
Proc. of Workshop on Emerging paradigms for robotic manipulation: from the lab to the productive world, ICRA 2021

An Attention Mechanism for Deep Q-Networks
with Applications in Robotic Pushing

Marco Ewerton, Sylvain Calinon, Jean-Marc Odobez

Abstract— Recent work has used Deep Q-Networks (DQNs)
to address manipulation tasks involving pushing. While suc-
cessful in general, these DQNs and other deep models have
been observed to sometimes get stuck in local optima when
dealing with large state-action spaces, repeating for instance
the same ineffective action. We address this issue by proposing
a mechanism for DQNs to attend only to actions that matter.
Simulation experiments show that this mechanism helps the
DQN learn faster and achieve higher performance in a push
task involving objects with unknown dynamics.

I. INTRODUCTION AND RELATED WORK

Pushing is a key motor skill that can help to solve many
manipulation tasks by isolating objects or reorienting them
to improve their grasping, bringing them closer, or putting
them into a container. Pushing can also aid perception by
improving object segmentation. It is interesting to note that
25 out of the 50 manipulation tasks of the Meta-World
benchmark involve pushing [1].

In this view, Zeng et al. [2] proposed an interesting model-
free deep reinforcement learning to synergistically perform
pushing and grasping. However, we and other researchers [3]
have observed that deep models can get stuck in a loop,
predicting actions that do not cause any change in the actual
scene, and also spend a large amount of training time only
to learn how to perform basic pushes that move objects. To
address these two issues, our main contribution is to design
a simple yet effective attention mechanism based on visual
processing for Deep Q-Networks (DQNs) that improves their
sampling efficiency by constraining the set of possible ac-
tions to actually lead to changes in the environment. Such an
approach could be applied to any manipulation tasks which
involve pushing. Note that here, by attention mechanism, we
mean that our system pays attention only to actions that can
at least change the environment.

Other approaches to manipulation have used, for example,
Logic-Geometric Programming [4], Model Predictive Con-
trol [5], Recurrent Neural Networks [6] or Switch-Linear
Models [3]. However, differently from our work, none of
these works have dealt with a pile of different 3D objects
with unknown dynamics.

The authors are with the Idiap Research Institute, CH-1920, Martigny,
Switzerland {marco.ewerton, sylvain.calinon,
jean-marc.odobez}@idiap.ch

The research leading to these results has received funding from the Swiss
National Science Foundation through the HEAP project (Human-Guided
Learning and Benchmarking of Robotic Heap Sorting, ERA-net CHIST-
ERA).

II. PUSHING TASK AND LEARNING ARCHITECTURE

Fig. 1a depicts the task studied in this paper. The objective
is to make the robot push all the objects on the tabletop
into the transparent box. A camera positioned in front of
the robot captures RGB-D images from the workspace. The
orthogonal projections of these images are fed as inputs to
the learning architecture (Fig. 1b). The robot can push at the
positions corresponding to any of the 224×224 pixels on the
image. The pushing actions can be performed in 16 different
orientations and are 10 cm long.
Learning approach. We have adopted the DQN approach
of [2], and have defined the reward for taking action at at
state st and transitioning to state st+1 as:

Rat
(st, st+1) =

0 if no change or object falls to ground,

max(0, d̄t − d̄t+1) if change,

+10 if object falls into box,

where a change is detected when there is a large enough
difference between the images before and after the push.
The term d̄t = 1

Nt

∑
pi∈Ot

d(pi, ptbox) is the average distance
between the Nt = |Ot| pixels pi belonging to objects at time
t and ptbox denoting the target position of the box we want to
push objects into. The set Ot of object pixels is obtained from
the depth image by identifying all pixels which are above the
table plane. Hence, the reward due to change will be positive
if d̄t−d̄t+1 > 0, that is, if after the push the average distance
between object pixels and the target (represented by d̄t+1) is
shorter than before the push (represented by d̄t).
Learning system Workflow. It is depicted in Fig. 1b. The
parameters of the DenseNet [7] are optimized via back-
propagation to minimize the temporal difference error δt =
|Q∗ (st, at)− yt| between the predicted Q-value Q∗ (st, at)
and a target value

yt = Rat
(st, st+1)+γQ∗

(
st+1, arg max

a′
(Q∗ (st+1, a

′))

)
,

where γ is the discount factor and a′ is an action in the set of
all available actions. During training, the actions are sampled
according to an ε-greedy approach with ε = 0.1. During test,
the selected actions are the ones that maximize Q∗.

