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the overall goal: to infer relevant information 
from audio-visual human scenes 

detection (are there any 
people?) 

audio-visual 
scenes 

localization (where are they?) 

tracking (where do they go?) 

identification (who are they?) 

activity recognition & 
discovery (what do they do? 
what do they look at?, do they 
interact? who do they interact 
with? what do they do together?, 
…) 

representation (what is a 
person?) 
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Goal and outline 

  Introduction 
  State-space example  
  Dynamic models 

  Bayesian approaches 
  Kalman filter 
  Sampling methods (Particle filter) 

  Note 
  many slides in the presentation (available on website) 
  not all presented here => they provide more 

complementary information 
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Introduction   
  Visual tracking: a visual tracking-based definition… 

 “Tracking is the problem of generating an inference about the 
motion of an object given a sequence of images. Good 
solutions of this problem have a variety of applications…”  
 Forsyth and Ponce, Computer Vision: A modern approach, 2003. 
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Sources of trouble 
  Why is it harder that it might seem? 

  dimension loss 
  low image quality: low contrast, noise, motion blur 
  variability of visual appearance  
  occlusions, partial to total 
  clutter 
  unpredictable motions 
  constraints on computational complexity 

  A lot in common with other computer vision  tasks!  
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What do we want to estimate ? object state space 

object in reference 
position 

  In most cases:   
     geometric state space 

  maps an object model from a 
reference position into the image 

  e.g. box:  
  mapping 

  translation 
  scaling, rotation, shear 

  allows to define a region of the 
images where measurements will 
be made 

object in state x 
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Object state: space of geometric transformations 

object in reference 
position 

  may needs mapping of individual points 
  object 

  shape template: set of 2D points 
  image patch: points + image value inside 

a region (e.g. box, ellipse) 
  mapping 

  b : translation 
  A : linear components 

(scalings, rotation, shear) 

     (b,A); 2D  affine state space to be 
estimated 

object in state x 

point p of shape 
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  Object: shape represented by a set of point 

  Model: using training data, principal shape variations (modes) learnt off-
line (PCA) : provide a linear parameterization of the shape  

More complex models: eigen Shapes 

[Taylor and Cootes’s Active 
Shapes] 

Training data mean 
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  State: few deformation modes around average shape template, 
plus affinity parameters (to move the shape into the image) 

Eigen Shapes 

[Taylor and Cootes’s Active Shapes] 
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  State: 3D pose of a set of r parameterized parts (possibly articulated) 

  Context: pose tracking of objects of known type (manufactured 
objects, human body) whose geometry is known, assumed, or learnt 

Into 3D Models 

[Sminchisescu’s body model]  [Sidenbladh’s body tracker] 
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More generally 

  State captures various aspects of tracked objects 
  3D pose/shape [cont.] 
  2D pose/shape [cont. or disc.] 
  Auxiliary variables: 

  color [cont. or disc.] : histogram template 
  identity [disc.] : for multi object tracking 
  activity [disc.] : is the person walking, running, speaking ? 
=> help in defining  

  better (more precise), simpler observation/motion models 
  cf introduction of latent variables for distribution modeling 

  Note: 
  state parameters should be ‘observable, measurable’: 

  parameters should have an impact on the measurements 
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Outline 

  Bayesian tracking 

  Model 

  Parameter dynamics modeling 

  Sequential estimation 
  Kalman filter 
  Particle filter 
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Probabilistic approach 

  Dynamical state-space model 

  What we expect 
  handle uncertainties (noise, ambiguities, clutter, crude modeling…) 
  more than a single point estimate => access to distribution 
     e.g. make good prediction about where (region) to search for object  
      in next frame 
  allows parameter learning 
  well established tools 

e.g. the true location 
of the object in the 

image 

e.g. the observed location 
measured in the image 

(e.g. as given by a 
detector) 
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Dynamical state-space model 

  Assumptions 
  hidden process is a Markov chain 

  observations: conditionally independent given the state 

  joint law up to time k  
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Difference with HMM 

  HMM: hidden state discrete 
  Dynamical model: probability table 
  Example of transition 

  Here, state continuous 
  How do we model state dynamical process ? 



