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Abstract

In this paper, we deal with the estimation of body and
head poses (i.e orientations) in surveillance videos, aad w
make three main contributions. First, we address this issue
as a joint model adaptation problem in a semi-supervised : .
framework. Second, we propose to leverage the adaptationFigure 1. Sample output of our method. Body and head/gaze cues
on multiple information sources (external labeled dataset are useful for behavior analysis. They can indicate whether people
weak labels provided by the motion direction, data struetur pay attention to their luggage< image), suggest that an interac-
manifold), and in particular, on the coupling at the output tion is going on 2™ image), or indicate distractio image).
level of the head and body classifiers, accounting for the re-
striction in the configurations that the head and body pose group/interaction detection, visual attraction analykig-
can jointly take. Third, we propose a kernel-formulation of gage attendance monitoring, and so 88 p, 7]. For exam-
this principle that can be efficiently solved using a global ple, head pose was used i fo infer scene interest maps,
optimization scheme. The method is applied to body andand in [] to discover interactions in an office environment.
head features computed from automatically extracted body In this paper we propose an approach for body and
and head location tracks. Thorough experiments on severalhead pose estimation in surveillance videos, as examplified
datasets demonstrate the validity of our approach, the ben-in Fig. 1. This is a difficult problem, where pre-trained
efit of the coupled adaptation, and that the method performsclassifiers usually perform poorly due to low resolution,
similarly or better than a state-of-the-art algorithm. large variabilities in face and body (or clothing) appeasn
combined with differences in view points and illumination.
Adaptation is thus necessary, as demonstrated very rgcentl
by Benfold and Reid4] for head pose estimation.

A very important task in surveillance environmentis the  We formulate the body and head pose classification as
tracking and understanding of human activity. Most of the a semi-supervised learning problem within a kernel frame-
work so far has concentrated on multi-person trackiig [ work. However, unlike §] which only leveraged on the
17]. From the location and trajectory information, scene moving directions as weak labels to learn a scene-specific
structure understanding, crowd flow tracking, and trajgcto  head pose classifier, we also leverage on prior knowledge
abnormality detection can be conduct&di4]. provided by annotated datasets.

While tracking people’s location is a first step for activ- More importantly, our method also exploits the physi-
ity understanding, there are other cues that one would neectal constraints that the human head can not rotate beyond
to perform a finer analysis of individual or group human be- some limits with respect to the body, by introducing some
havior [15, 19]. This is the case of the body pdsend head  coupling between the head and body pose classifier output.
pose, which both contribute to the understanding of people|n this way, information from head observations and from
attention and can therefore be used in applications retated body observations, whenever available, help to improve not

- _ only the classification, but also the adaptation process by

*This work was supported by the Integrated Project VANAHEIM

(248907) of the European Union under the 7th framework pragra reducing the risk of classifier drift. This is particularly

1we use body pose to refer to the upper-body orientation igtbend relevam_Whe'.'] pepple remain Statilc and no coupling with
plane rather than the articulated spatial configuratiomeftuman body. the moving direction can be exploited. To the best of our

1. Introduction




knowledge, such a coupling has never been exploited forlabel propagation process is often iterative. Differerioes
adaptation purposes. our method are: first, the label dependency is directly en-
Our key contributions are: coded into the joint objective function which is solved wgin
e a semi-supervised learning framework for coupled a more efficient non-iterative optimization process; seicon
adaptive classifier learning, which considers label in- body and head pose estimation are dependent but nonethe-
formation, manifold structure, and classifier coupling; less different tasks. The dependency is enforced by soft
e a kernelized formulation of the framework that has an coupling rather than hard constraints.
efficient non-iterative global optimization scheme; Our coupled adaptation training method is also related
e the application of our algorithm for joint head and to multi-view learning, in which an item is assumed to be
body estimation in surveillance data, outperforming a sensed by multiple views (e.g. modalities) upon each of
state-of-the art head pose estimation algorithm. which a classifier is trained’p, 21]. As with co-training,
The proposed learning method is different from previ- most multi-view learning algorithms assume that all clas-
ous semi-supervised algorithms, such as co-training (whic sifiers solve the same task, i.e. the multi-view data corre-
assumes the classifiers perform the same task), multi-tasksponds to the same label, which differs from our softly cou-
learning (which assumes the features for different task lie pled multi-task problem. Furthermore, our method is more
in homogeneous space), or multi-view learning (which does general as it leverages not only on the inter-cue coupling
not exploit the manifold structure), as detailed in Secfion (e.g. as in 7)) but also on the intra-cue manifold structure
Furthermore, it is applied to a problem that has not been (the adaptation component of our approach).

