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Abstract
In this paper, we present a fast method to detect hu-

mans from videos captured in surveillance applications. It
is based on a cascade of LogitBoost classifiers relying on
features mapped from the Riemanian manifold of region co-
variance matrices computed from input image features. The
method was extended in several ways. First, as the map-
ping process is slow for high dimensional feature space,
we propose to select weak classifiers based on subsets of
the complete image feature space. In addition, we pro-
pose to combine these sub-matrix covariance features with
the means of the image features computed within the same
subwindow, which are readily available from the covari-
ance extraction process. Finally, in the context of video ac-
quired with stationary cameras, we propose to fuse image
features from the spatial and temporal domains in order to
jointly learn the correlation between appearance and fore-
ground information based on background subtraction. Our
method evaluated on a large set of videos coming from sev-
eral databases (CAVIAR, PETS, ...), and can process from
5 to 20 frames/sec (for a 384x288 video) while achieving
similar or better performance than existing methods.

1 Introduction

Detecting humans in images and videos is one of the im-
portant challenges in computer vision. This is due to fac-
tors such as the large variation of appearance and pose that
human forms can take due to their clothing, the nature of
articulations of the body, the changes in camera view point
or illumination variations. In this paper, we address the fast
detection of humans in videos recorded by a stationary cam-
era. This is an essential step in many applications related to
surveillance and smart spaces such as meeting rooms or of-
fices. Indeed, improving human modeling and detection is
crucial for tracking algorithms, especially when scenes be-
come more crowded.

In general, there are two main approaches to tackle the
detection of humans in images. The first consists of mod-
eling the human by body parts whose locations are con-

strained by a geometric model [7, 9]. In [9], body parts were
represented by combinations of joint orientation and posi-
tion histograms. Separate Adaboost detectors were trained
for several body parts. Localization was then obtained by
optimizing the likelihood of part occurrence along with the
geometric relation. However, while these techniques usu-
ally attempt to provide a general object recognition frame-
work [8], they do not lend themselves to fast implemen-
tations. In addition, they take into account the articulated
nature of the human body, which might not be so appropri-
ate when dealing with low resolution human images such as
those often encountered in surveillance videos.

The second approaches are based on applying a hu-
man detector for all possible subwindows in a given im-
age [5, 11, 16]. For instance, in [11], a SVM classifier was
learned using Haar wavelets as descriptors. In [16], an ef-
ficient detector applicable to videos was built using a cas-
cade of Adaboost classifiers relying also on Haar wavelet
descriptors but extracted from spatio-temporal differences.
Recently, [1] proposed a very good detector that relied on
a linear SVM classifier applied to densely sampled his-
tograms of orientation gradient (HOG). It was extended in
[2] to videos using histograms of differential optical flow
features in addition to HOG. Finally, very recently, [15]
proposed a method that outperformed previous methods [1].
It is based on a cascade of LogitBoost classifiers that uses
covariance features as human descriptors. More precisely,
subwindows of the detection windows are represented by
the covariance matrix of image features, such as spatial lo-
cation, intensity, gradient magnitude and orientation. The
LogitBoost classifier was modified by mapping the covari-
ance matrix features in an appropriate space to account for
the fact that covariance matrices do not lie in a vector space
but in a Riemannian manifold. This resulted in superior per-
formance.

In the present paper, out goal is to detect humans in
videos captured from stationary cameras. We extend the
method of Tuzel et al. [15] in several ways to speed up the
computation and take into account the temporal informa-
tion. First, as the covariance mapping step performed for
each weak classifier is slow for high dimensional input fea-



ture space, we propose to build weak classifiers based on
subsets of the complete image feature space. This corre-
sponds to using sub-matrices of the full covariance matrix
and allows us to explore the covariance between features
in small groups rather than altogether for each weak clas-
sifier. As the number of subsets to explore increases expo-
nentially, we propose a tractable method to select with high
probability the subset that provides the best performance in
the logit-boost training stage.

Secondly, we propose to combine these sub-matrix co-
variance features with the image feature means computed
within the same subwindow, which are available at no addi-
tional cost. The use of these means allows faster rejection
and leads to similar or better results at a reduced cost.

