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the overall goal: to infer relevant information
from audio-visual human scenes

audio-visual
scenes
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Goal and outline

e Introduction
State-space example
Dynamic models

e Bayesian approaches
Kalman filter
Sampling methods (Particle filter)

e Note
many slides in the presentation (available on website)

not all presented here => they provide more
complementary information



Introduction
e Visual tracking: a visual tracking-based definition...
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“Tracking is the problem of generating an inference about the
motion of an object given a sequence of images. Good
solutions of this problem have a variety of applications...”

Forsyth and Ponce, Computer Vision: A modern approach, 2003.




Sources of trouble

Why is it harder that it might seem?
dimension loss
low image quality: low contrast, noise, motion blur
variability of visual appearance
occlusions, partial to total
clutter
unpredictable motions
constraints on computational complexity

A lot in common with other computer vision tasks!



What do we want to estimate ? object state space Xy

e |n most cases: object in reference
. R position
geometric state space 0

object in state x R(x)

e maps an object model from a
reference position into the image

e e.g.box:
mapping
translation
scaling, rotation, shear
allows to define a region of the

images where measurements will ¢
be made




Object state: space of geometric transformations

point p of shape p = ( 5 ) Ro object in reference
— 4| position
;o B ap ao b1
/=areo=( o) ()

e may needs mapping of individual points
e oObject
shape template: set of 2D points
iImage patch: points + image value inside
a region (e.g. box, ellipse)
e mapping
b : translation
A : linear components
(scalings, rotation, shear)

object in state x

(b,A); 2D affine state space to be
estimated



More complex models: eigen Shapes

e Object: shape represented by a set of point
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e [odel: using training data, principal shape variations (modes) learnt off-
line (PCA) : provide a linear parameterization of the shape
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Eigen Shapes

o . few deformation modes around average shape template,
plus affinity parameters (to move the shape into the image)

X — (b7 A7 ¢1:m) c R6+m




Into 3D Models
e State: 3D pose of a set of r parameterized parts (possibly articulated)
x = (Tp, R1:r,01:7) € R3+7(14m)

e Context: pose tracking of objects of known type (manufactured
objects, human body) whose geometry is known, assumed, or learnt
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More generally

captures various aspects of tracked objects
3D pose/shape [cont.]
2D pose/shape [cont. or disc.]
Auxiliary variables:
color [cont. or disc.] : histogram template
identity [disc.] : for multi object tracking
activity [disc.] : is the person walking, running, speaking ?
=> help in defining
= better (more precise), simpler observation/motion models
= cf introduction of latent variables for distribution modeling

state parameters should be ‘observable, measurable’:
parameters should have an impact on the measurements
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Outline

e Bayesian tracking

Model
Parameter dynamics modeling

Sequential estimation
Kalman filter
Particle filter
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Probabilistic approach

e.g. the true location

e Dynamical state-space model of the object in the

image
Ll Th+1

X0 1 /
iz 1 i %k “k+1 e.g. the observed location
<——___  measured in the image

(e.g. as given by a
detector)

e \What we expect
handle uncertainties (noise, ambiguities, clutter, crude modeling...)
more than a single point estimate => access to distribution
e.g. make good prediction about where (region) to search for object
in next frame
allows parameter learning
well established tools
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Dynamical state-space model

SN . Ak S X041
21 g Z‘;Zk Fk+1 Z]_'kj—l—]_

e Assumptions
hidden process is a Markov chain
P(Xg+1X0:) =
observations: conditionally independent given the state

P(Zp+1121:k, X0 k1) =

joint law up to time k
k

p(x1:5,21:%) = p(x0) 1] p(xs|xi—1)p(2i]%;)
i=1
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Difference with HMIM

o g’“ i eV VE A X0kl
<1 E@ ;‘;Zk Rlk+1 Z]_'k—l—]_
e HMM: hidden state discrete Ay
o Dynamical model: probability table O A
o Example of transition = A
A32 (423
A = p(Xg = J|Xp—1 = 1) k

e Here, state continuous
o How do we model state dynamical process ?