explored before by those techniques. Finally, note that al- yegd and body pose estimationDue to its potential as at-
though this paper deals with body and head pose estimayention and social cue, head pose estimation in survedlanc
tion, the proposed coupled adaptive learning algorithm cangcenarios has recently become an important research topic,
be applied to any other application with coupled tasks. [17, 13, 4, 10]. For instance, as a pioneer workK,7] pro-

Thorough experiments on several public and non-public yosed to estimate head poses into 8 directions using visual
databases demonstrate the validity of our approach and th@gatures based on skin detection. I} head pose is es-
benefit of the coupling during adaptation in comparison timated using an SVM classifier and the mean appearance
with traditional coupled filtering methods. model at different poses. Besides building classifiers, au-

The rest of the paper is organized as follows. Related thors jike in [L7] also investigated the coupling of head pose
work is discussed in Sectidh Section3 summarizes our  and speed direction. However, classifier adaptation was not
approach, and describes the person and head tracking algozgdressed, with the recent exception of that performs
rithms, as well as our head and body features. The coupledscene |evel adaptation. Also, none of the above work ex-
classifier adaptation method is more thoroughly describedmoited body pose features.

in Section4. Itis followed by experiments and discussions  Ajthough full body pose estimation in smart room set-

in Section 5, and the conclusion. tings has received some attenticr]], very few works have
addressed body pose estimation in surveillance settings.
2. Related work Several of them introduced body orientation as a link be-

Coupled classifier adaptation. The coupled adaptation tWween the head pose and body movement cues, I[f],
scheme we propose share similarities with semi-supervisedPut Without exploiting body pose related features. This ap-

methods 5] that leverage on unlabeled data to improve su- Proach is problematic when a person does not move, as the
pervised classification. Below we review three related cat- velocity becomes too noisy to provide reliable information

egories of approaches in this general framework, namelyfor body pose (and ultimately head pose) estimation. This

multi-task learning, co-training, and multi-view leargin contrasts with the work in7], which uses m_ultl-level HOG_
and point out the differences of our work. body features and sparse representation in a temporal filter

Multi-task learning [, 18] jointly learns several classi- ing framework to estimates body Qrientation. The work jn
fiers on different but related tasks, e.g. learning jointyde [20) estimates body pose, but relies on 3D space carving

and cow classifiers. It usually assumes that both the featurdn @ multi-camera set-up not ava|lable_ n most survelllance

and classifier parameter spaces are the same for all tasks, styStems. In all cases (except]), classifier adaptation has

that the task similarity can be modeled by imposing simi- "ot been addressed.

larities between the classifier parameters. In our case; how . .

ever, body and head features lie in different spaces, and sim3' Method overview, and feature extraction

ilarity is enforced at the output. Fig. 2 describes the overall scheme. Given a video, we
In co-training P, 11] two classifiers are learned on the first apply multi-person and head location tracking algo-

same task using unlabeled data. Samples confidently clasrithms. Multi-person localization is conducted with a fac

sified by one classifier are used to update the other. Thising by detection framework relying on a Conditional Ran-
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Figure 3. Head tracking from multiple, wrong and miss head de-
tections. Example of a tracking graph, where nodes are detection
dom Field method similar to€], while head tracking is  responses, and lines are edges. The optimal path is drawn in red.
performed as described in Sectidrl. For each resulting

track, the sequences of head and body features (described ;, ' favors continuity in appearance, i.e. it is higher

in 32) a'S We” as gI’OUhd Ve|OCitieS are eXtraCted and Used|f the head patches representedd}yand v; have Sim”ar
along with external labeled datasets to learn pose classifie appearance. We use cross correlation as similarity measure
m:ﬁhmf_our couprlled adagnve Ieaar_nlng zchen(]jer.] TZe learned_ Ploc @ddresses location similarity, and contains two terms:
classifiers are then used to predict body and head poses. the first performs a local template tracking of the regign

