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Abstract
This paper introduces a novel approach for extracting speaker
embeddings from audio mixtures of multiple overlapping
voices. This approach is based on a multi-task neural network.
The network first extracts a latent feature for each direction.
This feature is used for detecting sound sources as well as iden-
tifying speakers. In contrast to traditional approaches, the pro-
posed method does not rely on explicit sound source separation.
The neural network model learns from data to extract the most
suitable features of the sounds at different directions. The ex-
periments using audio recordings of overlapping sound sources
show that the proposed approach outperforms a beamforming-
based traditional method.
Index Terms: Multi-task learning, speaker embedding, speaker
verification, microphone array processing

1. Introduction
Speaker recognition is an important technology for many appli-
cations, such as robots and smart speakers. Knowing speaker
identities allows natural long-term interactions, as well as
speaker-adapted automatic speech recognition. In real situa-
tions, robots and smart speakers may operate in noisy and dy-
namic environments with overlapping sounds. In this paper, we
investigate speaker recognition under such a condition.

Speaker recognition includes two different tasks: speaker
identification and speaker verification [1]. Speaker identifica-
tion aims to identify an unknown speaker from a set of known
speakers, whereas speaker verification aims to verify if a voice
and some enrolled voices are from the same speaker. Although
the goals of these tasks are different, the techniques they rely
on are similar. In fact, most of the speaker recognition methods
are based on mapping speech segments to a speaker embedding
space where they can be compared using a metric for identifi-
cation or verification. In an ideal embedding space, distances
between voices of the same speaker are smaller than distances
between voices of different speakers.

Speaker recognition with clean and segmented single-
channel audio has been extensively studied. Well-known ap-
proaches include Gaussian Mixture Model (GMM) [2], GMM
with Universal Background Model (UBM) [3], Joint Factor
Analysis (JFA) [4], Support Vector Machine (SVM) for GMM
supervector classification [5], and the i-vector system [6]. Re-
cently, many deep learning based approaches have been shown
to outperform the traditional ones [7–14]. These deep learn-
ing based approaches extract speaker embeddings in two ways.
One way is to train a network for speaker identification and use
the activation at one of the last hidden layers as speaker em-
beddings [7, 13]. In contrast, the other way is to use directly
the network output as the speaker embedding, and train the net-

work with objective functions that are defined on the distances
between same-speaker and different-speaker pairs. Examples
of the objective functions include contrastive loss [8], which
separately minimizes distances between same-speaker pairs and
maximizes those between different-speaker pairs, and triplet
loss [9, 14], which maximizes the difference between different-
speaker distances and same-speaker distances up to a given mar-
gin.

Besides speaker recognition from clean audio signals, a
number of studies address speaker recognition in the presence
of noise and simultaneous speakers. These approaches rely
on separating the sound sources (from either single-channel or
multi-channel audio signals), so that speaker recognition is ap-
plied on separated single-channel signals. Sound separation is
applied prior and independently to the speaker recognition in
the sequential approaches [15–18]. Alternatively, sound sepa-
ration and speaker recognition are solved jointly in the joint ap-
proaches [19–21]. Nevertheless, using deep neural networks for
speaker recognition under the multi-speaker condition is still an
emerging topic. Specifically, joint Direction-of-Arrival (DOA)
estimation and recognition of multiple speakers has not been
studied so far.

This paper investigates deep neural networks for speaker
recognition under the multi-speaker condition using DOA es-
timation as an auxiliary task. We use the neural networks to
extract features for each direction, which are shared for both
DOA estimation and speaker embedding. In contrast to previ-
ous works, our approach does not rely on explicit separation of
the signals. Instead, the network learns to implicitly separate
the sound features through end-to-end training.

Our proposed neural network shares similarities with the
well-known X-vector network [13], that both networks are
trained using speaker identification loss and extract speaker em-
beddings from hidden layers. Moreover, temporal statistic pool-
ing is used in both approaches to accommodate input sequences
of variable lengths. The difference between our approach and
the X-vector approach is that we address speaker recognition of
multiple overlapping speakers from multi-channel audio, while
X-vector is designed for single-channel single-speaker audio.

2. Approach
We describe our multi-task neural network approach in terms of
input representation, network output, loss function, and network
architecture.

2.1. Network Input

We use the raw Short-Time Fourier Transform (STFT) as the
network input. STFT includes both the spectral power infor-
mation as well as the phase information of the input signal.
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For DOA estimation, Inter-channel Level Difference (ILD) and
spectral cues can be extracted from the power information, and
Inter-channel Phase Difference (IPD) can be extracted from
the phase information. The power information, in addition, in-
cludes necessary features for speaker recognition.

