. This permits us to make the task with
a reference trajectory of just one variable: the angle of the
pitcher. In the third simulated environment, we go beyond the
one-dimensional control angle case, and show the robustness
of our approach for more complex movements encoded in a
6-dimensional control variable.

1) 1D context: In this first experiment, we consider a one-
dimensional context variable, which represents the amount of
liquid in the pitcher. As the mug volume is lower than the
pitcher volume, one difficulty of the task is to stop pouring
when the mug is full. We consider context variables varying
from 0.05 to 1, representing how full the pitcher is (from
5% to 100%). In this experiment, the goal is to fill the mug
completely (without overflowing).

In order to have demonstrations exhibiting realistic vari-
ations, we provide real human demonstrations using tele-
operation. As the reference trajectory contains only a one-
dimensional angle, teleoperation is made simply using a
camera by detecting the angle of a colored object held by

1Alternatively, we could also learn a GP from contexts to ProMP weights,
but in practice it gave the same results as learning directly from contexts to
trajectories. For this reason, we do not include it in this paper.

2Authors advised to choose β between 2 and 3, we chose 3 because it gave
the best results.
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(a) Teleoperated demonstrations, 1D context
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Fig. 3: Subset of demonstrations for different contexts.

the human demonstrator. We build a dataset of 100 demon-
strations for contexts evenly spread between 0.05 and 1.
Namely, we choose C = {0.05+ 1−0.05

99 k}99k=0 and provide
one teleoperated demonstration for each context in C. This
permits reproducibility of the results and a fair comparison of
the methods as they have access to the same demonstrations
for given contexts. Demonstrations are aligned using linear
interpolation. A subset of aligned demonstrations is shown in
Fig. 3a. We can effectively see that, the more the pitcher is
filled, the less it has to be tilted to pour into the mug. We start
the active learning process with 2 initial demonstrations, for
contexts randomly chosen in the context space C. We make the
experiment 20 times with different initial demonstrations. We
show in Fig. 4 how it compares to a random strategy which
randomly chooses the next context. In Fig. 4a, we plot the
mean epistemic entropy (averaged on the context space C) in
function of the number of requested demonstrations. We can
see that our strategy outperforms the random strategy in terms
of reduction of the epistemic uncertainties. The diminution of
the epistemic uncertainty is particularly big during the first
5 demonstrations requested with our method. In Fig. 4b, we
propose an objective metric for comparing quantitatively the
two methods. We introduce the task cost, which is simply a
`2 norm between the final volume in the mug and the desired
final volume (approximated with the number of balls in the
mug. The desired number of balls is 50, which corresponds
to the mug being almost completely filled. Filling it too
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Fig. 4: Quantitative results for simulated 1D context pouring.

much is possible and increases the task cost as well). We
observe in Fig. 4b that our method significantly outperforms
the random strategy in the beginning of the learning process (5
demonstrations), while afterwards the results are similar. This
suggests that our active learning strategy improves learning
with few demonstrations. As the context is low-dimensional (1
dimension), this is not surprising that for more than 10 demon-
strations, active learning does not yield any improvement over
a random strategy which has also explored the context space
well. It is also interesting to note that our method has less
variance across experiments than the random strategy. Also,
our movement representation with a BGMM gives much better
results than the GP approach as it achieves a significantly
lower task cost at all stages of the learning process. We
can see that our method also outperforms Conkey19, whose
performance stagnates during the learning process. We believe
this is due to the heuristics that are proposed to add Gaussians
to the mixture, which had only been tested in the 2D case in the
original paper, and that would probably need to be adjusted.

2) 2D context: In this experiment we propose to add
another context variable: the desired final volume in the mug.
This context variable also ranges from 0.05 to 1, representing
how full the mug is (from 5% to 100%). We then have
c = [cpitcher, cmug]T . For this task, we manually implement
a controller performing the task, which is used as the human
demonstrator (note that the demonstrations may not be perfect,
e.g., when there is not enough liquid in the pitcher initially
to fill the mug to its desired level). A sample of generated
demonstrations can be found in Fig. 3b. We can see that,
for a given desired volume in the mug, the smaller the
initial volume of the pitcher is, the more the pitcher needs
to be tilted. And, for a given initial volume of the pitcher,
the more the mug needs to be filled, the more the object
has to be tilted. Note that we do not bring the pitcher
back to its horizontal position when it is fully emptied. As
in the previous experiment, for reproducibility reasons, we
precompute a database of generated demonstrations. A grid
of width 20 is used to represent the context space for which
demonstrations are generated, yielding 400 demonstrations.
Namely, C = {(0.05+ 1−0.05