Dynamical model : intuition 

Smooth trajectories 

  predictions depends on past observations : auto-regressive process 
    (can be driven by physics principles) 

  includes uncertainty about prediction 

16 

t-1 t prediction 
position + region 

(uncertainty) 

possibly non-linear 

ARP order 

driven by  
Independent noise 

t+1 ? 
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Dynamical model: auto-regressive (AR) process 

  E.g. assuming constant position 
⇒  Speed is noise   

⇒  Brownian motion 
  Note 

  One can simulate samples from the 
process using ancestral sampling 

  AR model of order 1 
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Dynamical model: auto-regressive (AR) process 

  More realistic: constant speed model 
    => acceleration is noise 

  Note: 
  State can grow without bound 

  maybe not adapted for other 
parameters (e.g. scale) 

       steady-state value (e.g. 1 for scale) 
=> Constrained Brownian motion 
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Dynamical model: 2nd order AR model 

  Example: ballistic model of falling ball 
    constant acceleration model (x=height) 

  Can be set as order 1: 

mass 

Friction component potential energy component 

external 
forces 
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Switching dynamics model 

  AR model: modelling of one continuous activity 
  However, in general 

  dynamics present discontinuities 
  sequence of different activities 
⇒   discrete variables to model these effects 

  Mixed state approach 
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Switching dynamics model 
  Model 

  two main distributions 

  specific continuous dynamics 
  on transitions (i≠j) 
  for a given activity (i=j) 

  discrete transition matrices of activity 
  can depend on the state value 
    e.g. activity changes occur on specific image regions  
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Switching dynamics: bouncing ball example 

  Two distinctive activites c 
  0 : ballistic (constant acceleration) 
  1 : bouncing instant 

  State transitions 
  bounce last one instant 

  dynamics 

0 : ballistic 

1 : bounce 

0.9 

0.1 1.0 
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Switching dynamics: bouncing ball example 

0 : ballistic 

1 : bounce 

0.9 

0.1 1.0 
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Dynamical models: conclusion 
  Dynamical state models 

  AR representation 
  defined from physical principle 
  Learning can be done through Maximum Likelihood (AR models) 
  Switching models: indicators of different activities/situations 

  Issues: 
  availability of training data 
  exploitation in tracking 

  not always easy: test data has to matched well the training data 
  often, parameters set by hands 
  unpredictable motions => simpler models are better 
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Outline 

  Bayesian tracking 

  Sequential estimation 
  Kalman filter 
  Particle filter 
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Sequential estimation 

  First (simplified) approach 
  Succession of instantaneous estimation problems 
    => finding the best estimate at each time step 

  used especially for complex state-spaces (e.g. free form shapes) 
  efficient, but sensitive to temporarily tracking loss (e.g. during 

occlusion) 
  => Bayesian filtering 
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Bayesian tracking 

  Goal: recursive estimation of state probability given the sequence of 
observations 
  posterior distribution :  
  filtering distribution : 

  Allows to compute quantities of interest 
  e.g. mean (expected value) of state at time k 

  Recursive estimation  of filtering distribution using Chapman-
Kolmogorov equation 
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  Note: comparison with general formula 

                           plays the role of the prior on the current state 
                             learned from the previous observations 

Chapman-Kolmogorov equation 



Recursive Bayesian filtering 
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  At each time step, two steps 
  prediction step 

  update step: new observation available 
  apply Chapman-Kolmogorov equation 

  predicted likelihood 

  At each time step:  
  two integrals (or summation, given the nature of the state space) 
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Recursive Bayesian filtering 

  Discret state case: integrals => summations 
     cf HMM:   forward pass of Baum-Welsh algorithm  

  Continous state case 

  Linear and Gaussian case: analytical integration tractable  
   =>   Kalman filter 

  Monomodal distributions: gaussian approximation   
    =>   Extended Kalman filter (EKF), or «unscented»  (UKF) 

  Discretized state (Grid based filters): cf HMM approach 

  Muti-modal general case : normalizations unfeasible ) Monte Carlo 
approximations 
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Kalman filter 
  Fundation: R.E. Kalman, A New Approach to  