3.1. Tracking head locations from framet; to framet;, and compares the predicted lo-

Accurate head pose estimates rely on precise head imag@‘,"ltlon int; with v;, The sgcond term simply measures the
localization. This is achieved using a robust tracking-by- distances *?et""ee” dgtecnons 3 )
detection method. For each person, we first perform head Pmis considers the miss deFect|on rate, where.e_ach link that
detection in each frame around the upper part of the bodySKIPS Some frames is penalized by the probability that there
bounding box using a pre-trained Histogram-of-Gradient 'S "° correct head detection in the skipped frames. This

(HoG) based SVM head detector. Due to noise, there might2//0WS connection (with some penalty) between two detec-
be no, wrong, or multiple responses. These detections ardion responses not on successive frames, allowing the skip
then filtered by finding an optimum sequence of locations of frames where there are no detections or all detections are

This is achieved by building a graph and finding the most /"9 (e.g. frame = 1 and frame = 3 in Fig. 3).

probable path in it, as illustrated in Fig. 3.2. Body and head pose features

Graph. Each detection responsg, whose frame index Given the body and head regions, we extract multi-level
is ¢;, is a node in the graph, and detections that are closeyoG features. For the body, we use three levels< (3,
enought in time are connected. More precisely, an edges . ¢ and4 x 12). For the head, we use two levels X 2

Figure 2. Workflow of our approach.

Cij connectinggi andv; is created if and only il <= and4 x 4). Each block is divided int@ x 2 cells, and for
tj —t; <= AT". In addition, we introduce a source node each cell we construct HoG with nine unsigned bins. In this
vso @nd a sink nodes;. way, we end up with &, = 2268 dimensional body feature

Tracking. Given the graph, we define a transition probabil- vector, and al;, = 720 dimensional head feature vector.
ity term for each edge;; according to:

4. Coupled Adaptive Classifier Learning
In this section we first provide the overview and main

principles of our method, and then describe in more details
the different terms involved in the model.

Pij = Psiz (Vj[0) Proc (V;]vi) Papp (V5]05) Pmis (v5]vi) (1)
where the different terms are described below. The head
tracking problem then consists of finding the pdih =
(Vsoy - s ) from vy, 10 vg; with maximum probability un-
der Markov assumption, i.e. find the maximyriH) = 4.1. Approach Overview
[1., c s pij- By defining—log(p;;) as the cost of edge;, We first present the different datasets involved in the al-
the"ioroblem is equivalent to finding a shortest path frgm gorithm as well as some notations. Then we introduce the
to v,;. Thanks to the different terms involved in Eq.we  task, problem formulation, and modeling strategy.
were able to reliably and efficiently track the head location Data. Let us denote byD, = {(x?,y?),i=1.n;} the

in the presence of wrong or miss detections. prior labeled dataset for body pose, whefe € R% is
daisc

Probability terms. They favor the head tracking continuity the body feature, ang? < {0,1}“*"** denotes the ground-

using the following principles: truth pose label. As we formulate our problem as a dis-

crete classification problem, we represent the groundktrut
pose angle belonging to th&'(1 < j < dg..) class as a
daise dimensional binary vector, where all but t}i& ele-
2\We useAT large enough to cover gaps, which works well in practice. ment are zero. Currently, we udg;,. = 8 orientations for

— psi, favors the continuity in scale, i.e. it is higher when
the scales of; andv; are similar.




both the body and head poses, but finer quantization (andoy both labeled and unlabeled body (or head) features in

different ones for body and head) could be used as well.{D;(orDy,), D:}, i.e. similar features should generate sim-
Similarly, we define the prior labeled dataset for head poseilar labels.

Dy = {(x'y") i = Ly ).