Thirdly, in the context of videos acquired with stationary
cameras, we propose to fuse image features from the spatial
and temporal domains in order to take advantage of both
appearance and foreground information. While in the past
background subtraction results have commonly be used as
a region of interest (ROI) selection process, e.g. [6] (an ex-
ception is [16]), we propose here to use them directly as fea-
tures in the classifiers. This has several advantages. First,
due to the cascade approach, the temporal features still play
implicitly a ROI role allowing for faster processing. This
will be achieved in a more informative way, by exploring the
correlation between these temporal features and the spatial
ones. Second, we propose to use object foreground prob-
abilities rather than background subtraction binary masks.
This is interesting as these probabilities can exhibit varia-
tions related to the human body pose (to the contrary of cast
shadow for instance), as illustrated by some examples in
Fig. 2. In addition, this choice alleviates the need for set-
ting the background detection threshold; a sensitive issuein
practice. When too low a threshold is used, the resulting
over-detection produces less informative masks. When too
high a threshold is used, there will be missed detections.
Our choice should thus be more robust against variation in
the contrast between humans and the background.

All together, the result is a near real-time human detec-
tor that performs accurately on challenging datasets. The
rest of the paper is organized as follows. Section 2 intro-
duces the covariance features. In Section 3 we presents a
brief description of the LogitBoost classification algorithm
for Riemanian manifolds. Section 4 presents our approach.
Experimental results are presented in Section 5.

2 Region Covariance Descriptors

Let I be an input image of dimensionW ×H. From this
image we can extract at each pixel locationx = (x, y)⊤

a set ofd features such as intensity, gradient, and filter re-
sponses. Accordingly, we can define aW × H × d feature
imageH.

Selected Features:We propose to use the following 8-
dimensional setH(x):

H=

[

x |Ix| |Iy|
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G2
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]⊤

(1)
whereIx andIy are the first-order intensity derivatives, and

arctan
|Iy|
|Ix|

represents the edge orientation.G denotes a
foreground probability value (a real number between 0 and
1 indicating the probability that the pixelx belongs to the
foreground), andGx andGy are the corresponding first-
order derivatives. With respect to [15], the main difference
is in using the two foreground related measures instead of
second-order intensity derivativesIxx andIyy of the orig-
inal images. In the context of human detection in videos,
foreground measures should be much more informative. To
extract the foreground features, we rely on the robust back-
ground subtraction technique described in [17]. Examples
are shown in Fig. 2.

Covariance computation:Given a rectangular windowR,
we can compute the covariance matrixCR of the features
inside that window according to:

CR =
1

|R| − 1

∑

x∈R

(H(x) − mR)(H(x) − mR)⊤ (2)

wheremR is the mean vector in the regionR, i.e. mR =
1
|R|

∑

x∈R H(x), and| · | denotes the set size operator. The
covariance matrix is a very informative descriptor which en-
codes information about the variance of the features, their
correlations with each other, and spatial layout. It can be
computed efficiently using integral images [14].

Covariance normalization:The covariance features are ro-
bust towards constant illumination changes. To allow ro-
bustness against local linear variations of the illumination,
we apply the following normalization. Letr be a possi-
ble subwindow inside the test windowR. We first compute
the covariance of the subwindowCr using the integral rep-
resentation. Then, all entries of the covarianceCr are nor-
malized w.r.t. the standard deviations of their corresponding
features inside the detection windowR, which can be ob-
tained from the diagonal terms of the covarianceCR [15].
The resulting covariance is denotedC′

r.

