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Abstract—Deep neural networks have been successfully applied
to sound direction-of-arrival estimation under challenging condi-
tions. However, such a learning-based approach requires a large
amount of labeled training data, which is difficult to acquire. To
address this problem, we propose a novel approach for multi-
speaker direction-of-arrival estimation with data augmentation
and weakly-supervised domain adaptation. We generate source
domain data with simulation, and collect real data annotated with
the number of sound sources as the weak labels. The real data
are further augmented by mixing single-source segments. Then,
weakly-supervised domain adaptation is applied to models pre-
trained on the simulated data. We define a loss function for the
adaptation process which exploits the weak labels and the mixture
component information in the augmented data. Experiments with
real robot audio data show that our proposed approach achieves
similar performance as if the fully-labeled real data are used.
This paper suggests an effective development procedure for DOA
estimation models applied to new types of microphone arrays
with minimal data collection efforts.

Index Terms—DOA estimation, sound source localization,
weakly-supervised learning, data augmentation

I. INTRODUCTION

SOUND Source Localization (SSL) is the technology
of estimating the locations or the Direction-of-Arrival

(DOA) of sound sources from the signals captured by the
audio sensors. It is an important research topic with many
applications. For instance, it is an essential part of audio
perception in Human-Robot Interaction (HRI), and it provides
prerequisite information for speech enhancement methods,
which are widely used in smart speakers, video conferencing
systems, and hearing aids. This paper introduces a novel deep
learning framework for SSL, which includes data collection
and learning procedures that effectively reduce the burden of
real data acquisition.

A. Motivation and Challenges

The studies of sound source localization have started with
signal processing approaches [1–3], which frame the problem
in mathematical forms based on the physical law of sound
propagation, and are built around analytical solutions. These
solutions rely on assumptions about the acoustic environments,
which may include known transfer functions or steering vec-
tors, free-field anechoic sound propagation, high Signal-to-
Noise Ratio (SNR), spatial white noise, or a known number
of sources. However, these assumptions may not hold well in
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real-world applications. For example, the transfer functions are
not exactly known in practice due to the error in measuring the
microphone placement and obstacles that can change the sound
propagation (e.g. robot head). Furthermore, there are often
multiple simultaneous sound sources in the environments. The
discrepancy between assumptions and reality may lead to
significant performance degradation. Sophisticated modeling
of the complex environments may mitigate the problem, but
it is not clear how to generalize it as exhaustive modeling of
all environments is not possible.

As an alternative, researchers have recently proposed
learning-based approaches that build machine learning models
from training samples to avoid explicit sound propagation
modeling. These approaches rely on probabilistic models [4, 5]
or neural network models [6–9]. In particular, the neural
network based approaches have been shown to handle strong
background noise, reverberation and multiple speakers. Fur-
thermore, neural networks can be extended to jointly solve
other related tasks, such as speech/non-speech classifica-
tion [10, 11] and sound event detection [12].

In the learning-based approaches, the difficulties have been
shifted from modeling the complex environments in the signal
processing approaches to the need of collecting sufficient
number of training data covering all variabilities in the test
environment. Such variabilities include various sound classes,
samples per class, source locations, reverberation, noises, and
solid objects in the scenes. In addition to making audio
recordings, annotating them with the ground truth labels is
also particularly costly. The complexity of annotation is due
to the fact that audio data do not intrinsically contain direct
information for researchers to annotate the sound source
locations. The annotation requires complimentary sensor data
to be recorded during data collection. These include sensor
data from cameras [5, 9], motion capture systems [13], and
robot motor sensor [14, 15]. Moreover, since multi-channel
audio data are distinct among different types of microphone
arrays, individual target-domain data collection is needed for
each new type of microphone array.

One possible solution to avoid costly data collection is to
develop device-independent SSL models, allowing real audio
data to be reused for multiple devices. This is a difficult
problem and little research has been conducted in this di-
rection. Models using uniform input representation, such as
the ambisonics intensity vectors [16, 17], could potentially be
applied to multiple devices. However, this idea has not been
verified by experiments and the conversion of multi-channel
audio data to ambisonics intensity vectors is limited to non-
coplanar microphone arrays.
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A popular way of obtaining training data for sound source
localization is by simulating artificial audio data. The most
commonly used room acoustic simulation methods [18, 19],
however, only handle over-simplified room settings [20, 21].
Recently, advanced simulation techniques considering sound
reflection and scattering caused by solid objects (e.g. robot
head or other objects in rooms) have been proposed [17, 22–
24]. Nevertheless, in practice it is still difficult to measure
and simulate the surfaces of the complex solid objects, thus
simulation cannot perfectly reproduce the directivity and
frequency response patterns of the real microphone arrays.
Although we can obtain realistic impulse responses through
measurement [25], their availability is almost restricted to
binaural sound localization [26, 27].

As an alternative to synthesizing audio data, there has also
been research using autonomous mobile robots for data col-
lection in new and unconstrained environments. These robots
are equipped with cameras as well as microphones. They
autonomously record audio data and use the images captured
by the cameras to annotate the sound source locations. The
annotation from images either follows fixed data collection
procedures [28] or is achieved by self-supervised learning [29].
However, these approaches are limited to some specific robots.

Finally, domain adaptation, which uses both simulated and
real data, may be applied to SSL. It exploits the large va-
riety of conditions from the simulated data and reduces the
discrepancy between simulation and reality with the help of
available real data. Although there are many studies on domain
adaptation theory [30], there are only a few applications of it to
sound source location. Previous studies have investigated the
unsupervised adaptation of neural networks for single-source
sound source localization with entropy minimization [31, 32].
However, such a principle can only be applied to classification
problems, which is not suitable for multi-source localization.
In our previous work [33], we applied domain adaptation
to multi-source DOA estimation, and showed that using the
numbers of active sound sources as weak labels for the real
data we achieve much better performance than using simulated
data alone. However, there is still a gap of performance
between the weakly-supervised and supervised approaches,
because when the initial model prediction is not reliable, the
weak supervision may not generate positive change on the
models.