99 i, 0.05+ 1−0.05
99 j)}19i,j=0. We also

perform 20 experiments where each experiment starts with 2
randomly sampled demonstrations from the database. Results
are shown in Fig. 5. We can see in Fig. 5a that our strategy
outperforms the random strategy in terms of reduction of the
epistemic uncertainties. More importantly, we see in Fig. 5b
that the active learning strategy can learn the task using fewer
demonstrations than a random strategy. Namely, the model
improved with 5 demonstrations obtained using our method
achieves lower task cost than if the same model was improved
with 10 demonstrations using the random strategy. Similarly,
10 actively gathered demonstrations contribute better to the
task cost than 20 randomly gathered ones. This shows that the
entropy of the epistemic uncertainties of a BGMM is a good
metric for actively learning ProMPs. We also observe that our
BGMM approach significantly outperforms the GP baseline.
In particular, we see that the GP approach is on par with the
BGMM-Random approach after 5 requested demonstrations,
but then performs worse than the two approaches based on
BGMMs. This motivates the use of our Bayesian representa-
tion based on ProMPs for learning robot movements, instead
of a Gaussian Process approach. Note also that our approach
has the additional advantage of quantifying the aleatoric un-
certainty as well, which can typically be exploited in ProMPs
for designing compliant controllers. Also, we observe that in
this experiment the Conkey19 approach performs similarly
to our approach, though slightly worse. As explained in the
previous subsection, we believe this is because this approach
was developed for a 2-dimensional context case.

3) 3D context: In this experiment, we want to test the
robustness of our method with respect to higher-dimensional
context and control variables. Hence, we add a third context
variable related to the position where the pitcher was grasped
by the robot. Namely, the robot always starts from the same
position but the pitcher can have been grasped at different
heights between the base and the top. This makes the move-
ment more complex as one rotation angle is not sufficient
anymore to characterize it, and there are correlations between
the robot translations and rotations. We use a 6-dimensional
control variable consisting of position and orientation (Euler
angles) of the robot end-effector. A controller is implemented
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Fig. 5: Quantitative results for simulated 2D context pouring.

to execute the task, and is used as the human demonstrator. For
this experiment, due to the higher dimensionality of the context
space, we do not precompute a database of demonstrations as
in previous experiments but generate online the demonstrations
requested by the algorithm, and use a Bayesian optimization
algorithm (the tree-structured Parzen estimator approach [24]
implemented in the hyperopt Python package [25]) to calculate
the context yielding the highest epistemic entropy.

We can see in Fig. 6a that the reduction of the epistemic
uncertainties is bigger with our active learning metric than with
the random baseline, similarly to what we observed in the past
two experiments, and that this epistemic reduction correlates
with a better task cost error (see Fig. 6b), confirming that
the epistemic uncertainties seem to be a good active learning
metric. Finally, our method outperforms the two alternative
baselines from the literature by a very large margin in this
more complicated experiment.

B. Real robot pouring task

In this experiment we demonstrate the viability of our
approach on a pouring task with a real 7-axis Franka Emika
Panda robot. An overview of the physical setup can be seen
in Fig. 1. The context space is 2-dimensional as in the
previous simulated experiment, with context variables ranging
from 10% to 100%. In this experiment, we also show the
robustness of our approach to several degrees of freedom as
we choose the demonstrations to be 3-dimensional (position
in the vertical plane containing the pitcher and the glass, and
orientation of the pitcher). We give 2 initial demonstrations
to the robot in random contexts, and the robot iteratively
requests 20 additional demonstrations. The first 3 iterations
of the active learning process are shown in Fig. 7. We can
see that the robot starts by requesting demonstrations at the
corners of the state space, which is normal because this is
where it is the most uncertain. Note that we could use an
information-density method to make the requests close to the
demonstrations (e.g., by adding a similarity objective). We
verified qualitatively that the learned movement representation
permits to pour successfully for different contexts, which can

be seen on the supplementary video (we tested it on 9 different
contexts, taken from a 3×3 grid in the context space).

VI. CONCLUSION
In this paper, we proposed to use Bayesian Gaussian mixture

models to learn ProMPs. We introduced a closed-form entropy
measure leveraging the epistemic uncertainties captured by
the Bayesian model. We demonstrated the usefulness of the
approach both in simulation and on the real robot, showing
that it reduces the number of demonstrations required to learn
a movement representation that has good generalization capa-
bilities. In future work, we plan to find metrics for determining
how many demonstrations are required, and extend this method
for combining LfD and reinforcement learning of ProMPs in
a unified active learning framework.
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