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Abstract

In this paper, we present an unsupervised method for
mining activities in videos. From unlabeled video sequences
of a scene, our method can automatically recover what
are the recurrent temporal activity patterns (or motifs) and
when they occur. Using non parametric Bayesian methods,
we are able to automatically find both the underlying num-
ber of motifs and the number of motif occurrences in each
document. The model’s robustness is first validated on syn-
thetic data. It is then applied on a large set of video data
from state-of-the-art papers. We show that it can effectively
recover temporal activities with high semantics for humans
and strong temporal information. The model is also used
for prediction where it is shown to be as efficient as other
approaches. Although illustrated on video sequences, this
model can be directly applied to various kinds of time series
where multiple activities occur simultaneously.

1. Introduction

Mining recurrent temporal patterns in time series is an
active research area. The objective is to find, with as little
supervision as possible, the recurrent temporal patterns (or
motifs) in time series. This general problem has its instance
in computer vision where we would like to automatically
extract activities from video sequences. A video sequence
has the particularity of being “caused” by different activities
acted by different persons or objects present in the scene.

Many other time series can present the same character-
istic of being a fusion of multiple motifs. For example,
we can consider the time series made of the overall elec-
tric and water consumption of a building. In such setting,
we could observe motifs such as a short water consumption
followed by short electric consumption (someone filling and
then starting a boiler). We could also observe motifs like al-
ternating water and electric consumptions for one hour (for
a washing machine cycle). As multiple persons can live in
the building (and one person can also do multiple tasks),

Figure 1. Task on video sequences. Without supervision, we want
to extract recurring temporal activity patterns (4 are shown here).
Time is represented using a gradient of color from violet to red.
We call these patterns “motifs” in the article.

multiple occurrences of these two motifs can occur at the
same time and with no specific synchronization.

In the context of video sequences, the specific goal is
to find activity patterns (e.g. car passing, pedestrian cross-
ing) without supervision. This elementary task can be use-
ful for applications like summarizing a scene, counting
or detecting particular events or detecting unusual activi-
ties [8, 11, 7, 12]. More generally, this identification of
temporal motifs and the instant at which they occur can be
used as a dimensionality reduction method for (potentially
supervised) higher level analysis.

In this paper, we present a model for finding temporal
patterns (motifs) in time series. While selecting the num-
ber of motifs automatically, we also determine the number
of times they occur in the data and when they occur. This
model is well suited for any time series generated by non-
synchronized concurrent activities as we illustrate by apply-
ing it to real video sequences.

2. Related Work

Recently, there has been an increased focus on discov-
ering activity patterns from videos, especially in surveil-
lance scenarios. These patterns are often called “activi-
ties” (or “motifs”) in the existing literature. Although other
paradigms can be successful as well (e.g. see an approach
based on diffusion maps for instance [14]), topic models
have shown tremendous potential in achieving this in an
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unsupervised fashion. Most of the existing topic model
based methods propose to break the videos into clips of a
few frames or seconds. Documents are created from these
clips by quantizing pixel motion at different locations in the
images. This approach was followed in [12, 11, 5], where
activities are represented as static co-occurrences of words.

Activities in a video are by nature, temporally ordered.
Therefore, following the exchangeability assumption and
representing each action as a bag-of-words [12, 11] results
in loosing the temporal dependencies among the words.
Several attempts have been made to incorporate temporal
information in topic models, starting from the work done
in text processing [2, 13]. Following these lines, methods
in [4] improve by modeling the sequence of scene behav-
iors as a markov model, but with a pre-determined fixed
set of topics. While the temporal order is imposed at the
global scene level, the higher level of the hierarchy, the ac-
tivity patterns are still modeled as static distributions over
words. The methods proposed in [7, 3, 10] complement
visual words with their time stamps to recover temporal
patterns. While this method can be useful when clips are
aligned to recurring cycles like traffic signals (as this was
done manually in [3]), it gives poor results in general cases
where such alignment is not done a priori [7]. A more gen-
eral approach was proposed in [10], wherein motifs and
their starting times are jointly learnt, requiring no manual
alignment of clips. However, the model is not fully genera-
tive and requires setting various parameters like the number
of topics.