B. Goals and Contributions

As we have mentioned in the previous section, one main
challenge of learning-based approaches is acquiring suitable
training data. In order to address this problem, this paper
proposes a framework for multi-source DOA estimation with
deep neural networks. The framework includes data collection
at low cost and training models using domain adaptation
(Fig. 1). First, we generate a large number of simulated data
using sets of clean speech and background noise. These data
serve as the source domain data and are used to pre-train
a deep Convolutional Neural Network (CNN) model. Then,
we collect a relatively small set of real audio data, of which
only the number of sounds sources is manually labeled (as
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real data
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Fig. 1: Overview of our framework of neural-network-based
multi-speaker DOA estimation with weakly-supervised do-
main adaptation. The arrows indicate which datasets (green)
are required or generated by data preparation procedures (red),
and which datasets are used for the training processes (blue).

weak labels), thus the high cost of exact location annotation is
avoided. These real audio data are also augmented by mixing
single-source frames. Lastly, we adapt the pre-trained model
to the real and augmented data in a weakly-supervised fashion.

We evaluated the effectiveness of the proposed framework
on two versions of Pepper robots1 in HRI settings. Our experi-
ments show that our method achieves comparable performance
to the supervised case (where the real data are fully-labeled).
The contributions of this paper are:
• We propose a multi-source DOA estimation framework

with domain adaptation so that the data collection work-
load can be significantly reduced.

• We propose a weakly-supervised adaptation scheme that
minimizes the distance in the output coding space be-
tween the network output and all the predictions consis-
tent with the weak labels.

• The weakly-supervised adaptation scheme is extended
through data augmentation. This extension significantly
improves the performance of the weakly-supervised adap-
tation.

This paper is an extension of our previous work [33].
It includes an improved version of the weakly-supervised
adaptation scheme, a large and more comprehensive set of
experiments using data of two robots, and quantitative analysis
of the adaptation scheme.

The rest of the paper is structured as follows: Section II
reviews the related work. Section III introduces the proposed
neural network for multi-speaker DOA estimation including
training in the supervised learning setting. Section IV in-
troduces the proposed domain adaptation approaches. Exper-
iments are described and discussed in Section V, and we
conclude in Section VI.

II. RELATED WORK

We review the state-of-the-art neural-network-based sound
source localization approaches, and the domain adaptation
methods which are closely related to our work.

1http://doc.aldebaran.com/2-5/home pepper.html

http://doc.aldebaran.com/2-5/home_pepper.html
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A. Neural-network-based Sound Source Localization

These approaches build neural network models to approx-
imate the mapping between the audio signal and the sound
source locations. The model parameters are optimized with
a set of training data, and the model is expected to make
predictions on unseen data. Different approaches differ in their
input representation, output coding as well as their network
structures.

Previous methods have used various high-level input fea-
tures, including inter-channel time (phase) difference [34, 35],
inter-channel level difference [35], MUSIC eigenvectors [8,
36], GCC-PHAT coefficients [7, 9], or GCC-PHAT coefficients
on filter bank [9]. With such high-level localization cues
relatively simple neural networks can be used as the mapping
functions. Nevertheless, more recent studies have shown that
low-level signal representation without explicit feature extrac-
tion, whether in the time [37] or time-frequency [11, 12, 38, 39]
domains, can allow the networks to learn to extract the most
informative high-level features for SSL.

The output coding defines how labels are encoded into ideal
network outputs, and how the network outputs are decoded
into labels. It plays a significant role in a method. Single sound
source localization is commonly considered as a classification
problem, where the network output is interpreted as a posterior
distribution of the classes that corresponds to sound locations
or directions [7, 8, 37, 40], and additionally silence [8]. Such
an approach can be extended with some difficulties to the
localization of up to two sound sources by using the marginal
posterior distributions of the sound sources [36], but to handle
an arbitrary number of sound sources, the spatial spectrum
coding we have introduced in [9] is a more suitable approach
(see also [41]). It is explained in detail in Section III.

Although there have been an increasing number of studies
on deep learning based sound source localization, few of
them clearly address issues related to the high cost of data
collection, especially by applying domain adaptation to models
trained with simulated data.

B. Domain Adaptation

Domain adaptation explores how the knowledge from a
dataset (source domain) can be exploited to help build machine
learning models on another set (target domain) [30]. It is often
applied to scenarios with abundant source data and limited tar-
get data. Domain adaptation approaches include re-weighting
samples so that the loss function on the source samples are
corrected to approximate that on the target domain [42].
Another way is to construct a common representation space,
so that a model can be used for inference on both domains.
This can be achieved through aligning correlation on the
data from both domains [43], or using domain-adversarial
training [44]. Moreover, pseudo-labeling — generating labels
by applying the model to unlabeled data — is becoming a
popular approach for domain adaptation [45, 46]. In addition,
unlabeled data can also be used for entropy regularization of
the model [47]. Nevertheless, few domain adaptation methods
have been applied to SSL.

Loss
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Fig. 2: Overview of our neural-network-based approach for
multi-speaker direction of arrival estimation. The top part
(blue) represents the prediction process, whereas the bottom
part (green) indicates the supervised learning principle.

III. DOA ESTIMATION MODEL

In this section, we introduce our neural network model for
DOA estimation. Although we present it in the supervised
learning setting, the same network model will be used in other
settings throughout our experiments.

A. Overview

We aim to build a model parameterized by θ that approx-
imates the mapping from an input audio signal in the input
space X to location labels in the label space Y . Since we
consider estimating the directions of an arbitrary number of
sound sources, each label y ∈ Y is a set of locations in Φ,
including the empty set. That is:

Y = {y ⊂ Φ : |y| <∞} ,

where |y| is the cardinality of y (i.e. the number of sources),
and Φ is the set of target candidate locations or DOAs.

The model consists of three parts: feature representation,
output coding, and network architecture (Fig. 2). The neural
network maps the features to an output space O, from where
the network output can be decoded into sound location labels.
During the training process, we are given a set of labeled
samples:

D = {(xi, yi)}Ni=1 ⊂ X × Y,

and the neural network parameters θ are trained to minimize
a loss function L on these samples:

θ∗ = arg min
θ

E
(x,y)∈D

L (fθ(x), y) , (1)

where fθ(x) is the output of the network. We describe in the
following the details of the model in term of input features,
output coding and network structure.

B. Network Input

The network input comprises the real and imaginary parts
of the time-frequency domain signal. In contrast to high-
level features extraction, such a representation retains all the
information of the signal and allows the network to implicitly
extract informative features for localization, which potentially
include both inter-channel cues (i.e. level/phase difference)
and intra-channel cues (i.e. spectral features). In addition, as
speech is known to be sparse in the time-frequency domain,
with such a representation the network can learn to separate
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overlapping sound sources in the mixed input signal. Using
multiple input features (including both low-level and high-
level features) may potentially improve the performance, as
it has been shown in recent studies on sound event localiza-
tion and detection [48, 49]. However, more feature extraction
requires more computation cost in data pre-processing. As
the domain adaptation scheme studied in this paper can be
applied to any network design, other input representations are
not studied.