 Linear Filtering and Prediction Problems, 1960 

  Assumptions 

Independent process and 
measurement noises 
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Kalman filter 
  Result: direct graph, linear and Gaussian 

 => joint Gaussian distribution over all variables 
 => all marginals are Gaussian  

  In particular, the filtering distributions 

  Predictive and update steps can be solved using properties of 
Gaussian processes 
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Kalman filter 

  Prediction step 

  Deterministic drift  
     prediction  

  Stochastic diffusion: variance increase due to process noise 
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Kalman filter 
  Update step:  

  Reactive effect of measurement 
  Move prediction towards observation, depending on relative 

uncertainties (prediction vs observation), cf Kalman gain 
  Reduces the variance of the predicted estimation 

Innovation: difference between 
measure and prediction Kalman gain 
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Kalman filter 
  Update step:  

  Qualitatively 
  measurement noise R large w.r.t. process noise 
     => Kalman gain close to 0 
    => posterior mean/variances  near  predicted mean/variance 
    => posterior mean close to average of measurements up to current instant 

  measurement  is very precise 
     (measurement noise small w.r.t. process noise) 
   => Kalman gain close to              (pseudo-inverse of H) 
   => posterior mean close to the measurement 

Innovation: difference between 
measure and prediction Kalman gain 
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Kalman filter for visual tracking 
  Applied as soon as the 80s, esp. for feature tracking 

(points, edges) 

  Classical approaches 
  Use prediction to initialize optimization process at time k. 

Use result of optimization as measurement. 
     e.g. Mean-Shift algorithm 

  Local detector provides measurement location; 
measurement selected as the closest one to prediction 
(gating process)    

      e.g. point tracking 
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Kalman filter: example [Remagnino et al., 1997] 

  Blob detection using froreground/background segmentation 
  Blob extraction and matched with nearest entity (person/car) => 

measurement for Kalman filter 
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Visual clutter => observational non-linearities 

[A: Blake] 
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Kalman filter issue 

  Issue: in principle, extraction of z should be independent 
of previous measurements/states 

  => often not the case in vision:  
  gradient optimization starting from the prediction 
  measurements selected near predictions 

  In addition:  
  measurements depends on hypothesized state 
  e.g. shape model shown 
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Kalman filter issue  

  Issue: measurements need to be of the same nature as 
(part of) the state 
   z = h(x)+ noise 
  common cases: tracking of points and lines 
    => x is a location/scale (+derivatives)   
    => z has to be geometric parameters as well 

  what if y is a template ? a color histogram ? the image ? 
 the likelihood models for shapes that we have seen ? 
 => the definition of h becomes very tricky 
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Kalman filter: summary 
  Advantages: 

  Exact computation 
  Optimal under hypothesis 
  Provides a mechanism to account for uncertainty in observation 

extraction 
  Parameters of model (A, H, Q, R) can be learned from training data 

  Drawbacks 
  Strong limitations on observation model 

  Measurements need to be of the same nature as (part of) the state 
  Measurement of interest must be uniquely identified => data 

association issue 
  Clutter is frequent => posterior are not mono-modal 
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Bayesian filtering : “Particle filtering” 
  Monte Carlo approximations 

  non-parametric representation of distribution through samples 
  different names: particle filter (PF), sequential Monte-Carlo (SMC), 

Sequential Importance sampling (SIS) 

  Fundations 
  Gordon 1993, « Novel approach to non-linear/non-Gaussian 

Bayesian state estimation » 
  Isard et Blake 1996 « CONDENSATION: CONditional DENSity 

propagATION for visual tracking » 

  Interest for visual tracking 
  Multiple hypothesis maintained => increased robustness to clutter, 

occlusions, short tracking failures 
  No restriction on model ingredients 
  Easy implementation 



  Intuition:  
   approximate at each time step the posterior distribution (the filtering 

distribution) of states using a set of M weighted samples 

  Usage: compute expectation of function f 

  In particular, mean expectation of state (f(x)=x) 

  How do we get these samples ? 
43 

distribution 

Configuration Xk 

particles 

Particle filter 

dirac distribution 
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  Target distribution 
  Draw M samples 

  Approximation 

  Expectation w.r.t. p 

  Approximation: unbiased, converges when M goes to infinity 
  Usually: difficult to sample from p directly ! 