One of the main challenges in topic model based activ-
ity modelling is model selection, that is, the automatic esti-
mation of the number of topics. Non-parametric Bayesian
methods such as Hierarchical Dirichlet Process [9] allows to
have in theory an infinite number of topics and in practice to
select this number. Such a model was explored for discover-
ing static topics in [12]. Similarly, [5] uses the HDP and in-
finite state HDP-HMM paradigms of [9] to identify tempo-
ral topics and scene level rules. Unfortunately, in practice,
only a single HMM was found for each of the four tested
scenes, meaning that temporal ordering was still dominantly
modeled as the global scene level using a set of static activ-
ity distributions, similarly to what was done in [4].

Our paper differs significantly from previous work. Our
aim is to find both motifs with strong explicit temporal in-
formation and when they appear in the temporal documents.
The main contributions of this work are: we adopt a Non-
parametric Bayesian approach to automatically determine
the number of topics shared by the documents and also
when they appear in each temporal document. To this end,
we derive the Gibbs sampler for the joint inference of the
topics and their start times. We propose a method to predict
the future occurrences by inferring the start times of topics
on partial occurrences. We finally compare our prediction

Figure 2. Schematic generative model. A temporal document is
made of words counts at each time instant. Each document is com-
posed of a set of occurrences each having one motif and a location
in time (starting time). The motifs are shared by the occurrences
within and across documents.

method to a more traditional HMM based prediction and
validate the effectiveness of our method on a large set of
video data provided by [12, 4, 10, 5].

3. Approach Overview
The input data of our method is a set of temporal docu-

ments (possibly a long single one) as defined in section 1.
This observed document is defined as a table of counts (or
table of amount of presence): for each word in a defined
vocabulary and at each time instant, the table reflects the
amount of presence of this word at this time instant. Our
approach is depicted in figure 2 where each document is
represented as a set of “motif occurrences” (e.g. 7 of them
in Fig. 2). Each occurrence is defined by a starting time in-
stant and a motif. Motifs are shared by different occurrences
within and across documents.

In our model, we extensively use Dirichlet Processes
(DP). A DP is a non-parametric Bayesian process to model
infinite mixture model. The term “non-parametric” refers
to the fact that the model grows in function of the observed
data. Dirichlet processes are often used to determine au-
tomatically the number of relevant elements in a mixture
model (e.g. number of topics or number of gaussians). A
DP is an infinite mixture but observations from a DP most
probably tend to cluster on some limited elements of the
mixture.

We use two levels of DP in our approach. At a lower
level, within each document, we model the occurrences us-
ing a DP: observation then cluster around an automatically
determined number of occurrences. At an higher level, we
model the motifs using a DP: occurrences within and across
documents then cluster around an automatically determined
number of motifs.
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4. Model
As introduced in section 3, our model relies on Dirichlet

Processes (DP) to discover the temporal motifs, their num-
ber, and find their occurrences. We will thus start by intro-
ducing DP and then describe our model with more details.

4.1. Hierarchical Dirichlet Processes (HDP)

Dirichlet processes are a non-parametric approach to
model arbitrary distributions over data points using mix-
ture models having a potentially infinite number of mix-
tures. Hierarchical Dirichlet Processes [9] have been intro-
duced as a way to generalize DP by modeling distributions
in different groups of data (the documents) using DP and
allowing these document specific mixture models to share
the same mixture components.

In the context of this section, we will assume that the
data are words belonging to a vocabulary, and that the mix-
ture components are topics represented by multinomial dis-
tributions other these words.

Below we summarize the main points of the HDP. The
reader is referred to [9] for a comprehensive description.
Hierarchical Dirichlet process. The HDP generative pro-
cess is presented in Fig. 3. It can be described as follows
[9]:

G0 ∼ DP (γ,H) Gj ∼ DP (α,G0)
θji ∼ Gj xji ∼ Mult(θji)

(1)

As can be seen, it uses Dirichlet Processes at two levels. In
the first level, the DP generates a distribution G0 defined
as an infinite mixture of topic atoms φl drawn from the base
distributionH , where the mixture weights are generated us-
ing the “GEM” stick-breaking construction [9]. Thus, the
Dirichlet Process can also be written as:

G0 =
∑∞
l=1 βlδφl

with β ∼ GEM(γ) and φl ∼ H (2)

Note that it follows from this definition that a draw fromG0

produces one of the atom φl. G0 contains the list of all top-
ics φl that are shared by all documents. The concentration
γ is a prior parameter on the topic occurrence distribution
that will influence the actual (finite) number of topics that
will be recovered during the inference process1.