Specifically, we prepare the network input as follows: We
first divide the 4-channel audio into 170 ms long segments
(8192 samples in 48 kHz recordings). This segment size
provides a good balance between the amount of information
and the time resolution. In addition, such a short input segment
is suitable for real-time applications, as it takes 5 ms for our
neural network to process an input segment of 170 ms on
an NVIDIA GTX 1080 Ti GPU. We compute the Short-Time
Fourier Transform (STFT) of the segments with a frame size
of 43 ms (2048 samples) and 50% overlap. Thus, there are
seven frames in each segment. We only use the frequency
bins between 100 and 8 kHz, so that the number of frequency
bins is reduced to 337. We take the real and imaginary part
of the complex values instead of the phase and power, so that
we avoid the discontinuity problem of the phase at π and −π.
Eventually, the dimension of the input vector is 7× 337× 8.

C. Output Coding

We use spatial spectrum coding to handle an arbitrary
number of sound sources [9]. The spatial spectrum is a
function of the DOA (o : Φ → R), and its value indicates
how likely there is a sound source for a given DOA. Unlike
signal processing approaches, where the aim is to find the
analytical solution for the spatial spectrum, our approach trains
models to approximate an ideal spatial spectrum that we can
arbitrarily define. Thus, the localization problem becomes a
spatial spectrum regression problem.

In practice, the network outputs a vector o = {ol}Ll=1

that indicates values of the spatial spectrum on the sampled
directions {φl}Ll=1 ⊂ Φ, where l is the index of the DOA.
In our experiments, {φl} are 360 evenly-spaced azimuth
directions. We define the ideal spatial spectrum of a label y as
the maximum of Gaussian curves centered at the sound source
directions (Fig. 3).

o∗(y)l =

max
φ′∈y

{
e−d(φl,φ

′)2/σ2
}

if |y| > 0

0 otherwise
, (2)

where d(·, ·) is the angular distance, and σ is a constant that
controls the width of the Gaussian curves. The ideal output
values are close to zero at directions away from the sound
sources. They peak at the ground truth directions with a value
of one, and gradually decrease to zero as the distance to the
sound source increases. Such a “soft assignment” design takes
the uncertainty of the estimation into account.

During inference, the network output is decoded to the
prediction in Y by finding the peaks in the predicted spatial
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(b) Example of a frame with two overlapping sound sources.

Fig. 3: Output coding for multiple sources.

spectrum. When the number of sources z is unknown, the
peaks above a given threshold ξ are taken as predictions:

ŷ(o; ξ) =

{
φl : ol > ξ and ol = max

d(φi,φl)<σn
oi

}
, (3)

where o = fθ(x) is the network output and σn is the
neighborhood size for non-maxima suppression. When z is
known, the z highest peaks are taken as predictions:

ŷ(o; z) =

{
φl : among the z greatest ol = max

d(φi,φl)<σn
oi

}
.

(4)

D. Network Architecture

We design a fully-convolutional neural network structure
for DOA estimation (Fig. 4). CNN facilitates weight sharing
for deep neural network models, thus reducing the overall
number of parameters as well as the risk of overfitting.
CNN on the time-frequency domain signal has been proven
effective for sound source localization [9, 17, 33, 39]. Recent
studies have also suggested using recurrent structures in the
network (e.g. recurrent CNN), so it can leverage the context
information [16, 48, 49]. However, recurrent structure may
introduce additional computational cost. Moreover, the CNN
output as sound source detection results can be used as input
for separate Recurrent Neural Networks (RNNs) or temporal
filters to incorporate longer context information. Therefore,
recurrent structures are not studied in this paper.

Our network comprises two parts, which convolve along
different axes. In the first part, the network convolves along
the time and frequency axes. Specifically, it includes two layers
of strided convolution in the frequency axis for downsampling
as well as feature extraction, five residual blocks for the
extraction of higher level features, and a layer projecting the
features to the DOA space. The residual connection allows
the construction of very deep neural network models, and
therefore increases their capabilities at extracting high-level
features [50]. The output of the first part of the network
is time-frequency local, meaning that each output value is
derived from a local time-frequency region of the input.

In the second part, the network convolves along the DOA
axis. It aggregates features in the neighboring directions across
all time-frequency bins, and outputs the spatial spectrum.
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Fig. 4: Neural network architecture for multi-speaker DOA
estimation. It uses STFT of the audio signals as input and
predicts the spatial spectrum of the sound sources. It consists
of two parts: the first part (green) applies convolution along
the time and frequency axes, and the second part (blue) applies
convolution along the DOA axis.

E. Two-stage Training

The goal of training is to make the network regress the ideal
spatial spectrum with the Mean Squared Error (MSE) loss:

L(fθ(x), y) = ‖fθ(x)− o∗(y)‖22 . (5)

This is achieved in two stages. In the first stage, we train
the first part of the network, by considering its output as the
short-term narrow-band predictions of the spatial spectrum.
The loss function for the first stage is replicating the ultimate
loss function (Eq. 5) across time and frequency:

LI (fI,θ(x), y) =
∑
t,k

L (fI,θ(x)[t, k], y), (6)

where fI,θ(x)[t, k] is the output of the first part of the network
at time t and frequency k. The pre-trained parameters are then
used to initialize the network for the second stage where the
whole network is trained with the loss function Eq. 5.

Previous experiments have shown that the two-stage training
is necessary, as the network is deep and directly training it
from scratch is prone to local optima [11].

IV. DOMAIN ADAPTATION

In this section, we discuss the domain adaptation methods
for the proposed neural network architecture for DOA esti-
mation. The idea of domain adaptation is to train a model
using both simulated (source domain) and real (target domain)
data so that the model has the best performance in real test
scenarios. As it is costly to collect real data while generating
simulated data at a large scale is cheap, we implicitly assume
that the latter cover more variabilities than the real dataset.