3 LogitBoost Learning on Riemannian Space

LogitBoost algorithm:We first briefly introduce the stan-
dard LogitBoost algorithm on vector spaces [4], which is
a variant of the popular Adaboost algorithm. In this sec-
tion, let {xi, yi)}i=1...N be the set of training examples,
with yi ∈ {0, 1} andxi ∈ R

n. The goal is to find a de-
cision functionF which divides the input space into the 2



classes. In LogitBoost, this function is defined as a sum of
weak classifiers, and the probability of an examplex being
in class 1 (positive) is represented by

p(x)=
eF (x)

eF (x) + e−F (x)
, F (x)=

1

2

∑NL

l=1
fl(x). (3)

The LogitBoost algorithm iteratively learns the set of weak
classifiers{fl}l=1...NL

by minimizing the negative bino-
mial log-likelihood of the training data:

−
∑N

i
[yi log(p(xi)) + (1 − yi) log(1 − p(xi))] , (4)

through Newton iterations. At each iterationl, this
is achieved by solving a weighted least-square regres-
sion problem:

∑N

i=1 wi‖fl(xi) − zi‖
2, where zi =

yi−p(xi)
p(xi)(1−p(xi))

denotes the response values, and the weights
are given bywi = p(xi)(1 − p(xi)).

LogitBoost for Riemannian manifolds:However, since co-
variance matrices do not lie in a vector space but in the Rie-
mannian manifold of symmetric positive definite matrices
M, Tuzel et al. [15] proposed modifications to the original
LogitBoost algorithm to specifically account for the Rie-
mannian geometry. This was done by introducing a map-
ping h : M → R

n projecting the input covariance features
into the Euclidian tangent space at a pointµl of the mani-
fold M:

h : X 7→ x = h(X) = vecµ
l
(logµ

l
(X)) (5)

where thevec andlog operators are defined byvecZ(y) =

upper(Z− 1

2 yZ− 1

2 ) with upper denoting the vector form
of the upper triangular martix part, andlog

Z
(Y) =

Z
1

2 log(Z− 1

2 YZ− 1

2 )Z
1

2 and log(Σ) = U log(D)U⊤

whereΣ = UDU⊤ is the eigenvalue decomposition of the
symmetric matrixΣ, andlog(D) is a diagonal matrix whose
entries are the logarithm of the diagonal terms ofD [12, 15].
One question that arises is: for a weak classifierfl, how can
we select the projection pointµl? Tuzel et al. [15] proposed
to use the weighted mean of all training examples, which is
defined by:µl = arg min

Y∈M

∑N
i=1 wid

2(Xi,Y) where
the functiond2(X,Y) measures the distance between two
pointsX andY in the Riemannian spaceM. This min-
imization is achieved using a gradient descent procedure
described in [12]. Since the weights are adjusted through
boosting, at a given iterationl, the mean will move towards
the examples which have not been well classified during
previous iterations, allowing to build more accurate classi-
fiers for these points. Ultimately, a weak classifier is defined
as: fl(X) = gl(h(X)) wheregl can be any function from
R

n → R. In this paper, we used linear functions.

Learning with a cascade:The above method was imple-
mented within a cascade of LogitBoost rejection classifiers
[15] (details are given in the next Section). At each itera-
tion l, a collection of weak classifiers are learned and the

one that minimizes the negative binomial log-likelihood (4)
is actually added asfl to form the decision functionF . The
collection of classifiers is made out of all the covariance
features that can be extracted from the subwindowsr of the
detection windowR. However, to keep the computation
tractable, only a subset is tested. At each boosting iteration
l, we randomly selectNw = 200 subwindows whose size is
at least 1/10 of the width and height of the detection window
[15].

4 Proposed Algorithm

In this section, we describe the improvements we made
to the approach as well as more technical details about the
cascade training.

4.1 Using Feature Subsets

The cascade of LogitBoost classifiers is quite fast. How-
ever, at runtime, most of the computation is spent on the
eigenvalue decomposition requested to compute the loga-
rithm of a matrix in the mapping step (cf (5) and formulas
that follow). The load depends on the feature dimension, as
illustrated in Fig. 1(a), which shows the relative computa-
tion time of a LogitBoost classifier composed of 10 weak
classifiers. One option to speed-up the process could be to
decrease the overall feature size. However, this could be at
the cost of performance. We propose instead to use weak
classifiers relying on subsets of the full feature set. In this
way, all the features are kept and the more consistent corre-
lation between them can be exploited.