Dynamical model : intuition
t-1 t prediction

?
t+1 / position + region

(uncertainty)

Smooth trajectories

e predictions depends on past observations : auto-regressive process
(can be driven by physics principles)

e includes uncertainty about prediction

/ ARP order
Xp = F(Xp—15 s Xp— K0 W)
/ driven by Wk ™ N (O, I)

possibly non-linear Independent noise
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Dynamical model: auto-regressive (AR) process

:Ck Ll4+1
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e E.g. assuming constant position
— Speed is noise

Xk = Bwk with Wil ~ N(wk|0, I)
X = Xg—1 T Bwy
p(Xg|xg—1) = N (xg|xg_1,7 = B'B)

15

—  Brownian motion

e Note

e One can simulate samples from the
process using ancestral sampling

e AR model of order 1
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Dynamical model: auto-regressive (AR) process

: -------- : :U :

e More realistic: constant speed model
=> acceleration is noise
X = Bwk
X = 2Xp_1 — Xp—2 + Bwy,

p(Xk’Xk—lan—2> = N(XIJQXk—l — Xk—2, F)

e Note:

State can grow without bound

maybe not adapted for other
parameters (e.g. scale)

(xg —X) = a(x}_1 — X) + By,

steady-state value (e.g. 1 for scale)
=> Constrained Brownian motion




Dynamical model: 2nd order AR model

:xo :xl : LE41
L . external
mass — > MNX — —UVX — kX _|_ f «— forces

Friction component

potential energy component

e Example: ballistic model of falling ball
constant acceleration model (x=height)
kk — Qa —|— Bwk
X = 2X}._1 — Xp._o + a + Bw;g,
p(Xk|xg—1) = N (Xg[xp5—1,T)
Xp|k—1 = 2Xf—1 — Xg—2 T @

e Can be set as order 1:

{hk:hk—1+vk—1+a+wt

_ T
vk = hy — hp—1 = vp—1 +a + wy xp = [hy vl
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Switching dynamics model

Ck4+1
A

Lr+1

N

e AR model: modelling of one continuous activity
e However, in general

dynamics present discontinuities
sequence of different activities
discrete variables to model these effects

e Mixed state approach  state = (xg, ¢x)

20



Switching dynamics model
e Model

P(Xp» Cpl|Xp—1,Cl—1) =

e two main distributions
Pij (Xg|xXp—1) = p(Xg|Xp—1, ¢, = J,Cp—1 = 1)
specific continuous dynamics
on transitions (i#j)
for a given activity (i=j)

T (x) = p(eg = jlXp—1,cp—1 = 1)
discrete transition matrices of activity
can depend on the state value
e.g. activity changes occur on specific image regions

21




Switching dynamics: bouncing ball example

T . Ck _Ck+1
e Two distinctive activites c ? \?—(B—
o 0 : ballistic (constant acceleration) Tp  ATpt1

o 1:bouncing instant O—0—C

e State transitions
e bounce last one instant

O : ballistic

0:1i T 1.0

1 : bounce

e dynamics

22



Switching dynamics: bouncing ball example

Constant acceleration model

ht = hi—1 4= V-1 =+ @ 4= WY
Vt = he — he—1

wi € N(0,04)

Bounce model

e = hi—1 4+ Thi—1
Vr = Wi +Ta

hi = hr —e(l —T)vr 4+
w=—etr+(l—T1)a+1s

r e U0,1), vn € N(0,0u), v: € N(0,05)

height

P-4

Ny

e

4

t—-1

Ck Ck+1

Iaﬁk i$k+1

O—CHO
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Dynamical models: conclusion

e Dynamical state models
AR representation
defined from physical principle
Learning can be done through Maximum Likelihood (AR models)
Switching models: indicators of different activities/situations

e |ssues:
availability of training data
exploitation in tracking
not always easy: test data has to matched well the training data
often, parameters set by hands
unpredictable motions => simpler models are better
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Outline

e Bayesian tracking

Sequential estimation

Kalman filter
Particle filter
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Sequential estimation

€T T
)0 L > ;/\k R S X0:k+1
1 gzk kL Zyp41

e First (simplified) approach
Succession of instantaneous estimation problems
=> finding the best estimate at each time step

~~

X, = argmaxp(xg|zg, Xp_1)
= arg max p(zg|xg)p(Xg|Xk_1)

used especially for complex state-spaces (e.g. free form shapes)

efficient, but sensitive to temporarily tracking loss (e.g. during
occlusion)

=> Bayesian filtering
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Bayesian tracking

T
L0 LN > ;/\k R S X0:k+1
1 gzk kL Zyp41

e Goal: recursive estimation of state probability given the sequence of
observations

posterior distribution : p(X1:%|21:1)
filtering distribution p(X|Z1 %)

e Allows to compute quantities of interest
e.g. mean (expected value) of state at time k

Xp = /Xk;p(XkIZl:k)ka

e Recursive estimation of filtering distribution using Chapman-
Kolmogorov equation