For adaptation, we also have an unlabeled target datasetlataD;, body pose and head pose tend to be aligned due to
anatomical constraints and the fact that people tend to look
into the same direction as that faced by their body. Thus, on
this data, the output of the head and body pose classifiers

Dy = {(X2, %}, vi,u;),i = 1.0, }, wherex? andx!' are
the body and head features, € {0, 1}* denotes the veloc-
ity direction expressed in the label space, and= {0,1}

¢ Body and head pose coupling factaf”. In the target

is a binary flag indicating whether the velocity magnitude should be similar.
is large enough (we use 3 km/h as threshold). This datase® Body pose and velocity coupling factf®. When people

is unlabeled, but all observations are synchronized (they a
extracted from the same person in the same frame).

In addition, we denote® as the (both labeled and unla-
beled) body features ifDy, D, }, i.e. z? = x? wheni < n,
andz! = x?_, wheni > n,. We also defina! similarly.

—n

are moving, their body tend to be oriented in the moving
direction. For the target daf@;, when the velocity is large

enough, its direction can thus be used as a weak label for

body pose.
e Regularisation factorF,.. We want to control the com-

Task. Our goal is to learn body pose and head pose clas-Plexity of W for better generality.
sifiers which are adapted to the target data, by leverag-Ultimately, the objective function is thus defined by:

ing on multiple information sources (labeled dd?a and
Dy, test dataD,, coupling between classifier outputs or
with the weak velocity direction labels). We denote by
f* : R% — RS the body classifier function we want to
learn, and similarlyf” for the head classifiér

Problem formulation. We adopt a kernel-based view.
Assume that there is a non-linear mappiftg: R% — F°

E(W)=E; +aFE,, +BE"™ + yE*® + \E,., (3)

wherea, 3, v, A are (non-negative) parameters, and the spe-

cific expressions for each factor are given below.

4.2. Objective function factors

Label factor F;. For body pose, we defin€’ as the

that maps the body feature to a high dimensional (DOSSiblydiscrepancy between the output of the classiffeand the

infinite) Reproducing Kernel Hilbert Spadé. According
to the Representer Theorem, for agy, f°(x’) is linear
with regard to its inner product with the data sample&tn
np+ng
-
)= wie (=) ¢ (x')
i=1 T
(W) [, &"] ¢ (x"), with

B = [p(x}), ... 0"(x5,)], B = [¢"(X}), .., (X,)],

andW* = [w}, .., w? ]T e R(mw+m)x8 - Given a ker-

np+ne
nel functionk (x?,x%) = ¢ (xﬁ?)Tqu (x5), learning f* re-
duces to the learning of the weight paramef@$. The
classifierf" (x) has a similar form as in Eq2), with pa-
rametersw’.

(2)

Modeling Strategy. Our goal is thus to learn the set of
weightsW = [(W")T, (W’L)T]T. To this end, we design

an objective functiorZ(W) that takes into account several
factors, as explained below:

e Label information factorE;. The classifier functions

should respect the label information encode®jrandD;,.

e Manifold structure factorE,,. The classifier functions

should be smooth over the manifold structure encoded

3The classifiers are trained using labelsih 1} with only one non-
zero component. However, in practice the classifier outpetseal-valued
8 dimensional vectors with each dimension reflecting classifin score
in each class. Post-processing is applied to transformléissifier output
into a angular output. This will be described in Sectioh

label measured on the labeled dataBgt
1 & 2
B = — 3 |[(Mr (=) — Myt |
= (s () -yt |

= I (e -y

“4)

where Y? = [yb .y ] K’ = [@b,ibr{ﬂ’ is the
kernel matrix, andM € R3%® is the label smoothing
matrix'. A similar expression can be obtained féi
by changing the superscripis® to 0" in Eq. @). By
defining K, = diag (K*,K"), Y = [Y’,Y"], and
O = diag (I,,, /ns, I, /nn), the expression for the label
termE, = E} + EJ' is given by

B =T (M(W'K, - Y) O(W'K, - Y)'M") (5)

Manifold factor E,,. For all quy features ifiDy, D, }, we
construct a similarity matrigt? € {0, 1}("eFne)x(metno
wheres?? = 1 iff 2! is the k nearest neighbors of; or

vice-versa. We defin€® as the violation of this similarity
at the output off’, i.e. we impose a large penaltyzf and

11000001
‘We useM = . It is to “diffuse” the label, posing
10000011
less penalty on adjacent misclassifications (e.g. clasgfileft” as “left-
front”) than complete mistakes (e.g. classifying “left” aght”).