III. ATTENTION MECHANISM

We propose an attention mechanism that improves sam-
pling efficiency, reduces training time, and selects better
actions. It works by generating a mask A which is applied to
the output Q of the DenseNet such that the output effectively

(a) (b)
Fig. 1. (a) Pushing into the box task. (b) Workflow of our learning system. A DenseNet predicts the state-action values Q(st, at) of pushing at each
pixel with a certain angle while our attention mechanism based on visual processing identifies push start position candidates that lead to moving objects.
The mask A provided by this attention mechanism is combined via the Hadamard product with Q to produce the state-action values Q∗. The optimal
push a∗t is the one that maximizes Q∗. The attention mask A prevents trying pushes that do not lead to any changes, speeding up the learning process
and reducing the chances of choosing ineffective actions at test time.

(a) (b) (c)
Fig. 2. (a) Depth heightmap. (b) The green points correspond to edges that
can be pushed from a given angle, 45 degrees in this case. The blue points
correspond to suitable pushing start positions given that the push should
start at a distance l from the edges. (c) Geometrical relation between an
edge point E and a suitable start pushing position candidate P .

used to sample actions becomes Q∗ = Q ◦ A, where ◦
stands for the Hadamard product. The mask A has a value
1 for each pixel and orientation corresponding to a suitable
push candidate and 0 otherwise. It is obtained by applying a
Canny edge detection algorithm to the input image followed
by geometrical considerations about the task (see Fig. 2). It
aims at keeping only effective pushes and eliminating the
large set of obvious actions which will not affect the scene.

IV. EXPERIMENTAL RESULTS AND CONCLUSION

Experiments. We performed experiments in simulation us-
ing a UR5 robot arm performing the task depicted in Fig. 1a.
Our simulation involved eight different object shapes (includ-
ing cylinders, which can roll on the table) and ten different
object colors, as in [2]. Training and test scenarios were
generated by sampling object shapes and colors at random
and letting the objects fall around the center of the table.
The training and test procedures moved from one stage to
the next if no objects were remaining on the tabletop or if
five pushes were performed without any change.
Results. Tests were conducted using 200 pregenerated sce-
narios: 100 with one and 100 with ten objects. Table I shows
that the model using the attention mechanism consistently
outperformed the model without it. It learns more accurate
pushes, on average with more objects pushed into the box and
far fewer objects remaining on the table (results are nearly
perfect with only one object), and is more efficient, with far
fewer actions needed per object in the box, especially when
there were more objects in the environment. Note that both
models have been trained for the same number of iterations,

Total # objects 1 10

Model with mask no mask with mask no mask

objects in
the box µ(σ)

0.99
(0.10)

0.92
(0.27)

7.39
(1.50)

4.20
(2.79)

objects on
the ground µ(σ)

0.01
(0.10)

0.07
(0.26)

2.47
(1.29)

1.63
(1.43)

objects left
on the table µ(σ)

0.00
(0.00)

0.01
(0.10)

0.14
(1.01)

4.17
(3.38)

actions
µ(σ)

3.19
(0.96)

3.67
(1.18)

19.00
(6.57)

21.32
(6.66)

avg. # objects in the box
avg. # actions

0.31 0.25 0.39 0.20

TABLE I
RESULTS STARTING FROM 1 OR 10 RANDOMLY FALLEN OBJECTS.

and have achieved convergence during training.
Conclusion. We proposed an attention mechanism based on
visual processing for DQNs. In particular, we demonstrated
that this mechanism helps a DQN to learn a push task faster
and to achieve better performance. It improves the sampling
efficiency of the DQN by constraining the set of possible
actions to pushes that lead to changes in the environment.

REFERENCES

[1] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning,” in Conf. on Robot Learning, 2020.

[2] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in IROS. IEEE, 2018, pp. 4238–4245.

[3] H. Suh and R. Tedrake, “The surprising effectiveness of linear models
for visual foresight in object pile manipulation,” Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2020.

[4] M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning.” in
RSS, 2018.

[5] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider
system: A story of hybrid and underactuated contact dynamics,” in
Algorithmic Foundations of Robotics XII, 2020, pp. 800–815.

[6] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum,
and A. Rodriguez, “Augmenting physical simulators with stochastic
neural networks: Case study of planar pushing and bouncing,” in IROS.
IEEE, 2018, pp. 3066–3073.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017, pp. 4700–4708.

