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the overall goal: to infer relevant information 
from audio-visual human scenes 

detection (are there any 
people?) 

audio-visual 
scenes 

localization (where are they?) 

tracking (where do they go?) 

identification (who are they?) 

activity recognition & 
discovery (what do they do? 
what do they look at?, do they 
interact? who do they interact 
with? what do they do together?, 
…) 

representation (what is a 
person?) 



3 

Goal and outline 

  Introduction 
  State-space example  
  Dynamic models 

  Bayesian approaches 
  Kalman filter 
  Sampling methods (Particle filter) 

  Note 
  many slides in the presentation (available on website) 
  not all presented here => they provide more 

complementary information 
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Introduction   
  Visual tracking: a visual tracking-based definition… 

 “Tracking is the problem of generating an inference about the 
motion of an object given a sequence of images. Good 
solutions of this problem have a variety of applications…”  
 Forsyth and Ponce, Computer Vision: A modern approach, 2003. 
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Sources of trouble 
  Why is it harder that it might seem? 

  dimension loss 
  low image quality: low contrast, noise, motion blur 
  variability of visual appearance  
  occlusions, partial to total 
  clutter 
  unpredictable motions 
  constraints on computational complexity 

  A lot in common with other computer vision  tasks!  
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What do we want to estimate ? object state space 

object in reference 
position 

  In most cases:   
     geometric state space 

  maps an object model from a 
reference position into the image 

  e.g. box:  
  mapping 

  translation 
  scaling, rotation, shear 

  allows to define a region of the 
images where measurements will 
be made 

object in state x 
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Object state: space of geometric transformations 

object in reference 
position 

  may needs mapping of individual points 
  object 

  shape template: set of 2D points 
  image patch: points + image value inside 

a region (e.g. box, ellipse) 
  mapping 

  b : translation 
  A : linear components 

(scalings, rotation, shear) 

     (b,A); 2D  affine state space to be 
estimated 

object in state x 

point p of shape 
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  Object: shape represented by a set of point 

  Model: using training data, principal shape variations (modes) learnt off-
line (PCA) : provide a linear parameterization of the shape  

More complex models: eigen Shapes 

[Taylor and Cootes’s Active 
Shapes] 

Training data mean 
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  State: few deformation modes around average shape template, 
plus affinity parameters (to move the shape into the image) 

Eigen Shapes 

[Taylor and Cootes’s Active Shapes] 
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  State: 3D pose of a set of r parameterized parts (possibly articulated) 

  Context: pose tracking of objects of known type (manufactured 
objects, human body) whose geometry is known, assumed, or learnt 

Into 3D Models 

[Sminchisescu’s body model]  [Sidenbladh’s body tracker] 
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More generally 

  State captures various aspects of tracked objects 
  3D pose/shape [cont.] 
  2D pose/shape [cont. or disc.] 
  Auxiliary variables: 

  color [cont. or disc.] : histogram template 
  identity [disc.] : for multi object tracking 
  activity [disc.] : is the person walking, running, speaking ? 
=> help in defining  

  better (more precise), simpler observation/motion models 
  cf introduction of latent variables for distribution modeling 

  Note: 
  state parameters should be ‘observable, measurable’: 

  parameters should have an impact on the measurements 
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Outline 

  Bayesian tracking 

  Model 

  Parameter dynamics modeling 

  Sequential estimation 
  Kalman filter 
  Particle filter 
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Probabilistic approach 

  Dynamical state-space model 

  What we expect 
  handle uncertainties (noise, ambiguities, clutter, crude modeling…) 
  more than a single point estimate => access to distribution 
     e.g. make good prediction about where (region) to search for object  
      in next frame 
  allows parameter learning 
  well established tools 

e.g. the true location 
of the object in the 

image 

e.g. the observed location 
measured in the image 

(e.g. as given by a 
detector) 
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Dynamical state-space model 

  Assumptions 
  hidden process is a Markov chain 

  observations: conditionally independent given the state 

  joint law up to time k  
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Difference with HMM 

  HMM: hidden state discrete 
  Dynamical model: probability table 
  Example of transition 

  Here, state continuous 
  How do we model state dynamical process ? 