P(Xg|z1:1) o< p(zg]|%;) /P(Xk\Xk—ﬂp(Xk—l\lek—l)dxk—1

27



Chapman-Kolmogorov equation

: :F\wk : Lh4+1
p(Xk|z1:x) = p(Xk|2k,21:5-1)
_ P(2glXp, 21:5—1)P(Xk|21:5—1) g ;gzk gl;
p(zg|21:5—1)
_ P(zglxp)p(Xg|21:5—1)
p(2k|21:—1)

e Note: comparison with general formula

p(z]|x)po(x)
p(z)

p(x|z) =

e P(Xk|Z1-k_1) plays the role of the prior on the current state
learned from the previous observations

28



Recursive Bayesian filtering T T

—_

e At each time step, two steps

. ko xZk+1
prediction step

P(Xg|z16—1) =

update step: new observation available
apply Chapman-Kolmogorov equation

p(2g|xk)p(Xk|216—1)
P(zk|z1-—1)

p(xg|z1:1) =

predicted likelihood

p(zi|z1:—1) =

e At each time step:
two integrals (or summation, given the nature of the state space)

29



Recursive Bayesian filtering

e Discret state case: integrals => summations
cf HMM: forward pass of Baum-Welsh algorithm

e Continous state case

e Linear and Gaussian case: analytical integration tractable
=> Kalman filter

e Monomodal distributions: gaussian approximation
=> Extended Kalman filter (EKF), or «<unscented» (UKF)

e Discretized state (Grid based filters): cf HMM approach

o Muti-modal general case : normalizations unfeasible ) Monte Carlo
approximations

30



Kalman filter

e Fundation: R.E. Kalman, A New Approach to
Linear Filtering and Prediction Problems, 1960

L Th+1

— o s
% 2l Fk+41

e Assumptions
X = AXp_1 + wg

p(Xg|xgp—1) = N(xp|Ax_1,Q)

Independent process and
measurement noises

/

/
2, = Hxp + v, p(zp|xg) = N (2| Hxy, R)

31



Kalman filter

e Result: direct graph, linear and Gaussian ., ko ~F

=> joint Gaussian distribution over all variables
=> all marginals are Gaussian

Zk Zk41

e In particular, the filtering distributions
P(Xp—1lZ1:k—1) ~ N(Xp—1lph—1,T—1)

p(Xg|z1:%) ~ N (Xg |k, Tg)

e Predictive and update steps can be solved using properties of
Gaussian processes

32



Kalman filter

|
mzck — AX/{:—l + W

A

‘p(Xk:—1|Z1:k—1> Pl

ot L ant

stochastic diffusion

Prediction ste
° P bp(xp|21.5-1)

p(Xg|z1:k—1) ~ N (x| Apg—_1, Zg—1)
S, 1= Al Al +Q —/\

ot

e Deterministic drift
prediction  App_1

e Stochastic diffusion: variance increase due to process noise
33



Ka I m a n fi Ite r Innovation: difference between

measure and prediction

Kalman gain

e Update step: l _—
pr = Apg_1 + Kp(z, — HApg_1)
M= - KpH)Zp_q K =X 1H'(HZ,_1H'+ R)™*

e Reactive effect of measurement

e Move prediction towards observation,
(prediction vs observation), cf Kalman gain

e Reduces the variance of the predicted estimation

A ; A
p(xg|z1:%) P(Xg|Z1:6-1)

/\ /\

Wo’f mcasuy
Zj. — H XL




Ka I m a n fi Ite r Innovation: difference between

measure and prediction

Kalman gain

e Update step: l _—
pr = Apg_1 + Ki(zp — HApg_1)
M= - KpH)Xp 1 Ky =Y, 1H'(HZ;_1H'+ R)™*

e Qualitatively

=> Kalman gain close to O
=> posterior mean/variances near predicted mean/variance
=> posterior mean close to average of measurements up to current instant

(measurement noise small w.r.t. process noise)
=> Kalman gain close to H-1 (pseudo-inverse of H)
=> posterior mean close to the measurement

35



Kalman filter for visual tracking
e Applied as soon as the 80s, esp. for feature tracking
(points, edges)

e Classical approaches

Use at time k.
Use result of optimization as measurement.

e.g. Mean-Shift algorithm

Local detector provides measurement location;

(gating process)
e.g. point tracking

36



Kalman filter: example [Remagnino et al., 1997]

e Blob detection using froreground/background segmentation

e Blob extraction and matched with nearest entity (person/car) =>
measurement for Kalman filter

37



Visual clutter => observational non-linearities

o

[A: Blake]