The second Dirichlet Process Gj ∼ DP (α,G0) in the
HDP allows to define the mixture of topics in each docu-
ment j. Since the base distribution G0 is itself a DP, the
distribution Gj will actually be a mixture defined over the
same set of atoms as in G0. This is this property of DP that
allows documents to share the same topics. In practice how-
ever, only a subset of the topics in G0 are actually active in
Gj and used to generate the words occurring in the docu-
ment. The document specific topic weights πj are given by:

Gj =
∑∞
l=1 πjlδφl

with πj ∼ DP (α, β) (3)
1Although the number of topics can potentially be infinite, in practice

only a few of them have a significant enough weight.
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Figure 3. Three representations of HDP [9]. We can develop
Dirichlet processes (DP) as a stick breaking process and some
draws from the base distribution. a) most compact representation;
b) developing the higher level DP, c) developing both DP.

where β is the base distribution of topic weights in G0 (cf
Eq.2). This representation is illustrated in Fig. 3b. The DP
process in Eq.3 can be further decomposed using a GEM
process and a set of mixtures elements. It is illustrated in
Fig. 3c and corresponds to the generative process:

kjt ∼ β βtj ∼ GEM(α)
tji ∼ βtj zij = kjtji and xji ∼ Mult(φzji)

(4)

which reflects the analogy with the Chinese Restaurant
Franchise Process2 [9]. There, customers/words xji in a
restaurant/document j sit at different tables, and at each ta-
ble t in this restaurant the meal/topic kjt is served. In HDP,
the global GEM distribution β is used to draw the meals kjt
associated with each table t, while the document specific
GEM βtj is used to draw the tables tji at which each cus-
tomers xji sits. Hence, given the table tji at which he sits,
a customer’s meal zji is automatically determined given the
set of kjt. Notice that, although it is not necessary, we used
dashed arrows in the graphical model to represent such de-
terministic relations (the conditional probability is a Dirac
distribution).

4.2. Proposed Model

Our goal is to automatically infer a set of motifs (tem-
poral activity topics) from a set of documents containing
time-indexed words.

More precisely, let us define a document j as a set of ob-
servations (wji, atji)i=1...Nj

, where wji is a word belong-
ing to a vocabulary V describing a localized spatio-temporal
activity in the image (how we get these words is defined in
the Experiment Section), and atji is the absolute time in-
stant at which the word occurs.

2Note that the β and βt
j distributions resulting from the GEM process

can be seen as distributions over the infinite set of positive integers.
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a) b)

Figure 4. Proposed model a) with DP compact notation; b) with
developed Dirichlet processes (using stick-breaking convention
at both levels). Dashed arrows represents deterministic relations
(conditional distributions are a Dirac).

Similarly, let us define our motifs as spatio-temporal
probabilistic maps. More precisely, if φl denotes a motif,
then φl(rt, w) denotes the probability that the word w oc-
curs rt relative time steps after the start of the motif.

Our goal is to infer the set of motifs from the documents.
As discussed previously, this require to simultaneously infer
the starting times of each motif occurrence in the document.
As it is difficult to fix the number of motifs before hand,
we use a DP to allow the learning of a variable number of
models from the data. Similarly, we use a second DP to
model all motif occurrences as we don’t know their number
in advance.

Our generative model is thus defined using the graphical
models presented in Fig. 4. Fig.4a depicts our model using
the compact Dirichlet processes notation as done for HDP
in Fig. 3a, whereas Fig.4b depicts the developed notation
(cf Fig. 3c). Notice that in these drawings, two variables
in an ellipse form a couple, indicating that they are tied by
their plate index.

The equations associated with Fig. 4a are as follows:

M ∼ DP (γ,H) with H = Dir(η) (5)
Oj ∼ DP (α, (Uj ,M)) (6)

(stji, θji) ∼ Oj (7)
(rtji, wji) ∼ Mult(θji) (8)

atji = stji + rtji (9)

where deterministic relations are denoted with “=”. As with
the standard HDP, the first DP level generates our list of
motifs in the form of an infinite mixture M . Each of the
motif is drawn from H , defined as a Dirichlet of parameter
η (a table of the size of a motif; see below how we set it).