A. Supervised Adaptation

We first consider the supervised domain adaptation in which
we are given a set of labeled simulated data Ds ⊂ X × Y ,
together with a set of labeled real audio data Dt ⊂ X×Y . To
apply supervised domain adaptation, we first use the simulated
data to pre-train a model, which is the initialization of the
subsequent optimization processes. Then, we train a model
that minimizes the loss on both the source domain and the
target domain:

θ∗ = arg min
θ

µt E
(x,y)∈Dt

L (fθ(x), y)+µs E
(x,y)∈Ds

L (fθ(x), y) ,

(7)
where µt and µs are the weighting parameters for the loss on
the two domains. In practice, the weighting is implemented by
changing the proportion of source and target domain samples
in each mini-batch. The added loss term relying on source
domain data can reduce the bias caused by data insufficiency
in the target domain.

B. Weakly-Supervised Adaptation

Although we can reduce the number of real samples with
supervised domain adaptation, annotation of the real samples
still requires a heavy workload. Therefore, we propose a
weakly-supervised adaptation scheme to further reduce the
effort for data collection. In the weakly-supervised adaptation
setting, instead of fully-labeled data Dt, we are given a set of
weakly-labeled real data:

Dw = {(xi, zi)}Nwi=1 ⊂ X × Z.

accompanied by a set of fully-labeled simulated (source do-
main) data Ds. Each value zi from the weak label domain Z
indicates the number of sources in the audio frame xi.

We apply the adaptation by minimizing a weak supervision
loss Lw on the target domain as well as the supervised loss
(Eq. 5) on the source domain:

θ∗ = arg min
θ

µw E
(x,z)∈Dw

Lw (fθ(x), z)+µs E
(x,y)∈Ds

L (fθ(x), y) ,

(8)
where µw and µs are weighting parameters. We propose the
minimum distance adaptation scheme by defining the weak
supervision loss as the minimum distance in the output space
between the network output and all possible labels that satisfy
the weak label:

Lw(fθ(x), z) = min
y∈r(z)

‖fθ(x)− o∗(y)‖22 , (9)
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where o∗(·) is the output encoding defined by Eq. 2, and r(z)
is the set of all sound DOA labels that satisfy the weak label
z, i.e. the number of sources in y is z:

r(z) = {y ∈ Y : |y| = z} .

The heuristic is that among all the models that predict well
the DOAs on the source domain, we favor those that can make
correct detection of the number of sources in the target domain.

The weak supervision can also be viewed as a pseudo-
labeling approach. The loss function Lw can be rewritten as:

Lw (fθ(x), z) =

∥∥∥∥∥fθ(x)− o∗(arg min
y∈r(z)

‖fθ(x)− o∗(y)‖22)

∥∥∥∥∥
2

2

= L

(
fθ(x), arg min

y∈r(z)
‖fθ(x)− o∗(y)‖22

)
= L (fθ(x), pθ(x, z)) ,

(10)

with
pθ(x, z) = arg min

y∈r(z)
‖fθ(x)− o∗(y)‖22 (11)

as the pseudo-labeling function. We can see that the weak
supervision loss function is equivalent to the supervised loss
if pθ(x, z) is used as the label.

Furthermore, we can visualize the pseudo-labels in the
output space to see how the weak supervision works (Fig. 5).
When the number of sources is zero, the network is supervised
to output zero, thus reducing the false positives caused by
unseen noise (Fig. 5a). When the number of sources is one or
more, the network is supervised to give more certain predic-
tion on the most prominent peaks, thus increasing the recall
(Fig. 5c). At the same time, the other peaks that are caused
by unseen conditions are suppressed (Fig.5b, c). However, the
effectiveness of the weakly-supervised adaptation depends on
the initial performance of the network model. If the network
initial output is too far away from the ground truth, the weak
supervision will lead to incorrect pseudo-labels (Fig.5d, e).

C. Pseudo-labeling with Data Augmentation
In practice, we observe that the network trained on simu-

lated data initially performs worse on the multi-source audio
segments as illustrated in Fig. 5e. Thus, in order to increase
the correctness of the pseudo-labeling on multi-source audio
frames, we augment real data by generating mixture data with
known single-source components, and extend the weak super-
vision method using a modified pseudo-labeling approach. The
idea is that we apply the pseudo-labeling to the easier single-
source components rather than to the multi-source mixtures,
so that we can obtain more effective weak supervision.

Data augmentation. The augmented mixture dataset Da

consists of a set of mixture xi and their single-source compo-
nents ui = {uij}zij=1:

Da = {(xi,ui)}Nai=1 ⊂ X × 2X .

Here, the mixtures are generated by linear combination:

xi =

zi∑
j=1

αijuij , (12)
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Fig. 5: Examples of weak supervision with a known number
of sources on real audio segments. The ground truth locations
are shown but are not used for weak supervision.

where {uij} are single-source segments randomly sampled
from the weakly-labeled dataset Dw, zi is the number of
components (sources), and {αij} are random scaling factors.
Since all the real recordings include background noise, mixing
real audio segments may change the characteristics of the
background noise. To minimize the discrepancy between the
generated mixtures and real recordings, we choose the scaling
factors in a way that the power of the background noise in the
generated mixtures is equal to that of the real recordings, that
is:

zi∑
j=1

α2
ij = 1. (13)

Here, we assume the power of the background noise in
the real recordings is constant and the segments are mutual
independent.

A benefit of such data augmentation is that it increases the
number of realistic multi-source segments, which is difficult to
obtain by recording. In addition, as the combinations of sound
directions increases exponentially with the number of sources,
we need a large number of multi-source training samples to
cover such variabilities.

Pseudo-labeling on components. The other benefit is that
the knowledge of the single-source components allows us to
apply reliable pseudo-labeling on this dataset: we first apply
pseudo-labeling (Eq. 11) to its single-source components, that
are pθ(uij , 1), j = 1 . . . zi (Fig. 6a,b). Then, we use the union
of these pseudo-labels for the multi-source frame (Fig. 6c).
Thus, the loss function of the modified adaptation is:

La(fθ(xi),ui) = L
(
fθ(xi),∪zij=1pθ(uij , 1)

)
, (14)
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Fig. 6: Example of weak supervision from mixture components
of an augmented multi-source frame. (a, b) The pseudo-
labeling is applied first on the single-source components. (c)
Then the pseudo-label of the two-source mixture is obtained by
merging the pseudo-labels of its components. This approach
is more reliable than directly applying the pseudo-labeling to
the mixture as shown in (d).

and the optimization target becomes:

θ∗ = arg min
θ

µa E
(x,u)∈Da

La (fθ(x),u)

+ µw E
(x,z)∈Dw

Lw (fθ(x), z) + µs E
(x,y)∈Ds

L (fθ(x), y) ,

(15)

where µa controls the weight of the modified weak-
supervision loss on the augmented dataset.