Dynamical model : intuition 

Smooth trajectories 

  predictions depends on past observations : auto-regressive process 
    (can be driven by physics principles) 

  includes uncertainty about prediction 
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t-1 t prediction 
position + region 

(uncertainty) 

possibly non-linear 

ARP order 

driven by  
Independent noise 

t+1 ? 
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Dynamical model: auto-regressive (AR) process 

  E.g. assuming constant position 
⇒  Speed is noise   

⇒  Brownian motion 
  Note 

  One can simulate samples from the 
process using ancestral sampling 

  AR model of order 1 
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Dynamical model: auto-regressive (AR) process 

  More realistic: constant speed model 
    => acceleration is noise 

  Note: 
  State can grow without bound 

  maybe not adapted for other 
parameters (e.g. scale) 

       steady-state value (e.g. 1 for scale) 
=> Constrained Brownian motion 
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Dynamical model: 2nd order AR model 

  Example: ballistic model of falling ball 
    constant acceleration model (x=height) 

  Can be set as order 1: 

mass 

Friction component potential energy component 

external 
forces 
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Switching dynamics model 

  AR model: modelling of one continuous activity 
  However, in general 

  dynamics present discontinuities 
  sequence of different activities 
⇒   discrete variables to model these effects 

  Mixed state approach 
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Switching dynamics model 
  Model 

  two main distributions 

  specific continuous dynamics 
  on transitions (i≠j) 
  for a given activity (i=j) 

  discrete transition matrices of activity 
  can depend on the state value 
    e.g. activity changes occur on specific image regions  
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Switching dynamics: bouncing ball example 

  Two distinctive activites c 
  0 : ballistic (constant acceleration) 
  1 : bouncing instant 

  State transitions 
  bounce last one instant 

  dynamics 

0 : ballistic 

1 : bounce 

0.9 

0.1 1.0 
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Switching dynamics: bouncing ball example 

0 : ballistic 

1 : bounce 

0.9 

0.1 1.0 
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Dynamical models: conclusion 
  Dynamical state models 

  AR representation 
  defined from physical principle 
  Learning can be done through Maximum Likelihood (AR models) 
  Switching models: indicators of different activities/situations 

  Issues: 
  availability of training data 
  exploitation in tracking 

  not always easy: test data has to matched well the training data 
  often, parameters set by hands 
  unpredictable motions => simpler models are better 
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Outline 

  Bayesian tracking 

  Sequential estimation 
  Kalman filter 
  Particle filter 
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Sequential estimation 

  First (simplified) approach 
  Succession of instantaneous estimation problems 
    => finding the best estimate at each time step 

  used especially for complex state-spaces (e.g. free form shapes) 
  efficient, but sensitive to temporarily tracking loss (e.g. during 

occlusion) 
  => Bayesian filtering 



27 

Bayesian tracking 

  Goal: recursive estimation of state probability given the sequence of 
observations 
  posterior distribution :  
  filtering distribution : 

  Allows to compute quantities of interest 
  e.g. mean (expected value) of state at time k 

  Recursive estimation  of filtering distribution using Chapman-
Kolmogorov equation 
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  Note: comparison with general formula 

                           plays the role of the prior on the current state 
                             learned from the previous observations 

Chapman-Kolmogorov equation 



Recursive Bayesian filtering 
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  At each time step, two steps 
  prediction step 

  update step: new observation available 
  apply Chapman-Kolmogorov equation 

  predicted likelihood 

  At each time step:  
  two integrals (or summation, given the nature of the state space) 
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Recursive Bayesian filtering 

  Discret state case: integrals => summations 
     cf HMM:   forward pass of Baum-Welsh algorithm  

  Continous state case 

  Linear and Gaussian case: analytical integration tractable  
   =>   Kalman filter 

  Monomodal distributions: gaussian approximation   
    =>   Extended Kalman filter (EKF), or «unscented»  (UKF) 

  Discretized state (Grid based filters): cf HMM approach 

  Muti-modal general case : normalizations unfeasible ) Monte Carlo 
approximations 
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Kalman filter 
  Fundation: R.E. Kalman, A New Approach to  