Selecting the feature subsets:Assume that we have ad-
dimensional feature vector, and that we are interested in se-
lecting subsets of sizem(< d). Let Sm

d = {Sm,i}i=1...Cd
m

denote the set of all subsets of sizem, where Sm,i is thei-
th suchm-subset, andCd

m = d!
(d−m)!×m! denotes the num-

ber of un-orderedm−subsets. At each LogitBoost itera-
tion, we would like to find the best subwindow-subset cou-
ple (r⋆, i⋆) that provides the minimum negative binomial
log-likelihood, i.e.:(r⋆, i⋆) = arg minr,i Lr(Sm,i), where
Lr(Sm,i) denotes the negative binomial log-likelihood de-
fined in (4) after the training of the weak classifier on sub-
window r with the feature subset Sm,i. Such an exhaustive
search involve the training ofNw × Cd

m weak classifiers,
which becomes quickly intractable whenm is large (the
classifier is more costly to train), andCd

m is large.
Rather than using random selection of feature subsets,

we adopted the following approach. First we fully test all
the 2-subsets, whose weak classifiers can be trained very
fast, and obtain the set{Lr(S2,i)}i=1...Cn

2
where smaller

value means that the pair of features is a better choice for
classification. Then, for each subset Sm,i of sizem > 2,
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Fig. 1: (a) Relative computation time of LogitBoost classifiers, for different feature sizes. Size one is taken as reference; (b)
Grouth-truth ranks of{Lr(Sm,i)} vs. approximated ranks of{L̃r(Sm,i)}, for m = 3.

we compute asubstitute valueof negative binomial log-
likelihood L̃r(Sm,i) =

∑

S2,s∈Sm,i
Lr(S2,s) and then select

the q best subsets according to these values to be actually
tested. The principle that we use is that good pairs of fea-
tures, which exhibit high correlation feature discrimination,
should produce good feature subsets of higher dimension.

Illustration of this principle is shown in Fig. 1(b), which
compares weak classifier ranks usingL̃ vs usingL when
building a human detector. The curves plot the probability
that within the firstq values ofL̃ (horizontal axis), we find
at least one of thek best subset (k=1,3,5, or 10) according
to the ground truthL. As can be seen, by selectingq = 8
subsets (out of 56) using̃L, the chances that one of them
is actually one of the top3 best are higher than 94%. Thus
our approach provides a better way of selecting goodm-
subset features than uniform random selection, and saves a
significant amount of time in training.

4.2 Using Mean Features

The covariance matrixCr of a subwindowr can be effi-
ciently computed using integral images [14]. During com-
putation, the mean featuresmr are also computed, and
we propose to use them as additional features for train-
ing and detection. Since these features directly lie in ad-
dimensional Euclidean space (i.e.mr ∈ R

d), we don’t
need any form of mapping like in the covariance case. How-
ever, in order to be robust against illumination changes,
the subwindow mean vector entries ofmr are normalized
w.r.t. the corresponding entries of the mean vectormR in
the detection windowR, which results inm′

r. The weak
classifiers that we propose are thus defined as:fl(Xr) =
gl(h(C′

r),m
′
r) whereh is the mapping function defined in

(5) that projects the normalized covarianceC′
r features into

the tangent space at the weighted-mean matrix, as explained
in Section 3. In other words, we use the concatenation of the
mapped covariance features with the normalized mean fea-
tures in the linear functiongl to be used in the LogitBoost
classifier.1

4.3 Training the cascade

The human detector is trained using a rejection cascade
of LogitBoost classifiers framework. We usedK = 30 cas-
cade levels. The numberNL

k of weak classifiers compos-
ing thek-th cascade level is selected by optimizing the Log-
itBoost classifier to correctly detect at least 99.8% of the
positive examples, while rejecting at least 30% of the neg-
ative examples. In addition, we enforce a margin constraint
between the positive examples and the decision boundary.
Let pk(x) be the probability of an examplex being positive
at the cascade levelk, as defined in (3). Letxp be the pos-
itive example that has the (0.998Np)-th largest probability
among all the positive examples andxn be the negative ex-
ample that has the (0.3Nn)-th smallest probability among
all the negative examples whereNp andNn are the num-
bers of positive and negative examples used for training at
the cascade levelk. Weak classifiers are added to the cas-
cade levelk until pk(xp) − pk(xn) > thb where we set
thb = 0.2. At test time, an examplex will be rejected if
pk(x) ≤ pk(xn). In order to train a cascade levelk, we
usedNp = 4000 and Nn = 8000 positive and negative
examples. These examples were obtained by applying the
detector up to thek−1th level to a set of around 10000 pos-
itive examples and those with the least probability of being
positive are kept for training. In a similar way, the negative

1Note that when a feature subset is used for the covariance, only the
means of that subset are used in the weak classifier.



examples were selected as the false positive examples of the
k − 1th detector applied to training data.