SNote the propertyA||2. = Tr (AAT) = Tr (ATA) is used here.



z? are similar but their predicted poses are not:

S D E CIR Gl
EALE (©)
= 2Ty (M (W?) KLY (Kb5)TWbMT>

where K =

(@, ®'T[®", '] is the kernel ma-

trix, and Lt is the (trace normalized) Laplacian ma-

trix of Sb. Defining K,, =
L,, :dlag(Lbb7 L"), we have:

E, =Eb + E" =Tr (MWTKmLm(Km)TWMT) @)

dlag(Kbb Khh), and

Body and head pose coupling factor5%". It is defined

where T

G :KZO(KZ)T + OéKmLm(Km)
8K o1 (Ker)' + 7K U(Keo)'

H=KOY M'M+1K,UV'M'™™M (12)

(11)

Eq. (L0) is aSylvester equatiowith a closed-form solution.

5. Experiments
5.1. Experimental protocol

Data. We use the TUD Multiview Pedestrians datasef [
and the Benfold dataset][as the labeled prior dataseiy
andD;, for all experiments. We used the tracks of four other
datasets a®, for evaluation: (1) theCHIL dataset comes
from the CLEAR 2007 head pose estimation contest. It fea-

as the discrepancy between the body pose and head podgires an indoor scenario. We used the 4 available subjects

classifier outputs ovep;:
1 &
Ebh _ M b (gb
P

1
=

" ( WK, (K.

— M)

M(W}L)TKE 2 (8)

M(W?) K? i

) WMT)

where Kb = [®° &)@t and K = [®" d"TH"
are corresponding kernel matrices, anl!, =
\/%t [(KYT,—(K™)T]. Note that all samples fronD,
contributes to this terfn

Body and velocity coupling factor £2°. It is defined as

for our experiments. For head pose, we used the ground-
truth (GT) distributed with the dataand obtained from a
magnetic sensor, while the body pose GT was annotated
by us. (2) theMetroStation datasetcontains several clips
from a surveillance camera in a metro station. We manu-
ally annotated the GT body and head poses. (3)ritleor
datasetcontains clips captured from an indoor surveillance
camera. GT annotation was done manually for both body
and head poses. (4) tHewnCentre datasetis provided by

[5]. The data comes with tracking output for body and head
(that we used as input), but no pose information. Therefore,
we manually annotated 15 tracks for evaluation purpose in
this paper. In total, the above datasets contains over 20 min
utes video with 25 persons for quantitative evaluation.

the discrepancy between the body pose and the velocCityperformance measure. The performance is evaluated by
direction, provided the velocity magnitude is large enaugh the average angular error between the GT and predicted

1 n¢ _ 2
B = D (M (R) - M)
i=1

(v
—Tr (M(W'Ke2 - V) U(W'K,, = V) 'MT)
whereV = [vq, ... U, )/ ui, and

KT, = [(K')T, Note that due tau;, only
samples with large speed contributes to this term.

Regularization factor E,.: It is simply defined as:
E, =T (W'W). 9)

]

vy, ], U = diag (uq, ...
O’ILtX(’thrnt)}.

4.3. Optimization
It can be shown that our objective function E§) (s
convex and thus we have to solve:
OFE (W)
OW
SHere we assume the body and head features for all d@aame valid.

In practice, for better handling of occlusion, we can intreela binary flag
to exclude data with occlusion, similar to the flagin E°.

=2GWM'M +2\W —2H =0 (10)

pose angles. Note that we need to transform each 8 di-
mensional classification outpfit;, « = 1..8} into an angle,
whereo; can be interpreted as classification score for the
angled;. To this end, we used the angle of the weighted av-
erage vectoEf:1 0,1y,, Whereriy, denotes the unit vector
associated witld;

Algorithms. To evaluate, and understand the benefits of the
different components of the approach, we tested several al-
gorithms. TheProposed (default): algorithm corresponds

to our full coupled adaptive learning method with default
parametersoe = 1, 5 = 0.5,y = 0.5, A = 0.01, and a
Laplacian kernek (x;,x;) = exp (—\/5 llx; — xj||) with

0 = 10. TheProposed (baselinekorresponds to our ap-
proach without adaptation and coupling £ g = v = 0).