="
—
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Kalman filter issue

e Issue: in principle, extraction of z should be independent
of previous measurements/states

=> often not the case in vision:
gradient optimization starting from the prediction
measurements selected near predictions

In addition:
measurements depends on hypothesized state
e.g. shape model shown

39



Kalman filter issue

e Issue: measurements need to be of the same nature as
(part of) the state

Zz = h(x)+ noise

common cases: tracking of points and lines
=> X is a location/scale (+derivatives)

=> z has to be geometric parameters as well

what if y is a template ? a color histogram ? the image ?
the likelihood models for shapes that we have seen ?
=> the definition of h becomes very tricky

40



Kalman filter: summary

e Advantages:
Exact computation
Optimal under hypothesis

Provides a mechanism to account for uncertainty in observation
extraction

Parameters of model (A, H, Q, R) can be learned from training data

e Drawbacks

Strong limitations on observation model
Measurements need to be of the same nature as (part of) the state

Measurement of interest must be identified => data
association issue

Clutter is frequent => posterior are not mono-modal

41



Bayesian filtering : “Particle filtering”

e Monte Carlo approximations

non-parametric representation of distribution through samples

different names: particle filter (PF), sequential Monte-Carlo (SMC),
Sequential Importance sampling (SIS)

e Fundations

Gordon 1993, « Novel approach to non-linear/non-Gaussian
Bayesian state estimation »

Isard et Blake 1996 « CONDENSATION: CON(ditional DENSity
propagATION for visual tracking »

e Interest for visual tracking

Multiple hypothesis maintained => increased robustness to clutter,
occlusions, short tracking failures

No restriction on model ingredients
Easy implementation

42



P(Xk|Z1:K)

>

Particle filter distribution
\ piticles
. SO0 o
e Intuition:

Configuration X,

approximate at each time step the
of states using

M M
(™ e Soa™ =1 pGrlzi) & X ™ o0g —x™)
m=1

m=1

e Usage: compute expectation of function f dirac distribution
[ Fexpleizids = 7 f)
In particular, mean expectation of state (f(x)=x)

/ka(xk|zlzk)dxk ~ W](fm)Xém)

e How do we get these samples ?

43



Perfect sampling

e Target distribution p(x)

e Draw M samples x(m) p(x), n=1---M
M 11
e Approximation p(x) ~ Z M'S(X — x(m))
m=1

AN weight of sample
e Expectation w.r.t. p

E — xX)p(x)dx — 1 =i S x(m)
= [ 7P M) =~ 3 )
m=1

e Approximation: unbiased, converges when M goes to infinity
e Usually: difficult to sample from p directly !

44



Importance sampling

e Use a ‘proposal’ auxiliary function g

e (:as close as possible to p (anq supp(p) included in supp(q))
(i.,e. g(x) = 0 = p(x) = 0)

e Draw the samples from g instead of p
x(M) g(x), m=1---M
1 M

= Bl = [ 1695 a0k 1 3 S

(m) M
e Importance weights | " x(m) Z_ " :
Q( ) m=1

- : samples were drawn from g instead of p

45



Importance sampling

e Importance weights (m) p(x(M) % (m)
X T —
Q(X(m>) m=1
q(x) p(x)

T//X

samples generated
from q(x), and
reweighted

. M
e Approximation of p p(x) ~ 3 7T(m)(S(X _ X(m))

m=1 46



Sequential Importance Sampling (SIS)
First example: Bootstrap filter

Importance sampling: target distribution
p(Xk|21:%)

Proposal function: predictive distribution
(m)
Xk

~ q(x) = p(Xg|21:5—1)

e Importance weight: Chapman-Kolmogorov equation

P(zg|xk) (XK |21 6—1)
p(zk|Z1:k—1)

p(X|z1:%) o< p(zk|xK)P(XK|Z1:—1)

p(xklz1.5) =

(m)
= ) = 2 (J:M) x p(zk|x

(m)
a(x™) =)

47



SIS: Bootstrap filter

e How to simulate from q, the predictive distribution ?
assume that we have sample set from previous instant

L (m) (m)
pP(X_1l21:p-1) = Y ™ 10(Xp_1 — X 1)

m=1
L ) (m)
p(xk|Z15—1) :/p(Xk:|Xk—1)p(Xk—1|Z1:k—1)dxk—1 = > mip(xelx 1)
m=1

— mixture of distributions
— assumption: Gaussian dynamics  p(xj|x;_1) = N (x| Ax;_1,Q)
— Mixture of Gaussians

e Sampling
o Sample the mixture weight  am ~ MUZtinOmml(W;gT%, m=1---M)
e Simulate noise from the Gaussian
and apply the dynamical model w(™) ~ N (w0, Q)
to the selected sample X](gm) — Axl(ca—n;lb_) 14 (M)