The STFT is processed in the same way as in [22–24], ex-
cept that the input segment can be arbitrarily long to incorporate
more information for speaker recognition. Specifically, the in-
put audio signals captured by a microphone array contain four
audio channels and are sampled at 48 kHz. STFT is extracted
from the input audio signals using frames of 2048 samples (43
ms) with 50% overlap. The 337 frequency bins between 100
and 8000 Hz are used. The real and imaginary parts of the STFT
coefficients are split into two individual channels. Therefore,
the input feature of each unit has a dimension of T × 337× 8,
where the number of frames T varies across different segments.

2.2. Network Output and Loss Function

The network output includes frame-wise prediction of the spa-
tial spectrum pt = {ptd}Dd=1 ∈ [0, 1]D for DOA estimation,
and segment-wise prediction of speaker posterior probability at
each direction qd = {qds}Ss=1 ∈ [0, 1]D for speaker identi-
fication. The subscripts t ∈ {1, 2, . . . , To} is the frame index,
d ∈ {1, 2, . . . , D} is the direction index, and s ∈ {1, 2, . . . , S}
is the speaker ID. Due to downsampling, the frame rate of pre-
dicted spatial spectrum is different from that of the input, thus
To 6= T .

Encoding. The desired output spatial spectrum is encoded
by the Gaussian-based spatial spectrum coding [25], that is:

ptd =

{
maxϕ∈yt

{
e−δ(ϕd,ϕ)

2/σ2
}

if |yt| > 0

0 otherwise
, (1)

where yt ⊂ Φ is the set of ground truth directions at frame t,
σ is the parameter to control the width of the Gaussian curves,
δ(·, ·) denotes the azimuth angular distance, and | · | denotes the
cardinality of a set.

Inspired by how sound type is encoded in [22], the speaker
ID prediction at direction ϕd depends on the nearest sound
source (speaker) to that direction, that is:

qds =

{
1 if Speaker s is the nearest speaker to ϕd
0 otherwise

. (2)

Loss Functions. The target loss function is a linear combi-
nation of the individual task-specific loss functions:

Loss = µLossDOA + λLossID, (3)

where µ and λ are weighting parameters. We use the Mean
Squared Error (MSE) loss for DOA estimation:

LossDOA =
1

To

To∑
t=1

‖p̂t − pt‖22 , (4)

where p̂t and pt are the actual and desired spatial spectrum
outputs, respectively. The speaker identification loss is the
weighted sum of cross entropy loss at individual directions:

LossID = −
D∑
d=1

wd

S∑
s=1

qds log q̂ds, (5)

where q̂ds and qds are the actual and desired speaker identity
outputs, respectively. The weighting {wd} depends on its dis-
tance to the DOAs of the sound sources:

wd =

{
maxϕ∈y

{
e−δ(ϕd,ϕ)

2/σ2
w

}
if |y| > 0

0 otherwise
, (6)

where y = ∪tyt contains the segment-level ground truth direc-
tions.

Decoding. During test time, the network outputs frame-
wise spatial spectra pt and speaker embedding rd per direction
(will be explained in Section 2.3). To get segment-level DOA
prediction, we compute the average of frame-wise spatial spec-
tra:

p =
1

To

To∑
t=1

pt (7)

and apply peak finding according to detect sound sources. For
any detected sound source, the speaker embedding output at the
estimated direction is the predicted speaker embedding.

2.3. Network Architecture

We design a multi-task network for speaker embedding using
DOA estimation as an auxiliary task. Its architecture, depicted
in Fig. 1, consists of a trunk for feature extraction, and two task-
specific branches. The trunk (green blocks) applies 2D convolu-
tions along time and frequency axes to extract Time-Frequency
(TF) local features. It starts with two downsampling convolu-
tions to reduce the computational cost. They are followed by
five residual blocks, which are used for extracting high-level
TF-local features, each of which is a 480-dimensional vector.
Each of these feature is then separated into DOA-wise fea-
tures at D = 120 directions (4-dimensional vector per direc-
tion). Then, they are re-organized by merging features across
all frequencies (54 bins after down-sampling). As a result, the
trunk extracts time-DOA local features, each of which is a 216-
dimensional vector (216 = 4 × 54). These features are then
used as input for the task-specific branches.

The DOA estimation branch (blue blocks) applies two lay-
ers of 2D convolutions along time and DOA axes. The borders
are padded circularly along the DOA axis, preserving its ac-
tual topology. This branch outputs one value per direction per
frame, which is bounded between 0 and 1 by the sigmoid func-
tion. This output is the frame-wise spatial spectrum pt.