The Proposed (no velocity)is the same as the default ap-
proach, but without using the velocity coupling (ixe= 0).
TheProposed (no prior data) method does not exploit the
prior labeled information ; is dropped during optimiza-
tion), and relies only the coupling between head and body

"The dataset also provides ground-truth head locationseiintiages.
However, we do not use them. We use our head location trackitigothe



Methods CHIL MetroStation| Indoor | TownCentre
Proposed (default) 35.3/36.0] 29.4/30.0 | 23.6/23.6| 17.4/18.4
Proposed (baseline) 50.7/56.9| 53.8/40.5 | 59.9/29.4| 48.1/44.8

Proposed (no velocity) 35.3/36.0] 31.3/30.1 | 23.4/24.0) 26.5/27.6
Proposed (no prior data) | 80.7/85.1| 63.5/66.7 | 63.9/68.2| 18.3/19.4
Proposed (Benfold setting]) | 80.7/85.1| 82.2/85.4 | 63.5/66.7| 18.4/20.5
Walking direction 78.7/179.5| 79.9/77.1 | 66.3/66.7| 19.3/22.9

TF with coupling [/, 16] 445/46.7| 42.2/40.5 | 36.3/33.8| 20.1/24.9
Proposed + TF 37.7/35.2| 32.8/31.0 | 24.9/23.9| 19.0/25.0

Table 1. Evaluation on several datasets. Each cell contains two nu(bbesspose error/head pose error). All errors are in degree.

pose classifiers. Finally, tHieroposed (Benfold setting f]) reflects the different dataset/scene types. In TownCenter,
only relies on a coupling between velocity and the head di- people mainly move straight in the street and dominantly
rection (i.e. without coupling with the body pose and prior look in the moving directiof In this case, the motion direc-
data) as was done i3] tion is a good prediction of head and body pose (“Walking

For comparison purposes, we also report other alterna-direction” results), and can reliably be exploited: we thus
tives. TheWalking direction baseline uses the walking di- obtain a significant error reduction gain of @hen using
rection as the body and head pose output. Téaporal it. When people are static (i.e. not moving forward), e.g.
Filtering (TF) with coupling method is similar to{] and while waiting or during interaction, the gain using velgcit
[16]. It relies on a particle filtering framework which con- is marginal, showing that most of the improvement is due to
siders intra-cue temporal smoothness and inter-cue depenthe coupling between the head and body.

dencies, (i.e. the coupling between velocity, body pose a”dComparison with [5]. In their setting, §] uses only the
head pose is exploited in the dynamical model), and likeli- coupling with velocity and no prior data to infer the head
hopd mod_els built from the labeled data only (without adap- pose. The “Benfold setting” algorithm reproduce this situa
tation). Finally, theProposed + TFapproach corresponds o (separately for head and body pose) using our method.
to a refinement of our proposed method, by applying the TF g can be seen, it perform much worse than our method
step just described but using the adapted classifiers for the, the first three datasets. Even in TownCenter, where peo-
head and body pose likelihoods. ple keep moving and mainly look in their moving direction
59 Results our method still provides a gain @ for head pose esti-
- mation. Note that on TownCentef;][reports an average
The results are shown in Table 1. We can make severalerror of 23.9 for the head pose (and 28.@hen using the
comments. First, the method we propose performs the besiyalking direction), but we can not make a direct compar-
in all cases. Comparing with our proposed baseline thatison since their annotations are not available and probably
only relies on labeled data, we see that the coupled adaptiveyiffer from ours. Our belief is that, for head pose estimmatio
learning contributes largely to the significant improveimen hoth the body pose and velocity provide complementary in-
demonstrating the need for adaptation to leverage the gagormation (and at different instants). Body informationyma

between training and testing data. Indeed, just introducin not always be availbale due to occlusion, and similarly for
the coupling at the filtering level’[ 16] does improve the  velocity when people don’t move.

result compared to the baseline, but much less than througrbrior dataset. The *
adaptation. We can also notice that adding this coupled fil- :
tering step on top of our approach (cf “proposed+TF") does
not further improve the results, since the coupling has al-
ready been exploited, and the intra-cue temporal smooth-
ness is implicit encoded in the manifold structure tergy,
which requires that similar features generate similar pose
and people appearance changes smoothly temporally.

no prior” results show that using prior
data is important for adaptation and that relying only on the
walking direction to provide some weak labels is not suffi-
cient when the amount of data is smaller, or people are not
moving a lot and therefore look more around. In the oppo-
site case (TownCenter), the benefit of using the prior data is
reduced, and we obtain onlyl& gain.