 Linear Filtering and Prediction Problems, 1960 

  Assumptions 

Independent process and 
measurement noises 
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Kalman filter 
  Result: direct graph, linear and Gaussian 

 => joint Gaussian distribution over all variables 
 => all marginals are Gaussian  

  In particular, the filtering distributions 

  Predictive and update steps can be solved using properties of 
Gaussian processes 
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Kalman filter 

  Prediction step 

  Deterministic drift  
     prediction  

  Stochastic diffusion: variance increase due to process noise 
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Kalman filter 
  Update step:  

  Reactive effect of measurement 
  Move prediction towards observation, depending on relative 

uncertainties (prediction vs observation), cf Kalman gain 
  Reduces the variance of the predicted estimation 

Innovation: difference between 
measure and prediction Kalman gain 
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Kalman filter 
  Update step:  

  Qualitatively 
  measurement noise R large w.r.t. process noise 
     => Kalman gain close to 0 
    => posterior mean/variances  near  predicted mean/variance 
    => posterior mean close to average of measurements up to current instant 

  measurement  is very precise 
     (measurement noise small w.r.t. process noise) 
   => Kalman gain close to              (pseudo-inverse of H) 
   => posterior mean close to the measurement 

Innovation: difference between 
measure and prediction Kalman gain 
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Kalman filter for visual tracking 
  Applied as soon as the 80s, esp. for feature tracking 

(points, edges) 

  Classical approaches 
  Use prediction to initialize optimization process at time k. 

Use result of optimization as measurement. 
     e.g. Mean-Shift algorithm 

  Local detector provides measurement location; 
measurement selected as the closest one to prediction 
(gating process)    

      e.g. point tracking 
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Kalman filter: example [Remagnino et al., 1997] 

  Blob detection using froreground/background segmentation 
  Blob extraction and matched with nearest entity (person/car) => 

measurement for Kalman filter 
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Visual clutter => observational non-linearities 

[A: Blake] 
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Kalman filter issue 

  Issue: in principle, extraction of z should be independent 
of previous measurements/states 

  => often not the case in vision:  
  gradient optimization starting from the prediction 
  measurements selected near predictions 

  In addition:  
  measurements depends on hypothesized state 
  e.g. shape model shown 
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Kalman filter issue  

  Issue: measurements need to be of the same nature as 
(part of) the state 
   z = h(x)+ noise 
  common cases: tracking of points and lines 
    => x is a location/scale (+derivatives)   
    => z has to be geometric parameters as well 

  what if y is a template ? a color histogram ? the image ? 
 the likelihood models for shapes that we have seen ? 
 => the definition of h becomes very tricky 



41 

Kalman filter: summary 
  Advantages: 

  Exact computation 
  Optimal under hypothesis 
  Provides a mechanism to account for uncertainty in observation 

extraction 
  Parameters of model (A, H, Q, R) can be learned from training data 

  Drawbacks 
  Strong limitations on observation model 

  Measurements need to be of the same nature as (part of) the state 
  Measurement of interest must be uniquely identified => data 

association issue 
  Clutter is frequent => posterior are not mono-modal 
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Bayesian filtering : “Particle filtering” 
  Monte Carlo approximations 

  non-parametric representation of distribution through samples 
  different names: particle filter (PF), sequential Monte-Carlo (SMC), 

Sequential Importance sampling (SIS) 

  Fundations 
  Gordon 1993, « Novel approach to non-linear/non-Gaussian 

Bayesian state estimation » 
  Isard et Blake 1996 « CONDENSATION: CONditional DENSity 

propagATION for visual tracking » 

  Interest for visual tracking 
  Multiple hypothesis maintained => increased robustness to clutter, 

occlusions, short tracking failures 
  No restriction on model ingredients 
  Easy implementation 



  Intuition:  
   approximate at each time step the posterior distribution (the filtering 

distribution) of states using a set of M weighted samples 

  Usage: compute expectation of function f 

  In particular, mean expectation of state (f(x)=x) 

  How do we get these samples ? 
43 

distribution 

Configuration Xk 

particles 

Particle filter 

dirac distribution 
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  Target distribution 
  Draw M samples 

  Approximation 

  Expectation w.r.t. p 

  Approximation: unbiased, converges when M goes to infinity 
  Usually: difficult to sample from p directly ! 