V. EXPERIMENTS

We applied the proposed approach with both simulated data
and real data from two robots, and we verified its effectiveness
in two ways — by analyzing the correctness of pseudo-
labeling and evaluating the performance of DOA estimation.

A. Microphone Array and Data

Microphone array. We used the Pepper robot in our
experiments. There are four microphones placed on the robot
head in a rectangular shape with a dimension of 5.80 cm by
6.86 cm (Fig. 7a). Our experiments involved two versions of
the robots, which differ in the microphone directivity pattern:
directional and omni-directional. We use P1 and P2 to denote
the two versions respectively.

Source-domain data. We generated the source domain
data by convolving clean speech audio with simulated room
impulse responses (Table I). The room impulse responses
are simulated with the RIR-Generator [21]. The clean audio
speech data were the close talking recordings randomly se-
lected from the AMI corpus [51]. We first generated spatialized
audio data of single speech in cuboid rooms of random

(a) (b) (c)

Fig. 7: (a) Microphone placement in the robot head. (b) The
loudspeaker recording scenes. (c) Camera view from the robot
during human talker recordings.

TABLE I: Specifications of the simulated data.

Simulation P1 & P2

Total duration 47 hours
# of frames 1 million

- subset(z = 0) 200k
- subset(z = 1) 400k
- subset(z = 2) 300k
- subset(z = 3) 50k
- subset(z = 4) 50k

# of male speakers 105
# of female speakers 43
SNR (dB)† 10
Azimuth (°) [-180, 180.0]
Elevation (°) [-74, 75]
Distance (m) [0.5, 10.8]
Room length (m) [8.0, 12.0]
Room width (m) [6.0, 9.0]
Room height (m) [2.0, 5.0]
RT60 (ms)∗ [200, 800]

†Average SNR of single-source frames.
∗RT60 values apply only to the reverberant simulation.

sizes. Both the microphone array and the sound source were
randomly placed in the room. The distances between the
microphone array, the sound source and the walls were at least
0.5 m. The microphone array geometry was set according to
that on the robot. We tried to simulate both omni-directional
and cardioid directivity patterns of the microphones, and found
out that the models trained with omni-directional simulation
have in general better performance, even for the robot P1,
whose actual microphones are directional. We hypothesize
that this is because the simulation cannot replicate exactly
the directivity patterns of the real microphones. Therefore, we
used the omni-directional simulation for both robots through-
out our experiments. Then the single-source simulated audio
frames are mixed randomly at runtime with other frames as
well as the real robot background recordings. During mixing,
there was no constraint on the distances between the sound
sources. We generated one million mixture frames (47 hours),
the number of sources of which varies from zero to four. This
includes a significant number of source locations and audio
content for training. We experimented with both anechoic and
reverberant room conditions. For the reverberant simulation,
the reverberation time (RT60) is randomly selected between
200 and 800 ms. The absorption coefficients of all six walls
in a room are the same, and are set according to the selected
reverberation time as well as the size of the room.
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Target-domain data. We collected real data with the robots.
For P1, we used the public SSLR dataset2 from [9], which was
collected in a semi-automatic fashion (Table II). It includes
recordings of loudspeakers for both training and evaluation
(denoted by P1-LSP), as well as an additional evaluation
set with human talkers (denoted by P1-HUM.E). For the
loudspeaker data recordings, we played clean speech audio on
loudspeakers from various locations (Fig. 7b). These record-
ings were prepared using the same set of selected utterances
from the AMI corpus [51] as the simulated data. During
each piece of recording the sound source locations are fixed,
therefore the coverage in terms of source locations in the real
recordings is considerably less than that of the simulated data.
For the human talker data, we recorded participants speaking
in front of the robot. This test set is an extended version of the
human talker data used in [9] and [33]. In this extension, we
added recordings of human voices with overlapping sounds
from a loudspeaker, and collected audio data with up to
four overlapping sound sources. The sounds played from
loudspeaker include non-speech sounds (from Audio Set [52])
in addition to speech (from the AMI courpus). Both P1-
LSP and P1-HUM.E were collected in various ordinary office
rooms. The reverberant time (RT60) of these rooms ranges
from 400 to 800 ms.

The locations of the sound sources were automatically
labeled for both the training and evaluation data using the
video data captured by the camera on the robot. Specifically,
we marked the loudspeakers with QR code, so that their
locations can be detected. For human talkers, we applied the
human pose detection with convolutional pose machines [53]
to detect the nose locations, which indicates the azimuth of the
speaker directions. For P2, we conducted the data collection in
the same way and obtained a set of loudspeaker data (denoted
by P2-LSP, Table III).

The weak labels were derived from the sound source lo-
cation labels, and used for the weakly-supervised approaches.
The fully-labeled training data allowed us to analyze quantita-
tively the effectiveness of the weak supervision, and compare
the weakly-supervised approaches to supervised ones.

B. Training Parameters

According to the proposed framework (Fig. 1), we first pre-
trained a model on the simulated data using the two-stage
training. The model was trained for one epoch in the first
stage (Eq. 6) and four epochs on the second stage (Eq. 5).
Then the pre-trained model was used as the initial model for
the weakly-supervised domain adaptation. We controlled the
weights of the components in the optimization target Eq. 15
to be µw = 0.9, µa = 0.1, and µs = 1.0. This is equivalent
as composing mini-batches using 45%, 5% and 50% of the
samples from the weakly-labeled dataset, augmented dataset,
and the simulated dataset, respectively. We used a learning
rate of 0.001 and reduced it by half once the training loss no
longer decreased. We continued the adaptation until the plateau
was reached four times. During all the training processes, the

2https://www.idiap.ch/dataset/sslr

TABLE II: Specifications of the target-domain data for P1.

P1-LSP P1-HUM.E

Training Evaluation Evaluation

Total duration 16 hours 8 hours 12 minutes
# of frames 507k 262k 7410

- subset(z = 0) 106k 54k 1538
- subset(z = 1) 350k 179k 2740
- subset(z = 2) 51k 29k 2212
- subset(z = 3) — — 636
- subset(z = 4) — — 284

# of male speakers 105 8 19
# of female speakers 43 8 2
SNR (dB)† 5 7 5
Azimuth (°) [-180, 180] [-180, 180] [-82, 133]
Elevation (°) [-39, 56] [-29, 45] [-14, 14]
Angular separation (°)∗ [13, 149] [18, 90] [9, 147]
Distance (m) [0.5, 1.8] [0.5, 1.9] [0.8, 2.8]
RT60 (ms) [400, 800] [400, 800] [400, 800]

†Average SNR of single-source frames, estimated by assuming con-
stant background noise power.
∗Angular separation in azimuth between overlapping sound sources.