However, contrary, to the standard HDP, this set of atoms
is not only shared across documents, but also across motif

relative time: rt

prior: η2(rt)

Figure 5. Motif prior over the relative time occurrence of words rt
(for a 8 time steps motif). The steep increasing ramp at the first
two time steps ensures that real activities are captured from their
start, (i.e. words occurring prior to the start are not consistent with
the activity), while the decreasing ramp ensures that most of the
activity concentrates towards the beginning of the motif.

occurrences using the DP at the second level. More pre-
cisely, the document specific distribution Oj is not defined
as a mixture over motifs, but as an infinite mixture over
(start time × motifs) occurrence atoms (cf Fig. 2), since the
base distribution is defined by (Uj ,M). Each of the atoms
is thus a couple (ostl, φl), where ostl ∼ Uj is the occur-
rence starting time drawn from Uj , a uniform distribution
over the set of possible motif starting times in the document
j, and φl ∼ M is one of the topic drawn from the mixture
of motifs.

Words (wji) are then generated by repeatedly sampling
a motif occurrence (Eq. 7), using the obtained motif θji
to sample the word wji and its relative time in the motif
rtji (Eq. 8), from which, using the sampled starting time
stji, the word absolute time occurrence atji can be deduced
(Eq. 9).

The fully developed model in Fig. 4b helps to better un-
derstand the generation process and the inference. The cor-
responding equations can be written as:

βM ∼ GEM(γ) φl ∼ H (10)
βoj ∼ GEM(α) (11)

ostjo ∼ Uj and kjo ∼ βM (12)
oji ∼ βoj (13)
zji = kjoji and stji = ostjoji (14)

(rtji, wji) ∼ Mult(φzji) (15)
atji = stji + rtji (16)

The main difference with the compact model is that the way
motif occurrences are generated is explicitly represented.
Occurrences are the analog of the tables in HDP: the global
GEM distribution over motifs βM and Uj are used to as-
sociate motif indices kjo and starting times ostjo to each
occurrence (Eq. 12), while the document specific GEM βoj
is used to sample the occurrence associated to each word
(Eq. 13), from which generating the observations can be
done as presented above (Eq. 14 to 16).
Setting time dependent prior on motifs. The parameter η
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(a table of the size of the motifs) defines the Dirichlet prior
H = Dir(η) from which the motifs φk (defined as multi-
nomials over (w, rt)) are drawn. The normalized vector
η′ = η

‖η‖ represents the expected values for the multinomial
coefficients, whereas the strength ‖η‖ =

∑
w,rt η(w, rt) in-

fluences the variability around this expectation. A larger
norm ‖η‖ results in lower variability. Often, a uniform prior
over words is used, and only the prior strength is changed.

Since η′ can be assimilated to parameters of a multino-
mial, we will set it as:

η′(w, rt) = η1(w|rt)η2(rt). (17)

in which we define the word probabilities η1 for a given rt
to be uniform, and the prior η2 on rt according to Fig. 5.
The impact of this prior during inference will be three-fold:
first, the steep increasing ramp in the first two time steps
ensures that real activities are captured from their start, i.e.
there is no word before or at the start that occurs consis-
tently with the activity. Second, it will avoid the discovery
of motifs with no activity at all at the beginning. Third,
when seeking for longer motifs, it will reduce the learning
of spurious co-occurrences by allowing a graceful dampen-
ing of word occurrences at the end of the motifs unless their
co-occurrence with words appearing in the first part of the
motif is strong enough.

5. Inference
Compared to plain HDP, our inference is more compli-

cated given the added starting time to our occurrences (HDP
tables). Given the model presented in section 4, we use a
Gibbs sampling and sample over:

• oji: association of observations to occurrences

• kjo: association of occurrences to motifs

• ostjo: starting times of occurrences

Using a Dirichlet prior as H (which is conjugate to the
observations), we can integrate out the motifs themselves
as in standard HDP. Due to space constraints, more detailed
equations used in the Gibbs sampling process are provided
as additional material [1]. In this section we summarize the
main elements in the Gibbs sampler.