5 Experimental Results

5.1 Training and Testing Datasets

We collected a total of 15 video sequences captured
from stationary cameras. There are 10 indoor and 5 out-
door video sequences selected from the shopping center
CAVIAR data, from the PETS data, and from several metro
station cameras. A total of around 10000 positive exam-
ples were extracted from these 15 video sequences. Some
typical examples are shown in Figure 2. Note that in these
examples, there exist the large variations of appearances,
pose, camera view-points, the presence of luggage or trol-
leys, occlusions, and the variability in the foreground ex-
traction. Negative examples were obtained by: (i) collecting
1000 still images without people and coupling them with in-
consistent foreground detection results; (ii) cropping about
1000 regions from the collected video data which don’t con-
tain humans (iii) bootstrapping, i.e. by collecting more neg-
ative ‘look like’ people by applying the current detector on
training data without people.

For testing, we set apart 523 images from video clips be-
longing to 10 of the above sequences and not used for train-
ing, and added data from 2 new video sequences. A total of
1927 humans was annotated, comprising 327 humans with
significant partial occlusion and around 200 humans with a
resolution of less than 700 pixels.

5.2 Evaluation Methodology

The detectors were evaluated on the testing data by ap-
plying them on image subwindows with different locations,
scales, and aspect ratios, according to the following: the
width ranged from 25 to 100 pixels; the aspect ratio (height
divided by width) ranged from 1.8 to 3.0. The positive de-
tections were then filtered out by keeping local maxima of
these detection outputs according to the probabilities de-
fined in (3) as the final detected persons. Two types of per-
formance measure curves were used. In both cases, curves
were generated by adding cascade levels one by one.

Detection Error Tradeoff (DET) curves :In the recent liter-
ature [1, 10, 15], DET curves have been used to quantify the
raw binary classifier performance at the window level. DET
curves measure the proportion of true detections against
the proportion of false positives. They plot the miss rate,

#FalseNeg
#TruePos+#FalseNeg , versus false positives (here the False
Positives Per tested Window or FPPW) on a log-log scale.
To produce this curve, the 1927 positive examples of the
testing data were used to evaluate the miss-rate, while the
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Fig. 3: The performance of different approaches for our
method with 8-dimensional features.

FPPW was obtained by testing all searching windows of
the testing data which do not overlap or overlap by less than
50% with any positive example. The overlap is measured
as the F-measureFarea = 2ρπ

ρ+π
, whereρ = |GT∩C|

|GT | and

π = |GT∩C|
|C| are the area recall and precision, withGT de-

noting the ground truth region, andC the tested window.

Recall-Precision (RP) curves:RP curves are more appro-
priate to measure the accuracy of the object detection and
localisation from a user point of view [3, 13]. RP curves
integrates the post-processing steps (e.g. how to com-
bine several raw detector positive output into one or sev-
eral detected humans). Recall and precision are defined
as #TruePos

#TruePos+#FalseNeg and #TruePos
#TruePos+#FalsePos , respec-

tively. A detected output is said to match the ground truth if
theirFarea measure is above0.5. Only one-to-one matches
are allowed between detected and ground truth regions.



Fig. 2: Positive examples with corresponding foreground probability maps (light - high probability, dark - low probability).

5.3 Results

We consider the method of Tuzel et al [15] as our base-
line. Three main improvements to this method were made
to handle video data: integration of foreground probabil-
ity features, selection of feature subsets, and use of mean
(average) features in addition to covariance. We trained sev-
eral detectors with or without the proposed improvements to
evaluate their impact on the detection performance. These
detectors are named accordingly. For example, the detec-
tor Fg-Cov-Avg-8 uses the 8-dimensional covariance and
mean features defined in (1) which integrate intensity and
foreground information. When foreground features are not
used, we used the 8-dimensional features defined in [15]. In
addition, to allow fair comparing, a prefilter is also applied
with [15] to only test windows which contain enough (20%)
foreground pixels.