TABLE III: Specifications of the target-domain data for P2.

P2-LSP

Training Evaluation

Total duration 3.8 hours 2.1 hours
# of frames 122k 67k

- subset(z = 0) 26k 14k
- subset(z = 1) 90k 46k
- subset(z = 2) 6k 7k

# of male speakers 101 8
# of female speakers 41 8
SNR (dB)† 6 5
Azimuth (°) [-180, 180] [-178, 180]
Elevation (°) [-39, 56] [ -29, 48 ]
Angular separation (°)∗ [29, 126] [28, 128]
Distance (m) [0.5, 1.8] [ 0.9, 2.0]
RT60 (ms) [400, 800] 800

†Average SNR of single-source frames, estimated by assuming con-
stant background noise power.
∗Angular separation in azimuth between overlapping sound sources.

models were optimized with the Adam optimizer [54] and a
mini-batch size of 100.

C. Analysis of Pseudo-Labeling

To better understand the minimum distance adaptation on
weakly-labeled data, we analyzed how the effectiveness of
the pseudo-labeling depends on the initial model performance
and the number of overlapping sources. Our expectation is
that good pseudo-labels will have a positive impact on the
learned model if the pseudo-labels are on average closer to the
ground truth than the actual model predictions are. Therefore,
we computed the loss gain between the MSE loss (Eq. 5) of
the model prediction and that of the pseudo-label:

∆L = L (fθ(x), y)− L (o∗(pθ(x, z)), y) , (16)

where y and z are, respectively, the location label and the weak
label corresponding to the audio segment x. A positive loss
gain indicates the pseudo-labeling is beneficial for the model.

We applied the minimum distance adaptation (Eq. 9) to the
pre-trained model on the target-domain data, and computed the

https://www.idiap.ch/dataset/sslr


HE et al.: NEURAL NETWORK ADAPTATION AND DATA AUGMENTATION FOR MULTI-SPEAKER DIRECTION-OF-ARRIVAL ESTIMATION 9

−0.06
−0.04
−0.02

0

0.02

0.04

0.06

0 0.02 0.04 0.06 0.08 0.1

Lo
ss

ga
in

Prediction loss

Distribution of loss gain ∆L

All

0
40
80

0 0.02 0.04 0.06 0.08 0.1Pe
rc

en
ta

ge

Prediction loss

Distribution of prediction loss

Fig. 8: Analysis of the minimum distance adaptation of all
samples in the P1 training data. Top figure: Each histogram
(plotted vertically) shows a distribution of the loss gain
(Eq. 16) on the samples with the indicated prediction loss
and on all samples (right-most histogram). The green bars
indicate positive gain (correct weak supervision), while the
red bars indicate negative gain (incorrect weak supervision).
Bottom figure: The distribution of the initial prediction loss.
The network is pre-trained with the anechoic simulation data.

−0.04

−0.02

0

0.02

0.04

0.06

0 0.02 0.04 0.06 0.08 0.1

Lo
ss

ga
in

Prediction loss

Distribution of loss gain ∆L

All

0
20
40
60

0 0.02 0.04 0.06 0.08 0.1Pe
rc

en
ta

ge

Prediction loss

Distribution of prediction loss

Fig. 9: Analysis of the minimum distance adaptation of the
single-source samples from the P1 training data.

distributions of the loss gain (Eq. 16) on samples with different
prediction loss. Result (Fig. 8) shows that weak supervision is
mostly correct when the prediction loss is small (below 0.02),
and becomes unreliable as the prediction loss increases.

By comparing the loss gain distributions on single-source
(Fig. 9) and multi-source samples (Fig. 10), we can verify the
assumption that weak supervision is more reliable on single-
source frames. The pre-trained model initially performs better
on the single-source frames. Moreover, even on the single-
source frames with large prediction loss the weak supervision
is more likely to generate correct pseudo-labels.

We also compared the minimum distance adaptation (Eq. 9)
to its modified version relying on mixture components (Eq. 14)
on the mutli-source augmented data (Fig. 11 and 12). Since
the modified adaptation relies on pseudo-labels of the single-
source components, it generates more reliable results than
the direct application of pseudo-labeling on the multi-source
frames. Even when the initial prediction loss is larger than
0.02, the pseudo-labels are more likely to have positive gain.
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Fig. 10: Analysis of the minimum distance adaptation of the
multi-source samples from the P1 training data.
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Fig. 11: Analysis of the minimum distance adaptation on the
P1 augmented data.

D. DOA Estimation Evaluation Protocol

We evaluated the DOA estimation performance of the pro-
posed approaches and compared it with other baseline methods
as listed in Section V-E. The neural network models were
trained on fully-labeled simulated data, weakly-labeled (for
weakly-supervised approaches) or fully-labeled (for supervised
approaches) real data, and augmented data if applicable. Their
performance is evaluated on the test set of the real data.

We considered two evaluation settings: (a) when the number
of sound sources is known, or (b) when it is not. When
the number of sources is known, we evaluate how close the
predicted DOAs are from the ground truth. In this case, the
predictions ŷi = {φ̂ij : j = 1, . . . , zi} are the DOAs of the
zi (number of sources) highest peaks in the output spatial
spectrum (according to Eq. 4). The indices js are selected
such that the predicted DOA φ̂ij is nearest to the ground
truths DOA φij in label yi = {φij : j = 1, . . . , zi}. As
performance measure, we compute the Mean Absolute Error
(MAE) in terms of angular distance between the predictions
and the ground truth:

MAE =

∑
i

∑zi
j=1 d(φ̂ij , φij)∑

i zi
. (17)

We also compute the Accuracy (ACC), that is the percentage
of the predictions of which the error is less than a given
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Fig. 12: Analysis of the modified adaptation on the P1 aug-
mented data.

admissible error Ea:

ACC =

∑
i

∑zi
j=1 1d(φ̂ij ,φij)<Ea∑

i zi
, (18)

where 1 is the indicator function.
When the number of sources is unknown, we evaluate the

DOA estimation in terms of sound source detection. The
predictions ŷi = {φ̂ik : k = 1, . . . , ẑi} decoded from the
network output by Eq. 3, are matched with the ground truth
DOAs. We use m(φ̂ik, φij) to denote a match. The number of
predicted sound sources ẑi may not be equal to the number
of ground truth sources zi, and each ground truth source is
matched with at most one prediction (could be none), which
is the nearest prediction with an error less than Ea:

m(φ̂ik, φij) =


1 if d(φ̂ik, φij) < Ea and

k = arg minẑik=1 d(φ̂ik, φij),
0 otherwise.