We recall that a Dirichlet Process (DP) can also be de-
fined using the a Chinese restaurant process. For example,
we can consider a DP of concentration γ and base distri-
bution H . In the Chinese restaurant definition, given a set
of previous draws from this DP, a new draw is obtained by
considering two possible cases. Firstly, the new draw can be
exactly one of the previous draws, this happens with a prob-
ability proportional to the number of previous draws having
this exact value. Secondly, the new draw can be drawn di-
rectly from H , this happens with a probability proportional

to the concentration γ. This Chinese restaurant process is
highly used in the derivation of Gibbs sampling equations.

Sampling oji (for a given observation i in document j) re-
quires to consider two cases: either the observation will be
re-affected to an existing occurrence or a new occurrence
will be created for it.

The probability of affecting an observation to a partic-
ular existing occurrence is proportional to two quantities.
The first quantity, because of the Chinese restaurant pro-
cess on the occurrences, is the number of observations that
are associated with the considered occurrence. The second
quantity comes from the likelihood of the considered ob-
servation given its virtual affectation to the considered oc-
currence. From the occurrence starting time and the obser-
vation time, we can calculate the relative time rtji of the
observation in the motif. Considering the prior H and all
observations (across documents) affected to the occurrence
motif, we can compute the likelihood of the considered ob-
servation with its relative time.

The other option is to create a new occurrence for the
observation. Because of the Chinese restaurant process, it
will be proportional to α. This probability of creating a
new occurrence is also proportional to the likelihood of the
considered observation under the hypothesis that it is asso-
ciated to a new random occurrence. To evaluate this last
probability, we need to consider the expected value over all
possible starting times and all possible motifs for the new
occurrence. With a uniform prior on the starting times, we
manage to integrate over the starting times. Considering all
possible motifs is more difficult: here again we have a DP
and, the motif can be either an existing one (with a proba-
bility proportional to the number of occurrences across doc-
uments for this motifs) or a new motif drawn from H with
a probability γ. Given our Dirichlet prior H , we manage to
integrate over the new motifs drawn from H .

About the α concentration parameter. In HDP, the α con-
trols reaffectation of an observation to a new table versus
any existing table. In our model, α controls reaffectation of
an observation to a new occurrence versus only the occur-
rences that can explain this observation: if an occurrence is
too far from an observation then the observation cannot be
reaffected to this occurrence.

Phrased differently, in HDP α controls the number of
topics used in a document. In our model α does not control
the number of occurrences in a document but rather the av-
erage number of overlapping occurrence at a particular time
instant in the document. The consequence is that α can be
set independently of the document length and that it takes
relatively small values.
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Sampling kjo and ostjo . We resample independently each
kjo and, to encourage faster alignment of motifs, we resam-
ple ostjo by groups: we consider in turn each group made
of all occurrence having a particular motif. Due to space
constraints, we redirect the interested reader to additional
material [1] for details on this sampling.

6. Experiments

Here, we present results on synthetic and video data.
More illustrations are available in additional material [1].

6.1. Validation on synthetic documents

To validate our model, we apply it on synthetic tempo-
ral documents. We first randomly generate a set of 5 motifs
with 25 words and 5 time steps. Then, we generate docu-
ments of 100 time steps, each containing 40 random occur-
rences and 20 random observations. From this we obtain
dense documents where occurrences are overlapping almost
everywhere.

Number of motifs. Our model properly finds the number
of motifs and fully recovers the original motifs (see [1]).
Due to random co-occurrences in these dense documents,
sometimes an additional motif containing multiple other
motifs is also recovered.

Motif duration. In our model, we need to provide a max-
imum motif duration for recovered motifs. Considering the
real motifs are of 5 time steps, if we ask for even shorter
motifs, then we recover multiple motifs to explain a sin-
gle real motif. If we ask for longer motifs, we observe that
our prior on the relative time (see section 4) is effectively
encouraging the real motifs to start at the beginning of the
recovered motif. With a uniform prior we get the real motif
at a random position in the recovered motif. Such random-
ness makes the interpretation more difficult as the recovered
motifs start with an unknown duration of almost no activity.