SIS: Bootstrap filter

X
P(Xk—1121:k-1) oo EREEERT D & S o
drift
diffuse
' &
N
(m) measure
Xk
T T
Y Y Yy vy Y yw Y
<> <= <2
N
ngm),xlgm)

[A. Blake, 1998] 49



Non-Gaussian Bayesian Filter

) ) } pix)
X X
stochastic diffusion
4 ) i ) pix)
J\/\ . _/_/\x
- -

reactive effect of measurement
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SIS: general case

e Apply Importance sampling to posterior distribution
=> Target

k
p(X1:k|21:%) < p(X0) H p(x;|x;—1)p(z;|%;)

- 1=1

e Note: here, we want to simulate/sample

=> this will be done recursively (by extending trajectories over time)
=> the will be computed

P(X1:6l21:) o< p(X1:6—1121 86— 1)P(Xk|Xp—1)0(Z8|XE)

time k time k-1

51



SIS: general case

o Target p(x1:klZz1:x) o< P(X1:k—1121:k—1)P(Xk|Xk—1)P(Zk|XE)

e Proposal function, factorized
k

g(x1:5121:8) = ¢(x0) [ a(xilxi—1.2;) = a(x1:5-1|21:5—1)a(Xp|Xp_1.2k)
i=1

e Importance sampling and weight: recursion

given weighted trajectories up to time k-1 {(Xgrr,? 15 W,gm%)}
extend trajectory with proposal

(™ gl 2), m=1--- M
weight update

(m) . (m) p(z|x¢ >>p<xk ) |x{m)
" k-1 (m), . (m)
g\ x{™) 7))

M
with 37 7l =

52



Proposal densities

e What is the interest of this general approach ?
introduction of an explicit proposal density we can play with

e Examples
e Bootstrap filter (proposal=dynamic) first proposed, popular, simple

q(xp|xg_ 1,Zk;)—P(X/<;\Xk 1)

= 7712 )oc wlg_lp(z |Xk )) with Z

(M) _

=> same weights as before (assuming past weights at k-1 are equiprobable)
(notice however the difference in the way it was obtained)

e Optimal proposal: takes into account previous state and current
observation q(Xk|Xp—1,2%) = P(XK|Xk—1,2Zk)

Right hand term can not be computed in general for a given model

e In between: use current data for a better efficiency
53



Resampling

e trajectory generation process independent of weight values
good (and esp. bad) trajectories are equally propagated
after some time steps, most of the weight is located in a few samples

e solution:
sample selection
of sample with smaller weights
of samples with larger weights
keep the representation valid w.r.t. convergence properties

e oOne approach: sample with replacement

) L =1y = 8 2 =1 )

A, ~ Multinomial(wlgm), m=1---M)

54



An algorithm

Given the particle distrlbutlon at the previous time step
{1 ™D bt

e sample from proposal

i](gm) ™~ q(Xle]gn_%i,Zk), m=1---M

e weight update

m) (m)(m) M
#m) o 7(m) p(zk|x’“(m§p(x) -1 it S &M =y
q(x}, |Xk; 1> Zk) m=1

e resampling

VYm, am ~ Multi(%]gm)),xg?}? = (xga?)l,xk m)) and w(m) = %

e Monte Carlo approximation
() o ()
Elf (xi)lzrel = D> w7 f(x")
m=1

e In particular, we can compute the mean value

55



CONDENSATION [isard and Blake 96]

Object model: parametric contour on clutter

o State: affine parameters (mainly translation, scale in x and y, rotation)
e Dynamics: AR-2 model (on individual parameters)

o Observations: contours on lines perpendicular to shape model

! !
z, ={v,}

o Likelihood: statistical hypothesis : independance of measures
e Proposal: dynamics => boostrap filter

L
Poy (2, | X;) Hp(zic | X;)

L ~] I 112
vV =V
[Jrakon-t X )
- O
Nearest detection Position on the

shape model
56



CONDENSATION: Examples [Isard and Blake 98]

57



CONDENSATION: Examples [isard and Blake 98]

sequence on white background: no clutter
— allows to gather training data for learning dynamics

(without learned dynamics, model usually fails on clutter) .