(19)

We vary the prediction threshold ξ (see Eq. 3) and plot the
precision vs. recall curve. The precision is the percentage of
the correct predictions among all predictions:

Precision =

∑
i

∑zi
j=1

∑ẑi
k=1m(φ̂ik, φij)∑
i ẑi

. (20)

The recall is the percentage of the correct detections out of
all ground truth sources:

Recall =

∑
i

∑zi
j=1

∑ẑi
k=1m(φ̂ik, φij)∑
i zi

. (21)

We chose Ea = 5° for the evaluation.

E. Compared Methods

The following approaches were included for comparison:
• SRP-PHAT steered response power with phase trans-

form [3].
• SUPREAL fully-supervised approach described in Sec-

tion III using only fully-labeled real data for training
(two-stage training with loss functions Eq. 5 and 6).

• SUPSIM The model trained with only the simulated data.
This is also the pre-trained model for the domain adap-
tation approaches.

TABLE IV: MAE(°) and ACC(%) on the P1-LSP dataset. Per-
formance is evaluated on different subsets: all frames, single-
source frames and two-source frames. The source-domain data
are simulated with two different room conditions (anechoic
and reverberant).

Dataset P1-LSP

Subset All z = 1 z = 2

MAE ACC MAE ACC MAE ACC

SRP-PHAT 20.9 79.4 17.6 83.9 41.0 51.5
SUPREAL 3.0 93.9 2.6 95.5 5.6 83.9

Anechoic Sim.
SUPSIM 13.1 80.2 11.6 82.4 22.6 66.4
ADSUP 3.3 93.8 2.7 95.0 7.1 86.2
ADWEAK 7.9 86.1 3.8 91.4 33.2 53.8
ADPROP 4.5 93.0 3.3 94.7 12.2 82.8

Reverb. Sim.
SUPSIM 11.7 85.5 10.0 88.2 22.7 69.2
ADSUP 3.8 93.8 3.1 95.4 7.9 84.4
ADWEAK 8.6 85.0 4.5 90.3 33.4 52.8
ADPROP 5.2 92.1 3.8 94.3 14.2 78.8

• ADSUP The supervised adapted model, i.e. pre-trained with
the simulated data and then adapted using the fully-
labeled real data in a supervised fashion (Eq. 7).

• ADWEAK The weakly-supervised adapted model without
using augmented data, i.e. pre-trained with the simulated
data and then adapted using the weakly-labeled real data
with the minimum distance adaptation scheme (Eq. 8).

• ADPROP the proposed weakly-supervised adaptation ap-
proach, i.e. first pre-trained with simulated data and
then adapted using the weakly-labeled real data and
augmented data with the adaptation scheme (Eq. 15).

We experimented with both anechoic and reverberant simula-
tion for the methods that use simulation.

F. DOA Estimation Results

We applied these approaches to both the robots P1 and P2,
and evaluated them on their respective test sets. We report
their performance on single-source and two-source frames, as
well as the overall performance on all test frames.

Learning-based vs SRP-PHAT. From the performance of
the approaches on the P1-LSP data (Table IV and Fig. 13),
we see that all learning-based approaches outperform the
traditional SRP-PHAT. Because there is strong background
noise in the robot audio data, the SRP-PHAT method, which
assumes the target signal is dominant across all frequencies,
is more affected. The learning-based approaches, on the other
hand, learn from the training samples to implicitly suppress
the noise.

Simulation vs Real Data. Comparing the models trained
with simulated data (SUPSIM) to those trained with real data
(SUPREAL), we see the expected performance degradation
caused by the discrepancy between the acoustic simulation
and real recordings.

Supervised Adaptation. The model first pre-trained with
simulated data and then adapted with fully-labeled real data
(ADSUP) achieves similar performance as that directly trained
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TABLE V: MAE(°) and ACC(%) on the P1-HUM.E dataset. The source-domain data are simulated with anechoic condition.

Dataset P1-HUM.E

Subset All z = 1 z = 2 z = 3 z = 4

MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC

SRP-PHAT 15.4 69.0 3.9 88.4 19.8 57.9 34.9 42.0 48.0 30.3
SUPREAL 10.1 82.9 3.9 93.0 10.5 79.7 19.2 69.6 47.3 39.8
SUPSIM 12.3 76.5 6.4 87.3 14.4 72.6 21.8 61.1 32.2 36.3
ADSUP 11.0 84.9 4.3 93.4 12.0 83.5 19.7 74.1 48.9 37.4
ADWEAK 20.4 73.0 5.3 91.5 27.4 63.2 39.2 46.9 69.2 29.8
ADPROP 12.5 83.2 4.6 91.8 13.7 81.9 23.3 71.7 54.4 34.9
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Fig. 13: Precision-recall curves as a sound source detection problem on the P1-LSP dataset. The curves are generated by
varying the prediction threshold ξ in Eq. 3. DOA estimation with less than 5° error is considered correct. The room conditions
(anechoic or reverberant) for simulation are indicated in the figure titles.

on real data (SUPREAL) in the P1-LSP test set. Nevertheless,
a noticeable difference (see Fig. 13c) is that the adapted model
has better precision and recall in the two-source frames. This
is because the simulated data provide a broader coverage of
sound source directions, especially in the multi-source case,
than the real data.

Weakly-supervised Adaptation. Using the weakly-labeled
real data, both the weakly-supervised domain adaptation ap-
proaches (ADWEAK and ADPROP) significantly outperforms
the pre-trained model (SUPSIM). The discrepancy between
the simulation and real data is mitigated. Between both
the approaches, the performance of our proposed approach
(ADPROP) is significantly better, especially on the two-

source frames, with an accuracy of 82.8 vs 53.8 for instance.
In fact, directly applying the minimum distance adaptation
(ADWEAK) on the multi-source frames is not reliable and
generates wrong pseudo-labels. Therefore, its performance on
the two-source frames is worse than the pre-trained model.
Applying the adaptation on the single-source components of
the augmented data prevents unreliable pseudo-labeling and
improves the adaptation result. As a result, our approach
achieves comparable results, in terms of accuracy as well as
precision and recall (Fig. 13(a,d)), as those using fully-labeled
real data. This shows that we can substitute exact labels in the
real data with weak labels, thus the workload of annotation
can be significantly reduced.
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Fig. 14: Precision-recall curves as a sound source detection problem on the P1-HUM.E dataset.