The speaker recognition branch (red blocks) starts with two
layers of 2D convolutions to extract frame-wise speaker features
per direction ftd ∈ R512, which is then pooled along the time
axis using weighted average and standard deviation:

f
(avg)
d =

∑To
t=1 ptdftd∑To
t=1 ptd

, (8)

f
(std)
d =

√√√√√∑To
t=1 ptd

(
ftd − f

(avg)
d

)2
∑To
t=1 ptd

, (9)

where
√
· and ·2 are element-wise square root and square, re-

spectively. As indicated in the formulas, we use the output of
the DOA estimation branch {ptd} as the weighting parameters,
because the DOA estimation output (i.e. spatial spectrum) indi-
cates whether there is an active sound at that frame and direc-
tion. This can be viewed as an attention mechanism, that is the
network chooses by itself which frames to attend to.
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Figure 1: The architecture of the multi-task network for speaker
recognition.

Their concatenation fd = [f
(avg)
d f

(std)
d ] ∈ R1024 is the

segment-level speaker feature per direction. Then, the speaker
identity posterior probability is computed from these features
with fully-connected layers (1× 1 convolutions) and a softmax
layer.

At test time, the 512-dimensional activation of the last hid-
den layer after batch normalization is the speaker embedding rd
at the direction ϕd.

3. Experiments
We compared the proposed approach to a sequential approach
using real robot audio data in a speaker verification setting.

3.1. Data

We used the loudspeaker recordings from SSLR dataset 1 [25]
for training and evaluation. The data includes audio recordings
of speech signals played from loudspeakers and recorded by a

1https://www.idiap.ch/dataset/sslr

Table 1: Specifications of the recorded data.

Training Test

# of files 4208 2393
- single source 2808 1597
- two sources 1400 796

# of male speakers 105 8
# of female speakers 43 8
Total duration 16 hours 8 hours
Azimuth (°) [−180, 180] [−180, 180]
Elevation (°) [−39, 56] [−29, 45]
Distance (m) [0.5, 1.8] [0.5, 1.9]

Softbank Pepper robot. The robot has four co-planar micro-
phones on its head. There are up to two overlapping sound
sources. The speech data were selected from the AMI cor-
pus [26]. The specifications of the loudspeaker data are listed
in Table 1.

Training models that identify speakers per direction re-
quires more variability in DOAs of individual speaker as well
and number of identities. Otherwise, the network may overfit to
a wrong state where spatial locations are used as the clues for
speakers’ identity. Therefore, we added simulated data to com-
plement the real loudspeaker recordings for training. We used
the RIR-Generator [27] to generate room impulse responses.
The impulse responses are convolved with clean source signals
randomly selected from the VoxCeleb1 dataset [28]. The spa-
tialized audio samples are mixed to generate (up to four) over-
lapping sounds and added with real robot background noise (fan
noise). In total, there are 1358 speakers (147 from the loud-
speaker data and 1211 for simulated data) for training and 16
different speakers (8 male and 8 female) for evaluation.

3.2. Training Process and Parameters

The training processing includes two steps. First, the model is
trained with an emphasis on DOA estimation (µ = 1, λ = 0.1)
and 3-10 second training segments. Then, the second step, it is
trained with an emphasis on speaker identification (µ = 0.1,
λ = 1) and 2-5 second training segments. In each mini-
batch, 10.0% of the sequences are sampled from the loud-
speaker dataset, and the rest are sampled from the simulated
dataset. We select the number of sequences in each mini-batch,
such that they approximately fill up the memory of a GPU with
11 GB memory. Thus, depending on the sequence length, the
number of sequences in each mini-batch varies between 10 and
90. The model is trained for 80 epochs with an Adam opti-
mizer [29] at each step. The learning rate is 0.001 for the first
40 epochs and reduced by half for the other 40 epochs. Other
parameters are chosen as σ = 8° and σw = 16° in the experi-
ments. This proposed method is denoted by PROP.

3.3. Baseline Sequential Method

We use a sequential method (denoted by SEQ) as the baseline
for comparison. This method is based on the Minimum Variance
Distortionless Response (MVDR) beamformer [30] and a deep
neural network for speaker embedding [14]. The neural net-
work directly output speaker embedding using single-channel
audio input. It is first trained on the VoxCeleb1 dataset [28] with
a triplet loss and intra-class distance variance regularization,
and then fine-tuned using the beamformed signals extracted
from the loudspeaker training data according to the ground truth
DOAs.
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Table 2: EER (%) on trials with pairs of sound sources from all
segments. The second column indicates how the DOA used for
speaker embedding extraction is obtained.

Method DOA Segment duration

10s 5s 3s 2s

SEQ GT 8.72 11.07 13.48 18.90
- EST 8.67 11.04 13.49 18.93

PROP GT 5.91 9.76 13.42 17.80
- EST 5.97 9.83 13.50 17.85
- EMT 6.96 10.85 14.32 18.63

Table 3: EER (%) under different trial pair conditions. The
speaker embedding are extracted at directions estimated by the
single-task network (EST).