Qualitative results. Figs. 4 to 7 show some results on each

Velocny' cquplmg. Two couplings are explqlted during of the evaluated datasets (more results are shown in the sup-
adaptation: head and body pose output consistency, and ve-

locity direction. In absence of velocity information (“nev plementary material). In each image, the rectangles show
lOCIty reS.U|tS)’ our methOd Stl.” performs m_UCh b_ettemha 8The proportion of data points with reliable velocity oriation is 73%

the base“ne, and _W|th only slight degradation th.reSpeCt in this case, as compared with 0%, 24%, and 5% respectivelg L.,

to using the velocity. Indeed, the level of degradation also MetroStation, and Indoor.




CHIL | MetroStation| Indoor | TownCentre
No 51/57 54741 60/30 48/ 44
Ind. | 35/36 29/30 24124 17/18

Global | 37 /41 34/32 27124 19/17

o g

= ! o - )
Figure 4. Output of our method on CHIL. Table 2. Comps_tre _agaptatlon stra_tegy. 1st row: no adaptat_lon. 2nd
S row: per track individual adaptation. 3rd row: global, using all
m‘ e track jointly. Numbers are rounded to integers to save space.
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over all the four datasets we evaluated. We can see that a
proper value for each parameter contributes to the results,

26

250

T e e B A e e which justifies the exploitation of different factors in our
a B Y . . .
Figure 8. Performance variations with different parametess 1, learning algorithm. Fow, the proper value lies around 1 or
8= 0.5andy = 0.5. Varyinga (left), 3 (middle), andy (right). 3. For g, the performance is similar as soon as its value is

above 1. Fory, the proper value is around 0.3 and 1.

the result of the body and head tracking algorithms. The Adaptation strategy. So far, our method relied on an “per-
body and head poses are shown by arrows in ellipses. Deirack adapt (PTA)” where each single track is use®ato
spite the difficulty of the task, our method successfully es- adapt the classifiers. In other words, the model is automat-
timates the body and head poses in most cases. Still, somécally adapted to each specific person. As an alternative,
(sometimes large) errors can be spotted as well. Note fromwe could take a “global scene adapt (GSA)” way by us-
these results that our head/body coupling is soft and allowsing all tracks together irD;, to adapt the classifier at the
some discrepancy between body and head poses. scene level. The results of this second approach is shown in
Table 2. We see that PTA performs slightly better or com-
parable compared to GSA. In practice, both strategies have
of manifold structure constraint, coupling between body their advantages. .In PTA’ we get slightly higher accuracy
and head pose, and coupling between velocity and bodybacaqse ,t,he algorlthm is concentrated on one track, which
pose. Here we analyse the performance variation with dif- contains “purer data. Qn the contrary, in GSA’ we get a
ferent parameter values. At each time we try different val- single e_snmator fp_r multiple tracks with potentially tstt
ues for one parameter, leaving the other two to the defaultgener"’“'z"’ltlon ability.

values. Fig.8 reports the results for the three parameters. Efficiency. Our method performs learning and adaptation
To avoid cluttering the figure, the error values are averagedin batch mode. To give an idea of the efficiency, it takes the

Parameter sensitivity analysis.Our learning method has
three parameters, 5 and~, which control the importance



Figure 7. Output of our approach (default parameter) on the Towm€dataset. Frame sizeli820 x 1080.

same magnitude of time to learn and adapt on a person track10] D.Huang, M. Storer, F. D. Torre, and H. Bischof. Supervised

as the duration of the track (assuming a 25 fps video). local subspace learning for continuous head pose estimation.
In CVPR 2011.2
6. Conclusions [11] F.Tang, S. Brennan, Q. Zhao, and H. Tao. Co-tracking using