CONDENSATION: Example for head tracking

© Kodak

e Red curve: mean state
e Yellow ellipses: particles with larger weight (weight> 0.7 max weight)

59



Color Tracking [perez et al, eccv 2002]

Object model: box with color measured in multiple regions
o State: translation, scale in x and y

e Dynamics: AR-2 model (manual parameter setting)

e Proposal: dynamics => boostrap filter

o Observations: multi-dimensional histogram (color histograms gathered in
different regions of the objects => allows better localization)

e Likelihood: based on color similarity with a reference model
=> cf mean-shift tracker

p(z;] x;) o< exp —AD?[q*, q;(x;)]

Dla*,ai(0] = |1 = Sy /o ()ai(bix)

0.8
. 0.4“ j
: 0

1
2

0
12345678910 12345678910

instant O référence instant 2 candidat %



Color Tracking: examples [perez et al, eccv 2002]

tracker exhibits robustness to color clutter

Deterministic (mean shift)

61



Color Tracking: examples [perez et al, eccv 2002]

tracker exhibits robustness to color clutter

Stochastic (particle filter)



Color Tracking: examples [pPerez et al, eccv 2002]

© Kodak

(tracker exhibits robustness to change of scale, object orientation,

motion, illumination changes etc
63



Color Tracking: examples [Perez et al, eccv 2002]

© Kodak

tracker exhibits robustness to occlusions

64



Tracking with switching dynamics o

Object model: shape _»i L,;k, iml

e State: translation and scale+ activity index —

e Dynamics: 2l Y241
o Markov transition (activity indices) =>

probability of changing activity
T;; = plag, = jlag_1 = 1)

e AR-2 models on location (depending on
activity variable)

pi(Xplxp_1) = p(Xp|xp_1,ap = 1)

e Proposal: dynamics => boostrap filter
o first sample activity
e then sample location depending on
activity

Activities: Red line drawing, Blue:
pause, Green: scribbling
[Isard Blake, 2001] 65




Tracking with switching dynamics o

Object model: shape _»i L,;k, iml

e State: translation/scale+ activity index —

e Dynamics: 2l Y241
o Markov transition (activity indices) =>

probability of changing activity
e AR-2 models on location (depending o
activity variable)

e Proposal: dynamics => boostrap filter
e Observations

grey scale values on point lying on
perpendicular contours to the shape

e Likelihood

gaussians with mean depending on
whether the point is inside/outside of the object Activities: Red line drawing,

Blue: pause, Green: scribbling
[Isard Blake, 2001] 66




Tracking with auxiliary variables

Discrete auxiliary processes
not only for switching between dynamics
also influences likelihood
=> E.g. a
switching between reference appearence
(cf examplars)
existence (ax=1) or not (ax=0) of object in the image

e Model example
dynamics: independence of state variables

p(Xp, 0 X1, ap_1) = p(Xp|xx_1)p(ag|ag_1)

likelihood  P(Zg|xg, ar = 1) = p;(zg|xx)

(note: state variables dependent given observations,
due to the explaining away principle)
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Tracking with examplars

Object model: catalogue of shape/appearance templates
o State: translation, scale in x and y
+ examplar index (discrete)

=> joint estimation of the location and shape that best fit the data

e Dynamics: AR-2 model (on location) Markov transition (on examplar indices)

e Proposal: dynamics => boostrap filter

e Observations and likelihood:
based on chamfer distance
(distance from examplar ax
edges to nearest image edge)

Set of examplars

[Toyama Blake, 2001] 68



Particle filters

e Several issues
Proposal
Data fusion
Multi mode handling
(Frequency of resampling — in appendix)
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About proposals: bootstrap filter
Tk+1

X
> :/\ k >
e Data likelihood Z';Zk Zht1
contour measures, color distribution

might be unspecific > p(z;|x;) multimodal — ambiguities

P(Xp|Xp—1)

e Dynamics: 2 contradictory roles X = AXp_1 + g

as prior: small variance (to increase prior level in case of smooth
motion => less sensitivity to ambiguities)

as proposal: noise variance large enough to handle sudden/fast
motion and configuration changes

=> propose particles in a larger region than where they are expected
using smooth motion

=> tuning of dynamical parameters difficult to obtain good results
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Using better proposals

e dynamic prior might be unsufficient to extract good samples near
likelihood modes (e.q. if tracker is lost/distracted)

=> use data at current instant to sample from

e there exist some technics to approach the optimal proposal
(unscented filter, auxiliary PF, hybrid..)