Perfect sampling 

weight of sample 
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Importance sampling 
  Use a ‘proposal’ auxiliary function q  

  q : as close as possible to p (and supp(p) included in supp(q))  

  Draw the samples from q instead of p     

  Importance weights 

⇒  correction factor: samples were drawn from q instead of p 
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Importance sampling 
  Importance weights 

⇒  large weight if q is smaller than p 
⇒  larger weights where q will simulate less samples than p would 

  Approximation of p 

samples generated 
from p(x) 

samples generated 
from q(x), and 

reweighted 
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Sequential Importance Sampling (SIS) 
First example: Bootstrap filter 

  Importance sampling: target distribution  

  Proposal function: predictive distribution  

  Importance weight: Chapman-Kolmogorov equation 
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SIS: Bootstrap filter 

  How to simulate from q, the predictive distribution ?  
    assume that we have sample set from previous instant 

⇒  mixture of distributions 
⇒  assumption: Gaussian dynamics 
⇒  Mixture of Gaussians 

  Sampling 
  Sample the mixture weight  
  Simulate noise from the Gaussian 
     and apply the dynamical model  
     to the selected sample 
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SIS: Bootstrap filter 

[A. Blake, 1998] 
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Non-Gaussian Bayesian Filter 
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  Apply Importance sampling to posterior distribution 
   => Target  

  Note: here, we want to simulate/sample trajectories 
    => this will be done recursively (by extending trajectories  over time) 
    => the importance weights will be computed recursively 

SIS: general case 

time k time k-1 
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SIS: general case 
  Target  

  Proposal function, factorized 

  Importance sampling and weight: recursion 
  given weighted trajectories up to time k-1 
  extend trajectory with proposal 

  weight update 
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Proposal densities 
  What is the interest of this general approach ?  
    introduction of an explicit proposal density we can play with 
  Examples 

  Bootstrap filter (proposal=dynamic) first proposed, popular, simple 

=> same weights as before (assuming past weights at k-1 are equiprobable) 
   (notice however the difference in the way it was obtained) 

  Optimal  proposal: takes into account previous state and current 
observation 

        Right hand term can not be computed in general for a given model 

  In between: use current data for a better efficiency 



54 

Resampling 
  trajectory generation process independent of weight values 

  good (and esp. bad) trajectories are equally propagated 
  after some time steps, most of the weight is located in a few samples 
⇒  many samples don’t really contribute to the distribution approximation 
⇒  distribution degeneracy 

  solution: resampling 
  sample selection 

  elimination of sample with smaller weights 
  duplication of samples with larger weights 
⇒  keep the representation valid w.r.t. convergence properties 

  one approach: sample with replacement  
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An algorithm 
Given the particle distribution at the previous time step   

  sample from proposal 

  weight update 

  resampling 

  Monte Carlo approximation 

  in particular, we can compute the mean value 
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CONDENSATION [Isard and Blake 96]  

      Object model:  parametric contour on clutter 
  State: affine parameters (mainly translation, scale in x and y, rotation) 
  Dynamics: AR-2 model (on individual parameters)  
  Observations: contours on lines perpendicular to shape model 

  Likelihood: statistical hypothesis :  independance of measures 
  Proposal: dynamics => boostrap filter 

Nearest detection  Position on the 
shape model  
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CONDENSATION: Examples  [Isard and Blake 98]   



58 

CONDENSATION: Examples  [Isard and Blake 98]   

sequence on white background: no clutter 
⇒  allows to gather training data for learning dynamics 
   (without learned dynamics, model usually fails on clutter) 
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CONDENSATION: Example for head tracking 

© Kodak 

  Red curve: mean state 
  Yellow ellipses: particles with larger weight (weight> 0.7 max weight) 
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Color Tracking [Perez et al, eccv 2002]  
      Object model:  box with color measured in multiple regions 

  State: translation, scale in x and y 
  Dynamics: AR-2 model (manual parameter setting) 
  Proposal: dynamics => boostrap filter 

  Observations: multi-dimensional histogram (color histograms gathered in 
different regions of the objects => allows better localization) 