TABLE VI: MAE(°) and ACC(%) on the P2-LSP dataset. The
source-domain data are simulated with anechoic condition.

Dataset P2-LSP

Subset All z = 1 z = 2

MAE ACC MAE ACC MAE ACC

SRP-PHAT 13.5 72.0 11.1 75.3 29.3 50.6
SUPREAL 5.5 86.6 4.5 89.2 12.0 69.5
SUPSIM 7.2 76.5 6.5 77.5 12.3 70.2
ADSUP 3.5 92.4 3.2 93.5 5.6 85.0
ADWEAK 5.1 80.6 4.4 82.1 9.7 71.1
ADPROP 4.7 82.2 4.4 83.0 7.1 76.9

Anechoic vs Reverberant Simulation. Comparing the dif-
ferent simulation conditions, we find that the pre-trained mod-
els with reverberant simulation in general outperform those
with anechoic simulation, as they matches the evaluation data
better, which are collected in reverberant environments. How-
ever, after domain adaptation, the models with the anechoic
simulation achieves better performance in most conditions.
This is probably because the models with simpler source-
domain conditions (anechoic simulation) are more capable to
adapt, while the models with reverberant simulation might
overfit to the difficult conditions in the simulated training data.

P1-HUM.E Data. There are more condition mismatch
between this test set and the target-domain training data,
as it includes real human voices instead of sounds from

loudspeakers, non-speech sounds, as well as more overlapping
sound sources. Under such a condition, the incorporation
of simulated data increases the coverage of various training
conditions, thus can help the model with better generalization.
This is seen from the results (Table V and Fig. 14), as
ADSUP outperform SUPREAL under all conditions using
most of the criteria (ACC, precision and recall). Although the
proposed approach (ADPROP) does not use any exact labels,
it achieves better overall performance than the supervised
approach SUPREAL. This shows that the proposed approach
can generalize well under mismatched conditions with the help
of data augmentation as well as data simulation.

The results on P1-HUM.E also demonstrate the performance
of all approaches when there are more than two overlapping
sources. The overall performance degrades as the number
of overlapping sound sources increases. This is expected as
the average Signal-to-Interference-plus-Noise Ratio (SINR) is
lower when there are more number of sources, and the input
window duration of 170 ms is too short to have enough infor-
mation for localizing more sound sources. In addition, most
of the our training samples include less than two simultaneous
sound sources (because this is more common under real HRI
conditions). Nevertheless, SUPREAL, which is trained with
maximum two overlapping sound sources using the real loud-
speaker recordings, achieves reasonable performance (90%
precision at 60% recall) when tested with three overlapping
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Fig. 15: Precision-recall curves as a sound source detection problem on the P2-LSP dataset.

sound sources. This shows the network can generalize to test
conditions where there are more overlapping sound sources
than it has seen during training. Several techniques can be
employed to improve the localization performance of more
than two overlapping sound sources. For example, using longer
input segment can increase the chance that each sources is
dominant in at least one frame. This has been shown in [55].
Moreover, integrating temporal filtering, such as tracking or
recurrent network structure, can also be used to increase the
amount of information for localizing more sound sources.

P2-LSP Data. We notice that this dataset is in general more
challenging than the P1-LSP data, as indicated by the accuracy
as well as precision and recall of SRP-PHAT, SUPREAL
and SUPSIM in the results (Table VI and Fig. 15). The
proposed approach relies on initial performance of the pre-
trained model, therefore it does not perform as well as that in
the P1 data. In spite of this, the proposed approach (ADPROP)
shows a significant improvement over the pre-trained model.
We also find that the model trained with both simulated and
real data (ADSUP) outperforms significantly the models using
only real data. This is because there are less real training data
for P2 (compared to P1), and adding the simulated data may
help especially when the real training data are not sufficient.

G. Scalability with Data Size

We analyzed the scalability of the different approaches.
Specifically, we examined on P1-LSP (Fig. 16) and P1-Human
(Fig. 17) how their F1-scores evolve with the size of the
target-domain training data. The data size is represented by
the number of files, which we experimented from 5 to 4000.
The number of files indicates the variabilities of sound source
positions in the dataset, as sound source locations are fixed in
each file. The F1-scores are computed with the precision and
recall values that generate the best F1-scores.

Both figures show that the performance of all approaches
generally increases as more real data are used. One exception
is the model adapted using fully-labeled data (ADSUP) when
tested on P1-LSP. It has better performance using less than 100
files than using between 200 and 1000 files. This is because
that in the former case the model does not variate much from
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Fig. 16: Sound source detection F1-score versus the training
data size (the number of files ranging from 5 to 4000) on the
P1-LSP evaluation set. Source-domain data are simulated un-
der the anechoic condition. The pre-trained model (SUPSIM),
which does not use any real data, is presented as a reference.

the pre-trained model, while in the latter case the model starts
to overfit the presented real data, which does not cover enough
variabilities in conditions. The results indicate that the super-
vised approaches (SUPREAL and ADSUP) require more than
1500 files to outperform the model trained with simulated data
(SUPSIM), whereas the weakly-supervised domain adaptation
approaches (ADWEAK and ADPROP) achieves significantly
better performance than SUPSIM using as few as 100 files.
This suggests that in the case of very few real audio samples,
the weakly-supervised approaches may also be used to prevent
the overfitting problem of the supervised approach.

VI. CONCLUSION

We have proposed a framework to train deep neural net-
works for multi-source DOA estimation. The framework uses
simulated data together with weakly labeled data under a
domain adaptation setting. We have also proposed a data
augmentation scheme combining our weakly-supervised adap-
tation approach with reliable pseudo-labeling of mixture com-
ponents in the augmented data. This approach prevents incor-
rect adaptation caused by difficult multi-source samples. The
proposed weakly-supervised method achieves almost equal
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Fig. 17: Sound source detection F1-score versus the training
data size (the number of files ranging from 5 to 4000) on the
P1-HUM.E evaluation set.

performance to the fully-labeled case under certain conditions.
Overall, the proposed framework can be used for deploying
learning-based sound source localization approaches to new
microphone arrays with a minimal effort for data collection.
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