Trial Method Segment duration

10s 5s 3s 2s

1 vs 1 SEQ 3.80 7.07 10.19 16.42
- PROP 5.24 8.83 12.50 16.88

1 vs m SEQ 10.82 12.73 15.23 20.40
- PROP 6.36 10.22 13.99 18.43

m vs m SEQ 12.24 14.29 16.87 21.70
- PROP 6.34 10.76 14.71 19.18

3.4. Speaker Verification Performance

We evaluate the Equal Error Rate (EER) of the speaker em-
bedding methods under a speaker verification setting (Table 2).
First the loudspeaker test data are segmented into 2, 3, 5, or 10-
second segments. For each sound source in each segment, we
extract the speaker embedding under different DOA conditions:
• GT: ground truth DOA is known;
• EMT: DOA is estimated by the proposed multi-task network;
• EST: DOA is estimated by a single-task network from [24].
Then, we generate verification trials using up to 5 million
randomly-sampled sound source pairs. We compute the cosine
similarity scores between the speaker embeddings of all trial
pairs. Comparing the scores to a threshold, we can make pre-
dictions on whether the speakers from a trial pair have the same
identity. The EER is the rate when false acceptance rate and
false rejection rate are equal while varying the threshold.

In addition to segment duration, speaker verification are
also strongly affected by whether there are overlapping sounds
or not. Therefore, we additionally report the speaker verifica-
tion performance on trail pairs of these different conditions (Ta-
ble 3):
• 1 vs 1: Both speaker embeddings are sampled from the

single-source segments;
• 1 vs m: One is from the single-source segments and the other

is from the multi-source segments;
• m vs m: Both are from the multi-source segments.
In this table, both the proposed and the baseline systems use
DOA estimation based on the single-task network (EST), as this
is the best condition that can be achieved in real applications.
Results under other DOA conditions (GT and EMT) are omitted
for brevity.

DOA estimation. Comparing the results of a method with
different DOA estimation, the speaker embeddings extracted
from the directions predicted by the single-task DOA estima-

tion model (EST) is as good as using the ground truth (GT).
This indicates that the prediction of the DOA estimation model
is accurate and the speaker embedding approaches are robust to
small error in DOA estimation. However, the performance is de-
graded when an inaccurate DOA estimation is used for speaker
embedding extraction. This is the case if the DOA estimation
of multi-task model (EMT) is used. This is expected as we con-
sider the DOA estimation as an auxiliary tasks. The parameters
of DOA estimation branch are tuned to produce the best tempo-
ral weighting for speaker recognition instead of to get best DOA
estimation scores.

The results indicate that for practical applications the opti-
mal solution is to run two neural networks parallelly: using the
proposed multi-task network for speaker embedding extraction
at all directions and the single-task network to estimate which
direction should be used to pick the speaker embeddings. Our
experiments using a mainstream GPU show that the extra com-
putational cost is negligible.

Proposed vs. sequential methods. The proposed method,
compared to the sequential method, achieves better overall per-
formance in long segments (5 and 10-second segments), while
their EERs in short segments (2 and 3-second segments) are
similar. Their performance under different trial conditions (Ta-
ble 3) indicates that while the proposed method is not as good
as extracting speaker embedding in single-source segments, it
is significantly better under the multi-source condition. In the
single-source case, the sequential approach is not influenced
much by the beamformer, as sound source separation is not nec-
essary and the single-channel speaker embedding network can
be trained to handle noisy input (as what the fine-tuning is for).
In contrast, our proposed multi-task network aims to extract
speaker embeddings on all directions, and is more complex than
a single-channel single-speaker embedding network. Therefore,
it is more difficult to train. In our experiments, we find that the
single-channel speaker embedding approach is more suitable
for single-source recordings. However, for segments contain-
ing multiple sound sources, the sequential approach relies on
the beamformer to separate the signals. Its speaker embedding
performance may degrade due to imperfect sound separation,
whereas our proposed approach does not require explicit sound
separation.

4. Conclusion
In this paper, we have presented a novel multi-task neural net-
work for extracting speaker embeddings of multiple simulta-
neous speakers using DOA estimation as an auxiliary task.
The network learns to estimate a spatial spectrum score and a
speaker embedding for each direction. The spatial spectrum is
used as weighting parameters for weighted average and stan-
dard deviation pooling of the frame-wise speaker features along
the time axis. Compared to a sequential approach that applies
separately DOA estimation, beamforming and speaker embed-
ding extraction, our proposed approaches achieves better over-
all performance for audio segments with overlapping sound
sources.
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