Perfect sampling 

weight of sample 



45 

Importance sampling 
  Use a ‘proposal’ auxiliary function q  

  q : as close as possible to p (and supp(p) included in supp(q))  

  Draw the samples from q instead of p     

  Importance weights 

⇒  correction factor: samples were drawn from q instead of p 
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Importance sampling 
  Importance weights 

⇒  large weight if q is smaller than p 
⇒  larger weights where q will simulate less samples than p would 

  Approximation of p 

samples generated 
from p(x) 

samples generated 
from q(x), and 

reweighted 
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Sequential Importance Sampling (SIS) 
First example: Bootstrap filter 

  Importance sampling: target distribution  

  Proposal function: predictive distribution  

  Importance weight: Chapman-Kolmogorov equation 
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SIS: Bootstrap filter 

  How to simulate from q, the predictive distribution ?  
    assume that we have sample set from previous instant 

⇒  mixture of distributions 
⇒  assumption: Gaussian dynamics 
⇒  Mixture of Gaussians 

  Sampling 
  Sample the mixture weight  
  Simulate noise from the Gaussian 
     and apply the dynamical model  
     to the selected sample 
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SIS: Bootstrap filter 

[A. Blake, 1998] 
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Non-Gaussian Bayesian Filter 
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  Apply Importance sampling to posterior distribution 
   => Target  

  Note: here, we want to simulate/sample trajectories 
    => this will be done recursively (by extending trajectories  over time) 
    => the importance weights will be computed recursively 

SIS: general case 

time k time k-1 
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SIS: general case 
  Target  

  Proposal function, factorized 

  Importance sampling and weight: recursion 
  given weighted trajectories up to time k-1 
  extend trajectory with proposal 

  weight update 
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Proposal densities 
  What is the interest of this general approach ?  
    introduction of an explicit proposal density we can play with 
  Examples 

  Bootstrap filter (proposal=dynamic) first proposed, popular, simple 

=> same weights as before (assuming past weights at k-1 are equiprobable) 
   (notice however the difference in the way it was obtained) 

  Optimal  proposal: takes into account previous state and current 
observation 

        Right hand term can not be computed in general for a given model 

  In between: use current data for a better efficiency 
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Resampling 
  trajectory generation process independent of weight values 

  good (and esp. bad) trajectories are equally propagated 
  after some time steps, most of the weight is located in a few samples 
⇒  many samples don’t really contribute to the distribution approximation 
⇒  distribution degeneracy 

  solution: resampling 
  sample selection 

  elimination of sample with smaller weights 
  duplication of samples with larger weights 
⇒  keep the representation valid w.r.t. convergence properties 

  one approach: sample with replacement  
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An algorithm 
Given the particle distribution at the previous time step   

  sample from proposal 

  weight update 

  resampling 

  Monte Carlo approximation 

  in particular, we can compute the mean value 
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CONDENSATION [Isard and Blake 96]  

      Object model:  parametric contour on clutter 
  State: affine parameters (mainly translation, scale in x and y, rotation) 
  Dynamics: AR-2 model (on individual parameters)  
  Observations: contours on lines perpendicular to shape model 

  Likelihood: statistical hypothesis :  independance of measures 
  Proposal: dynamics => boostrap filter 

Nearest detection  Position on the 
shape model  
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CONDENSATION: Examples  [Isard and Blake 98]   
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CONDENSATION: Examples  [Isard and Blake 98]   

sequence on white background: no clutter 
⇒  allows to gather training data for learning dynamics 
   (without learned dynamics, model usually fails on clutter) 
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CONDENSATION: Example for head tracking 

© Kodak 

  Red curve: mean state 
  Yellow ellipses: particles with larger weight (weight> 0.7 max weight) 
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Color Tracking [Perez et al, eccv 2002]  
      Object model:  box with color measured in multiple regions 