=> involved, not always efficient

e finding the modes of the likelihood target is usually not possible
=> use detection based on

other cues (e.g. color, motion, audio etc) to do sampling
part or approximation of the cues
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Using better proposals

e example: head tracking
e proposal goal : sample new particles in
high likelihood regions
=> proposal defined as a mixture

3 D
q(Xp[xp-1,24) = ﬁp(Xk\Xk—OJr% gy N (xps g, T )

o state dynamics
=> preserves temporal continuity
e output of a head detector: Di detections
=> automatic (re)initialization and
failure recovery
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Example: I-Condensation [Isard & Blake 1998]

S

e Object: shape space
e State: location/scale/rotation/handness (left/right)
e Likelihood: shape measures

e Proposal: mixture
Dynamics (AR-2)
Detections
skin blobs (only used to sample location)
other parameters sampled from prior distribution
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Example: I-Condensation [Isard & Blake 1998]

e sequence of results: when the current dominant state model (right hand in a)
does not fit well anymore (index finger of right hand unstretched in b), the left
hand model super-seeds and takes over after several frames
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Example: I-Condensation [Isard & Blake 1998]

&
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Data fusion

e Data provide complementary information

constantly observed but ambiguous (e.g. shape, color)
intermittent, but potentially precise (e.g motion, audio)

sensitive to different clutter, invariant to different perturbations
(e.g. global color histogram, local intensity, contours)

e Usual assumption: conditional independence

p(z,% . -Zﬁ‘xk) — H&Ll:l p(Z%‘Xk:)
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Example: contours/color [odobez et al, 2005]

e Object model : element of shape space (ellipse)

e State space : subspace of affine transform

e Proposal: dynamics

e Dynamics : AR model, order 2 (independent on each parameter)

Obs/Likelihood : CONTOURS (CONDENSATION) Obs/Likelihood : COLOR HISTOGRAM
mean configuration in red - highly likely particles in yellow 77



Example: contours/color [odobez et al, 2005]

Object model : element of shape space (ellipse)

State space : subspace of affine transform

Proposal: dynamics

Dynamics : AR model, order 2 (independent on each parameter)

Obs/Likelihood : Product of CONTOURS and COLOR likelihoods
mean configuration in red - highly likely particles in yellow 78



Example: contours/color/motion [odobez et al, 2005]

e Object model : element of shape space (ellipse)
e State space : subspace of affine transform

e Proposal:
e dynamics
(also, particle drawn from
motion estimated between frames)

e Dynamics:
e AR model, order 2 (independent on each parameter)
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Data likelihood: discussion on temporal
conditional independence

Zp41 /X541 §
=t o

image at k+1

image at k

Zi+1 = Zj + noise

Given states, high correlation between observations

=> hypothesis not valid Tkt

P(Zp1|21:8: X0k41) 7 P(ZpgalXpt1) .
Solution: change the model accordingly

P(Zp+1121 kX0 k+1) = P(Zk41|XKk+1 2> Xk)
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Data likelihood

P 2 11XE4-15 Zhos Xk) = Pobj (Zht1Xk4-1) XPeorr (Zp41 [Xk4-1, 25, X))

e Hypothesis: independence between observations from
e object model: where is the object in the current image
e temporal correlation: object motion follows optical flow

e Object model: shape on clutter

e Temporal term:

pCOTT(Z%—Fl'Xk—I-la Zi;a Xk) X €XPp (_ACdC(Zk’a Zk—l—l))

e patch distance dc
normalized correlation coefficient
=> |Implicit motion likelihood




Results

e First example: 500 particles, all parameters identical
e Dynamic noise (a bit larger than normal) o =6 O

e 2 models:

o M1: CONDENSATION (using shape only, or color only)
o M2: likeliood model : object likelihood x correlation likelihood

=0.05

trans scale

M1 : CONTOURS (CONDENSATION) M2 : CONTOUR + IMPLICIT MOTION
mean configuration in red - highly likely particles in yellow



SMC and multimodality

e In theory

Particle Filter (PF) approximates filtering distribution with N
weighted samples

e In practice: because of resampling, multiple modes not
jointly tracked for long

o Even with large N
e Even with peaks
of similar weights

sss J
S
o omi
] ::':I




SMC and multimodality

e Example in one dimension
2 :
Zj, — Xi + noise
two modes of the same amplitude

e result depends on the different
noise levels (process noise,
observation noise, data noise)

e after some time, all particles tend
to concentrate on one mode

e more particle than needed to track
one mode

e less particles than needed to

1a®®

/ observations z

M\@: "‘ﬂl v:d“, ) -

explore the second mode
e Conseqguences

1 ! ! !
10 20 30 40

! I 1 |
. 50 60 70 80 20
time step

e sample-based approximation might be much poorer than expected

e pruning occurs too early => no chance to resolve long standing
ambiguities o4



One solution: track mixtures of particles

e Cluster the samples around different modes
e Each cluster/mixture can be identified as one ‘object’