  Likelihood: based on color similarity with a reference model  
=> cf mean-shift tracker 
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Color Tracking: examples [Perez et al, eccv 2002]  
  tracker exhibits robustness to color clutter 

Deterministic (mean shift) 
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Color Tracking: examples [Perez et al, eccv 2002]  
  tracker exhibits robustness to color clutter 

Stochastic (particle filter) 
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Color Tracking: examples [Perez et al, eccv 2002]  

  (tracker exhibits robustness to change of scale, object orientation, 
motion, illumination changes etc 

© Kodak 
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Color Tracking: examples [Perez et al, eccv 2002]  

  tracker exhibits robustness to occlusions 

© Kodak 
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Tracking with switching dynamics  
 Object model:  shape 
  State: translation and scale+ activity index 
  Dynamics: 

  Markov transition (activity indices) => 
probability of changing activity 

  AR-2 models on location (depending on 
activity variable) 

  Proposal: dynamics => boostrap filter 
  first sample activity 
  then sample location depending on  
    activity 

[Isard Blake, 2001]  
Activities: Red line drawing, Blue: 
pause, Green: scribbling  
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Tracking with switching dynamics  
 Object model:  shape 
  State: translation/scale+ activity index 
  Dynamics: 

  Markov transition (activity indices) => 
probability of changing activity 

  AR-2 models on location (depending on 
activity variable) 

  Proposal: dynamics => boostrap filter 
  Observations 
     grey scale values  on point lying on 

perpendicular contours to the shape 
  Likelihood 
    gaussians with mean depending on  
    whether the point is inside/outside of the object  

[Isard Blake, 2001]  
Activities: Red line drawing,  
Blue: pause, Green: scribbling  
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Tracking with auxiliary variables  
  Discrete auxiliary processes 

  not only for switching between dynamics 
⇒  also influences likelihood 
=> E.g. ak 

  switching between reference appearence   
  (cf examplars) 
  existence (ak=1) or not (ak=0) of object in the image 

  Model example 
  dynamics: independence of state variables 

  likelihood 

(note: state variables dependent given observations, 
  due to the explaining away principle) 
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Tracking with examplars  
 Object model:  catalogue of shape/appearance templates 

  State: translation, scale in x and y  
       + examplar index (discrete) 
=> joint estimation of  the location and shape that best fit the data 
  Dynamics:  AR-2 model (on location)  Markov transition (on examplar indices) 
  Proposal: dynamics => boostrap filter 
  Observations and likelihood: 
    based on chamfer distance  
   (distance from examplar ak  

     edges to nearest image edge)  

[Toyama Blake, 2001]  Set of examplars 
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Particle filters 

  Several issues 
  Proposal 
  Data fusion 
  Multi mode handling 
  (Frequency of resampling – in appendix) 
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About proposals: bootstrap filter 

  Data likelihood 
  contour measures, color distribution  
  might be unspecific →                      multimodal → ambiguities 

  Dynamics: 2  contradictory roles 
1.  as prior: small variance (to increase prior level in case of smooth 

motion => less sensitivity to ambiguities) 
2.  as proposal: noise variance large enough to handle sudden/fast 

motion and configuration changes  
      => propose particles in a larger region than where they are expected 

using smooth motion 

  => tuning of dynamical parameters difficult to obtain good results 
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Using better proposals 

  dynamic prior might be unsufficient to extract good samples near 
likelihood modes (e.g. if tracker is lost/distracted) 

   => use data at current instant to sample from  

  there exist some technics to approach the optimal proposal 
(unscented filter, auxiliary PF, hybrid..) 