In this paper. we proposed a novel semi-supervised a semi-supervised support vector machinedd@V, 2007.2
paper, prop P P [12] H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-hypothesis

proach for coupled adaptive learning. The method was suc-" | .0 planning for visual object tracking. IECV, 2011. 1

cessfully applied to the joint estimation of body and head ;3] 3 orozco, S. Gong, and T. Xiang. Head pose classification
pose in surveillance videos, in which the classifier outputs = iy crowded scenes. IBMVC, 2009.2

were adapted to exploit multiple information sources. EX- [14] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose

periments on several datasets demonstrated the validity of  estimation and tracking by detection. @/PR 2010.5

our method and its similar or better performance compared[15] M. Cristani, V. Murino, and A. Vinciarelli. Socially intel-

to a recent state-of-the-art head pose estimation approach ligent surveillance and monitoring: analysing social dimen-
Future work include the extension to multiple cameras,  sions of physical space. BVPR Workshop SISN2010.1

and the modeling of behaviors and interactions using the[16] N. Krahnstoever, M-C. Chang, and W. Ge. Gaze and body

output of the model. pose estimation from a distance. AVS$2011.2, 6

[17] N. Robertson and I. Reid. Estimating gaze direction from
low-resolution faces in video. IRCCV, 2006.2

References [18] Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semi-

[1] A. Argyriou and T. Evgeniou. Multi-task feature learning. In supervised multitask learningTPAMI, 31(6):1074 — 1086,
NIPS 2007.2 2009.2 . .

[2] A. Levin, P. Viola, and Y. Freund. Unsupervised improvement [19] W. Ge, R. T. Collins, and R. B. Ruback. Vision-based analy-
of visual detectors using co-training. IBCV, 2003.2 sis of small groups in pedestrian crowd$2AMI, 34(5): 1003

[3] B. Benfold and I. Reid. Guiding visual surveillance by track- — 1016, 20121 ) o
ing human attention. IBMVG, 2009.1, 5 [20] M. Hofmann, and D. Gavrila. Multi-view 3D human pose

[4] K.Smith, S. Ba, J. Odobez, and D. Gatica-Perez. Tracking the estimatior|1din complex environhment]CV,d2011.2 bel .
visual focus of attention for a varying number of wandering [21] U. Brefeld, T. Gartner, T. Scheffer, and S. Wrobel. Efficient

people. TPAMI, 30(7):1212 — 1229, 2008 co-regularised least squares regressionCML, 2006.2

_ [22] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularization
approach to semi-supervised learning with multiple views. In
ICML Workshop on Learning with Multiple View2005.2

[23] X. Liu, N. O. Krahnstoever, T. Yu, and P. H. Tu. What are
customers looking at? 1AVS$2007.1

[24] X. Song, X. Shao, H. Zhao, J. Cui, R. Shibasaki, and H. Zha.
An online approach: learning-semantic-scene-by-tracking and
tracking-by-learning-semantic-scene.GiPR 2010.1

[25] X. Zhu. Semi-supervised learning literature survey. Tech-
nical report, Department of Computer Sciences, University of
Wisconsin, Madison., 2002

[5] B. Benfold and I. Reid. Unsupervised learning of a scene
specific coarse gaze estimator.IGCV, 2011.1, 2,5, 6

[6] A. Heili, C. Chen, and J. Odobez. Detection-based multi-
human tracking using a CRF model. I@CV Workshop VS
2011.1,3

[7] C. Chen, A. Heili, and J. Odobez. A joint estimation of head
and body orientation cues in surveillance video. |GCV
workshop SISM2011.1, 2, 6

[8] C. Huang, B. Wu, and R. Nevatia. Robust object tracking
by hierarchical association of detection response€£dgRyV,

2008. 1h hai . [26] C. Chen, Y. Yang, F. Nie and J. Odobez. 3D human pose re-
(9] CW c en, R C. U_garte_, C. Wu, and H._Ag ajan. Discov- covery from image by efficient visual feature selectiGV.IU,
ering social interactions in real work environments. AG, 115(3):290 — 299, 20112

2011.1