Exampel here [Okuma, 2004]: uses detector trained for a given class
to initialize new mixtures/clusters
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Final example
Joint Head Location and Pose Tracking [Ba 2005]

Head pose of each person
(panftilt)

e Joint optimization of location and pose (coupled problem)
not head tracking then pose estimation
- If we know the pose, we can do a better head localisation
- If we know the head localisation, we can better infer the
=> Doing both simultaneously should help
e Approach
o Mixes different ingredients we have seen



State model : exemplar approach
e Mixed-state approach

continuous (localization), discrete (appearance exemplar)

X =(S,r.k)

2D transform / \ Out of plane head rotation

Translation+scaling roll

pose exemplar

& b
W
& A
V=9
34
d 4
S =
o).
€ S

87



Likelihood modeling p(Z|X)

e Features

o texture/skin features extracted at each position of reference grid

o silhouette features extracted from a background subtraction image
e Generative head pose models => use of training data

o texture/skin model (pose dependent, i.e. one for each pose value)

=>p(z|k)
o silhouette model (pose independent) : p(z)
=> used to improve localization

e Observation Likelihood p (z | X)

assuming conditional independence => product of likelihoods

Ztext (St , rt )\

ZSkin(St, ’/;)

i/
\ZSZ (St,rt) D

Xt = (Sﬂrt’kt)
~

>~

88



Proposal function

e Goal: sample new particles in
high likelihood regions
=> proposal defined as mixture

| . 1
08,1602 = =08, X ) befD 6, 1K)

o state dynamics
=> preserves temporal continuity
e output of a head detector
=> automatic (re)initialization and
failure recovery
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Sampling: Rao-Blackwellisation

e Importance sampling approach

=> particle set T 1 1,0
bart {Stvrtvktawt}iZL.N

e Alternative : Rao-Blackwellisation

Importance sampling applied to continuous variables
position/scale/rotation S andr

compute exact posteriors for discrete one (here the exemplar index),

given the sampled ones L ,
{S%v T%» Wz(kt)a w%}i=1..N

e Advantage ' (k) = p(kt|Z1:¢, S1:4571:4)
better parameter estimates o

allows to evaluate, for the same image data Z(S%, 7“175)

which head pose is the best (i.e. allows to have comparable likelihood)

=> avoid being trapped in a wrong head pose estimate
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on 60 minute data: around 10-13 degree error in pan
e tilt more difficult to estimate 90 75 60
e larger error near profile views
e large accuracy variation across people (depending on appearance)




Multi-view CHIL head pose data

e Dataset:
e lecture room recording

e smaller head/face resolution
e 4 camera views, calibrations

e One approach:

e tracking: head pose tracker

independently applied to each of the
camera

o fuse the 4 measurements by
combining the 2 more reliable

e reliability factor
- higher percentage of skin pixels in
localized region
(face is closer to frontal pose)
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Results: CHIL data - demo

e Color squares
indicates selected
cameras for fusion

(green: selected —
red: unselected)

e Original views
were zoomed in to
allow better viewing

e Blue arrow:
pointing vector

e Notice individual
tracker errors
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Multi-object tracking ?

e Single object tracking

e element x in configuration space
e.g. 2D : x = (location, scale, activity) : 4 parameters
e.g. in 3D:
= X = (position on ground-plane, speed, height, orientation)
6 parameters

=> Multiple object tracking ?

2

3D human body model
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Multi-Object Tracking

e Probabilistic approach

state
L ~ ~
P(X¢|Z1:4) o< p(Z|Xy) /P(Xt|Xt—1)p(Xt—1\Zl:t—l)dXt—l
observatiglgs observation dynamical
likelihood model model
e Issues

e What is the state ?
e Multi-object dynamic ?
e Observation model ?

e Optimization ?




Particle filters: conclusion

e Advantages

easy to implement and expand (addition of new variables, defining
more precise likelihood, dynamics)

robust to clutter and brief occlusions
a lot of theoretical tools

applicable to any filtering problem (not only visual tracking)

e Problems
jitter of final estimate (mean ? mode of distribution ?)

computational load (on average, more samples —i.e. likelihood
evaluations- than iteration in gradient descent algorithms)

only brief capture of multimodality

e Others

often, dynamics simply maintain temporal coherence

A discriminant and robust data model for the task at hand remains
the challenge
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