In the first experiment, whose results are shown in Fig. 3,
we trained four detectors with/without the use of foreground
information and mean features. We can observe that the in-
tegration of the foreground information in the learning pro-
cess rather than as a preprocessing step provides much bet-
ter detection performance. For instance, the RP curve shows
that for a recall of 0.9, only around 1 out of 5 detections
is correct with [15] even with the prefilter, while with the
foreground features, around 3 out of 5 detections are cor-
rect. Besides, we can see that the use of the mean features
improves the results almost systematically, but usually not
significantly.

In the second experiment, we trained three new detec-
tors relying on 2, 3 and 4-subset features (Fg-Cov-Avg-2
to Fg-Cov-Avg-4, respectively). In addition, we trained a
combined detector based on 2-subset features in the first 15
cascade levels, 3-subset features in the subsequent 10 lev-
els, and 4-subset features in the final 5 levels (Fg-Cov-Avg-
[2,3,4]). Fig. 4(a) shows the RP curve that we obtain. We
observe that the use of subset features results in similar de-
tection performance than the use of the full 8-dimensional
feature set, withFg-Cov-Avg-[2,3,4]providing the best re-
sults overall. However, the main interest of our approach
is the computation time. Fig. 4(b) shows the average num-
bers of tested windows per second that a detector processes
when applied on the test data. The same computer was
used in all the cases. The first observation is that while the
mean features only slightly improve the performance, they
offer a speed gain of nearly 30% (e.g. compare Tuzel et
al [15] with Cov-Avg-8). Secondly, as could be expected,
the use of the foreground features also helps in increasing
the speed by rejecting false hypothesis more quickly. Fi-
nally, the main computational gain is obtained by using fea-
ture subsets. For instance, the detectorFg-Cov-Avg-2 runs
around 13 times faster thanFg-Cov-Avg-8 (and more than
20 times faster than [15]). The combined detectorFg-Cov-
Avg-[2,3,4] achieves a similar speed while slightly improv-
ing the performance (see Fig. 4). We can apply these two
detectors to videos of size 384x288 (e.g. CAVIAR data)
and process 5-20 frames/sec when including the adaptive
background subtraction process.
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.

Finally, to further speed up the process and improve de-
tection performance, we propose to exploit rough ground
plane geometrical constraints to limit the human heights
from 150cm to 220cm. When applying the detectors again
on the test data using this constraint, we obtain a gain due
to the removal of some of the false positives (see Fig. 4(a)).

Fig. 5 shows some detection examples obtained with
the Fg-Cov-Avg-2∗ detector with geometrical constraints.
Green dots show the positive window detection, while red
bounding boxes with red center dots are the final detected
results after the local maximum post-processing step. De-
spite the large variability of appearance, pose and view
points, the partial occlusions, and the overall small people
size, there are only few false positive and negative detec-
tions. The main errors come for strong specular reflections
and cast shadow (e.g. in CAVIAR, these reflections some-
times almost produce upside-down foreground detection),
bad foreground results produced by moving objects (mov-
ing escalator in the Metro scene), or occlusions by other per-
sons or objects (e.g. bicycles). In addition, as the proposed
method focuses on full human body detection, some hu-
mans who are only partially visible are not detected. Video
examples are provided as accompanying material.

6 Conclusions

A fast method to detect humans from videos captured by
stationary cameras was presented. We made three improve-
ments to the method of Tuzel et al [15] which outperformed
existing methods by utilizing covariance matrices as object
descriptors. We proposed to use subsets of the complete im-

age feature space to build the weak classifiers of the Log-
itBoost classifiers. In addition, we exploited the means of
the image features with the covariance features, producing
similar or better results at a reduced detection computation
cost. Finally, we propose to integrate foreground informa-
tion with appearance information to extract image features
for detecting humans in videos. These extensions result in a
near real-time human detection that performs accurately on
challenging datasets.
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