Noise. We also tested the effect of noise on our docu-
ments: as in [10], we add some observations drawn uni-
formly in the document (both a word and an absolute time
are drawn). In [10] it is reported that they recover the origi-
nal motifs with added noise. Interestingly, in our case, as the
model automatically selects the number of motifs, it creates
one or more noisy motifs to explain the noise present in the
data. As the model explicitly creates noise motifs, the re-
covered non-noise motifs appear with much less noise. This
clearly illustrates the model’s freedom in selecting the most
appropriate number of motifs under different situations.

6.2. Experiments on video data

We consider different videos taken from static cameras
and use our model to discover recurrent motion patterns in
the scenes. In the body of the article (Fig. 6 and 7) we
show only 3 different scenes: the MIT video from [12],

Figure 6. (best viewed in color) Top 6 recovered motifs, explaining
more than 95% of the data. Time is represented using a gradient
of color from violet to red. Displayed motifs are all composed of
11 time instants (seconds).

the UQM roundabout video from [6] and the far-field video
from [10] (Fig. 6). We also experimented on other videos
(e.g. from [4] and [5]): results are shown in [1].

From Videos to Temporal Documents. To create a tempo-
ral document from a video, we first extract low-level visual
features. We temporally downsample all the videos to 5
frames per second and compute the optical flow features at
sampled locations of a fine spatial grid using a modified ver-
sion of the opencv KLT code. The optical flow vectors are
then quantized into 8 cardinal directions. A post-processing
step is then applied to only keep the words that appear suf-
ficiently often and doing so prune the areas where nothing
happens in the images. After this process we get around 20k
different words which define our low-level codebook.

Rather than using these low-level words directly in our
model, as done in most works, we first apply a dimensional-
ity reduction using Probabilistic Latent Semantic Analysis
(PLSA). More precisely, documents are created by counting
the number of occurrences of the low-level words in each
second of the video. The PLSA algorithm is then applied
on these documents to learn a set of localized activity top-
ics. We ask for a conservative number of topics (between
50 and 100 depending on the video complexity) in order to
keep a representation with a fine enough spatial resolution.

Finally, the estimated PLSA topics are then used to gen-
erate the temporal documents that we feed into our model
by considering each PLSA topic zplsa as a word w of our
motif model. This is achieved by applying the PLSA infer-
ence (assuming known topics) at each time step at (we used
a temporal resolution of one second) on low-level word doc-
ument dat to obtain the posterior estimate of p(zplsa|dat).
The amount of words n(w, at) used as input in our algo-
rithm is then defined as: n(w, at) ∝ Nat · p(zplsa|dat),
where Nat denotes the number of low-level words in the
document dat.
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Figure 7. (best viewed in color) Example of the top 5 recovered motifs from different scenes. Time is represented using a gradient of color
from violet to red. Displayed motifs are all composed of 6 time instants (second). See additional material [1] for more examples.

Recovered Motifs. We run the inference of our model on
different video datasets to retrieve recurrent activities as
motifs. A recovered motif is a table providing the probabil-
ity that a word occur at a relative time instant with respect to
the beginning of the motif. Since, as introduced above, each
word corresponds to the response of a PLSA topic zplsa, we
can backproject the set of locations where it is active in the
image plane3. Subsequently, to visualize the content of each
motif, the word probabilities for each relative time instants
rt are backprojected into the image plane to obtain activity
images Irt from which a short video clip can be generated
(e.g. animated gifs).

We use a static color coded representation to show ex-
amples in this paper. Each time instant is assigned a color
(from blue to red) and superimposed in a single image. This
representation is more compact than showing all images but
suffers from “occlusions” when motion is slow (e.g. blue is
occluded by cyan and green).

Fig. 6 and 7 show the most probable recovered motifs
for three different datasets. Other datasets can be found in
additional material [1]. The results are interesting and the
motifs recovered by our method actually correspond to real
activities. Analyzing the results, we see that they underline
the following key behaviors of our model.

Our model properly captures multi-object patterns. The
motifs capture, for instance, co-occurring car motions as in
Fig. 7 (e.g. second row, second column) and trams blocking
cars in ETHZ (see [1]). Also, the training sets are small
(under one hour) and some motifs capture fortuitous co-
occurrences or specific events (e.g. the last motif in Fig. 6
corresponds to a few huge trucks).