    => involved, not always efficient 

  finding the modes of the likelihood target is usually not possible 
=> use detection based on  
  other cues (e.g. color, motion, audio etc) to do sampling 
  part or approximation of the cues 
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  example: head tracking 
  proposal goal : sample new particles in  
                     high likelihood regions 
    => proposal defined as a mixture 

  state dynamics 
   => preserves temporal continuity 
  output of a head detector: Di detections 
   => automatic (re)initialization and  
        failure recovery 

Using better proposals 



  Object: shape space 
  State: location/scale/rotation/handness (left/right) 
  Likelihood: shape measures 
  Proposal: mixture 

  Dynamics (AR-2) 
  Detections 

  skin blobs (only used to sample location) 
  other parameters sampled from prior distribution 

73 

Example: I-Condensation [Isard & Blake 1998] 
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Example: I-Condensation [Isard & Blake 1998] 

  sequence of results: when the current dominant state model (right hand in a)
does not fit well anymore (index finger of right hand unstretched in b), the left 
hand model super-seeds and takes over after several frames 
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Example: I-Condensation [Isard & Blake 1998] 
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Data fusion 

  Data provide complementary information 
  constantly observed but ambiguous (e.g. shape, color) 
  intermittent, but potentially precise (e.g motion, audio) 
  sensitive to different clutter, invariant to different perturbations 

(e.g. global color histogram, local intensity, contours) 

  Usual assumption: conditional independence 
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Example: contours/color [odobez et al, 2005] 

  Object model : element of shape space (ellipse) 
  State space : subspace of affine transform  
  Proposal: dynamics 
  Dynamics : AR model, order 2 (independent on each parameter) 

Obs/Likelihood  : CONTOURS (CONDENSATION) Obs/Likelihood  : COLOR HISTOGRAM 

  mean configuration in  red - highly likely particles in yellow 
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Example: contours/color [odobez et al, 2005] 

  Object model : element of shape space (ellipse) 
  State space : subspace of affine transform  
  Proposal: dynamics 
  Dynamics : AR model, order 2 (independent on each parameter) 

Obs/Likelihood  : Product of CONTOURS and COLOR likelihoods  
  mean configuration in  red - highly likely particles in yellow 
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Example: contours/color/motion [odobez et al, 2005] 

  Object model : element of shape space (ellipse) 
  State space : subspace of affine transform  

  Proposal: 
  dynamics 
   (also, particle drawn from  
   motion estimated between frames) 

  Dynamics : 
  AR model, order 2 (independent on each parameter) 
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Data likelihood: discussion on temporal 
conditional independence 

  Given states, high correlation between observations 
 => hypothesis not valid 

  Solution: change the model accordingly 

image at   k image at   k+1  
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Data likelihood 

  Hypothesis: independence between observations from 
  object model: where is the object in the current image 
  temporal correlation: object motion follows optical flow 

  Object model: shape on clutter 

  Temporal term: 

  patch distance dc 
  normalized correlation coefficient 
=> Implicit motion likelihood 
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Results 
  First example: 500 particles, all parameters identical  

  Dynamic noise (a bit larger than normal) 
  2 models : 

  M1: CONDENSATION (using shape only, or color only) 
  M2: likeliood model : object likelihood x correlation likelihood  

  mean configuration in  red - highly likely particles in yellow 

M1 : CONTOURS (CONDENSATION) M2 : CONTOUR + IMPLICIT MOTION 
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SMC and multimodality 
  In theory 
    Particle Filter (PF) approximates filtering distribution with N 

weighted samples 
  In practice: because of resampling, multiple modes not 

jointly tracked for long 
  Even with large N 
  Even with peaks  

 of similar weights 
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SMC and multimodality 
  Example in one dimension 

⇒  two modes of the same amplitude 

  result depends on the different 
noise levels (process noise, 
observation noise, data noise) 

  after some time, all particles tend 
to concentrate on one mode 
  more particle than needed to track 

one mode 
  less particles than needed to 

explore the second mode 

observations z 

  Consequences 
  sample-based approximation might be much poorer than expected 
  pruning occurs too early => no chance to resolve long standing 

ambiguities 
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One solution: track mixtures of particles 

  Cluster the samples around different modes 
  Each cluster/mixture  can be identified as one ‘object’ 

Exampel here  [Okuma, 2004]: uses detector trained for a given class 
 to initialize new mixtures/clusters 



Final example 
Joint Head Location and Pose Tracking   [Ba 2005] 

 Joint optimization of location and pose (coupled problem) 
not head tracking then pose estimation 
- If we know the pose, we can do a better head localisation 
- If we know the head localisation, we can better infer the  
=> Doing both simultaneously should help 

   Approach 
  Mixes different ingredients we have seen 

Head pose of each person 
(pan/tilt)                                        