Motif duration. Our model behaves well when changing
the maximum motif duration parameter. If this parameter is

3 Note that the PLSA topic contain more than the image location, i.e.
their low-level word distribution p(wlowlevel|zplsa) provide information
about the motion direction distribution. However, for visualization pur-
poses, only the locations are shown.

shorter than the real durations of the activities, each activity
is cut into multiple motifs [1]. When the motifs are long
enough, each activity is captured by a motif as in Fig. 6
and 7. Also, thanks to the temporal prior (Fig 5), the activi-
ties are properly aligned at the begin of the motifs. We even
recover the full traffic lights cycle (if any) when asking for
motifs of 2 minutes as with the UQM dataset (see [1]).

Execution speed. Our model is sensible to variations of
execution speed of activities: only small variations are usu-
ally captured by a motif. Often, multiple motifs capture the
“same activity” but at different speed. In Fig. 7 for exam-
ple, this explains why the motifs at column c1 and c3 of
the first row are almost the same but differ by their dura-
tion (color range): c1 captures cars starting and crossing
the scene slowly while column c3 captures faster cars. Note
that our model could account for this problem by adding a
speed variable in each occurrence.

Using Model for Prediction. Our method captures mean-
ingful motifs but we also want to validate it quantitatively.
We design a prediction task in order to be able to compare
our approach to other ones.

We consider two different datasets: the MIT dataset (sec-
ond row in Fig. 7) and Far field dataset (Fig. 6). The for-
mer is a 4 road junction scene controlled by periodic traffic
lights. The latter is an uncontrolled setting with activities
of large temporal variations. In both cases, 80% of the data
(around one hour) are used for training the considered mod-
els and 20% are used for evaluation.

For the evaluation, we take a sliding window of 30 time
instants and use the first 29 time instants to predict the last
one. The prediction is normalized (if needed) and compared
to the real observations using a Bhattacharyya similarity.
The normalization step is necessary to be able to compare
methods (e.g. Hidden Markov Models (HMM)) but works
to the disadvantage of our method that could predict not
only a distribution but also an amount of activity. We aver-
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Figure 8. Accuracy on a prediction task (left: far field video, right:
MIT video). In spite of the task being unfriendly to our method
(see body of the article), we get good results.

age the similarity measure over all possible test windows.
We compare our method to two other ones. The first is

based on an HMM learned in an unsupervised way by max-
imizing the training data likelihood. The second is a more
sophisticated approach in line with [4], wherein the Markov
chain runs between the global behavior states. For this, we
first apply PLSA (with n topics) by considering each time
instant as a document to obtain a topic distribution p(z|d)
for each time instant. An HMM (with n states) is then learnt
using these topic distributions as observations. The HMM
states learnt in this method are distinct scene level activity
interactions or behaviors and the Markov chain gives the
temporal dependencies among the states. We refer to this
method as Topic HMM.

Fig. 8 shows the predictive accuracy of our method and
the HMM-based methods. Note that the x-axis in the plots
represents either the number of HMM states or the number
of motifs selected by our method during its several runs by
varying the topic duration. While the HMM state count is
manually varied, our method automatically selects the num-
ber of motifs and hence the variation in motifs count is lim-
ited.

The predictive performance of our method is compara-
ble to the Topic HMM-based method. In the MIT data, our
method marginally lags behind the Topic HMM method.
This is mainly due to traffic lights: the scene goes through
distinct global behavior states [1] which are explicitly mod-
eled in Topic HMM whereas our method does not have any
prior on the sequences of occurrences (Fig. 2). In the more
uncontrolled case of the Far-Field scene, we find that our
method performs better than the Topic HMM. This clearly
demonstrates that our method is capable of extracting mo-
tifs with high semantic content without compromising its
predictive capabilities.

7. Conclusions

This paper introduced a new model capable of automat-
ically finding recurrent temporal patterns (motifs) in time
series. The model automatically and jointly finds: 1) the
shape and number of motifs common to a set of temporal
documents, and 2) how many times and when these motifs

appear in each document. The model has been validated
on synthetic data and applied to find recurrent activities in
videos. On video data, the model extracts motifs that cap-
ture meaningful activities with a strong temporal semantic.

This model is not limited to video data and can be ap-
plied on various time series. The design of this model makes
it most suitable for cases where the observed time series are
the superposition of multiple unsynchronized activities.
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