Pan 

Tilt 



  Mixed-state approach  
     continuous (localization), discrete (appearance exemplar)  
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pose exemplar 
(index) 

Translation+scaling roll 

2D transform 

State model : exemplar approach 

Out of plane head rotation 

) , , ( t t t t k r S X = 
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Likelihood modeling  p(Z|X) 
  Features 

  texture/skin features extracted at each position of reference grid 
  silhouette features extracted from a background subtraction image 

  Generative head pose models => use of training data 
  texture/skin model (pose dependent, i.e. one for each pose value) 
    => p (z | k ) 
  silhouette model (pose independent) :  p(z) 
   => used to improve localization 

  Observation Likelihood  p (z | X ) 
assuming conditional independence => product of likelihoods 



89 

  Goal: sample new particles in  
                high likelihood regions 
    => proposal defined as mixture 

  state dynamics 
   => preserves temporal continuity 
  output of a head detector 
   => automatic (re)initialization and  
        failure recovery 

Proposal function 

€ 

q(Xt | Xt−1
i ,zt ) = (1−ε)p(Xt | Xt−1

i ) +ε
1
Nd

pdet (Xt | Xt
n,det (zt ))

n=1

Nd

∑
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  Alternative : Rao-Blackwellisation 
  Importance sampling applied to continuous variables 

  position/scale/rotation   S and r 
  compute exact posteriors for discrete one (here the exemplar index), 

given the sampled ones 

  Advantage 
  better parameter estimates 
  allows to evaluate, for the same image data  
     which head pose is the best (i.e. allows to have comparable likelihood) 
=> avoid being trapped in a wrong head pose estimate 

Sampling: Rao-Blackwellisation 
  Importance sampling approach 
 => particle set 

t Z

t k



Illustration of head pose tracking 

  on 60 minute data: around 10-13 degree error in pan 
  tilt more difficult to estimate 
  larger error near profile views 
  large accuracy variation across people (depending on appearance)  

-15 

0 

15 

15 0 -15 

til
t 

pan 

90 75 60 

-15 

0 

15 

pan 

til
t 
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Multi-view CHIL head pose data 

  Dataset: 
  lecture room recording 
  smaller head/face resolution 
  4 camera views, calibrations 

 One approach:  
  tracking: head pose tracker 

independently applied to each of the 
camera 

  fuse the 4 measurements by 
combining the 2 more reliable 

  reliability factor 
  - higher percentage of skin pixels in 
    localized region 
   (face is closer to frontal pose)   
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Results: CHIL data - demo 

 Color squares 
indicates selected 
cameras for fusion 

  (green: selected – 
red: unselected) 

 Original views  
   were zoomed in to 
  allow better viewing 

 Blue arrow: 
   pointing vector 

 Notice individual  
  tracker errors 
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Multi-object tracking ? 

  Single object tracking 
  element x in configuration space 

  e.g. 2D : x = (location, scale, activity) : 4 parameters 
  e.g. in 3D: 

  x = (position on ground-plane, speed, height, orientation) 
6 parameters 

=> Multiple object tracking ? 

Height:180.0cm 
Orientation:90 

Height:180.0cm 
Orientation:0 

Height:175.0cm 
Orientation:30 

Height:180.0cm 
Orientation:180 

3D human body model�
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Multi-Object Tracking�
  Probabilistic approach 

  Issues 

  What is the state ? 

  Multi-object dynamic ? 

  Observation model ? 

  Optimization ? �

 state 

dynamical 
model 

observation 
likelihood model 

observations 
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Particle filters: conclusion 
  Advantages 

  easy to implement and expand (addition of new variables, defining 
more precise likelihood, dynamics) 

  robust to clutter and brief occlusions 
  a lot of theoretical tools 
  applicable to any filtering problem (not only visual tracking) 

  Problems 
  jitter of final estimate (mean ? mode of distribution ?) 
  computational load (on average, more samples –i.e. likelihood 

evaluations- than iteration in gradient descent algorithms) 
  only brief capture of multimodality  

  Others 
  often, dynamics simply maintain temporal coherence 
  A discriminant and robust data model for the task at hand remains 

the challenge 
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