  State: translation, scale in x and y 
  Dynamics: AR-2 model (manual parameter setting) 
  Proposal: dynamics => boostrap filter 

  Observations: multi-dimensional histogram (color histograms gathered in 
different regions of the objects => allows better localization) 

  Likelihood: based on color similarity with a reference model  
=> cf mean-shift tracker 
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Color Tracking: examples [Perez et al, eccv 2002]  
  tracker exhibits robustness to color clutter 

Deterministic (mean shift) 
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Color Tracking: examples [Perez et al, eccv 2002]  
  tracker exhibits robustness to color clutter 

Stochastic (particle filter) 
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Color Tracking: examples [Perez et al, eccv 2002]  

  (tracker exhibits robustness to change of scale, object orientation, 
motion, illumination changes etc 

© Kodak 
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Color Tracking: examples [Perez et al, eccv 2002]  

  tracker exhibits robustness to occlusions 

© Kodak 
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Tracking with switching dynamics  
 Object model:  shape 
  State: translation and scale+ activity index 
  Dynamics: 

  Markov transition (activity indices) => 
probability of changing activity 

  AR-2 models on location (depending on 
activity variable) 

  Proposal: dynamics => boostrap filter 
  first sample activity 
  then sample location depending on  
    activity 

[Isard Blake, 2001]  
Activities: Red line drawing, Blue: 
pause, Green: scribbling  
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Tracking with switching dynamics  
 Object model:  shape 
  State: translation/scale+ activity index 
  Dynamics: 

  Markov transition (activity indices) => 
probability of changing activity 

  AR-2 models on location (depending on 
activity variable) 

  Proposal: dynamics => boostrap filter 
  Observations 
     grey scale values  on point lying on 

perpendicular contours to the shape 
  Likelihood 
    gaussians with mean depending on  
    whether the point is inside/outside of the object  

[Isard Blake, 2001]  
Activities: Red line drawing,  
Blue: pause, Green: scribbling  
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Tracking with auxiliary variables  
  Discrete auxiliary processes 

  not only for switching between dynamics 
⇒  also influences likelihood 
=> E.g. ak 

  switching between reference appearence   
  (cf examplars) 
  existence (ak=1) or not (ak=0) of object in the image 

  Model example 
  dynamics: independence of state variables 

  likelihood 

(note: state variables dependent given observations, 
  due to the explaining away principle) 
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Tracking with examplars  
 Object model:  catalogue of shape/appearance templates 

  State: translation, scale in x and y  
       + examplar index (discrete) 
=> joint estimation of  the location and shape that best fit the data 
  Dynamics:  AR-2 model (on location)  Markov transition (on examplar indices) 
  Proposal: dynamics => boostrap filter 
  Observations and likelihood: 
    based on chamfer distance  
   (distance from examplar ak  

     edges to nearest image edge)  

[Toyama Blake, 2001]  Set of examplars 
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Particle filters 

  Several issues 
  Proposal 
  Data fusion 
  Multi mode handling 
  (Frequency of resampling – in appendix) 
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About proposals: bootstrap filter 

  Data likelihood 
  contour measures, color distribution  
  might be unspecific →                      multimodal → ambiguities 

  Dynamics: 2  contradictory roles 
1.  as prior: small variance (to increase prior level in case of smooth 

motion => less sensitivity to ambiguities) 
2.  as proposal: noise variance large enough to handle sudden/fast 

motion and configuration changes  
      => propose particles in a larger region than where they are expected 

using smooth motion 

  => tuning of dynamical parameters difficult to obtain good results 
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Using better proposals 

  dynamic prior might be unsufficient to extract good samples near 
likelihood modes (e.g. if tracker is lost/distracted) 

   => use data at current instant to sample from  

  there exist some technics to approach the optimal proposal 
(unscented filter, auxiliary PF, hybrid..) 

    => involved, not always efficient 

  finding the modes of the likelihood target is usually not possible 
=> use detection based on  
  other cues (e.g. color, motion, audio etc) to do sampling 
  part or approximation of the cues 
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  example: head tracking 
  proposal goal : sample new particles in  
                     high likelihood regions 
    => proposal defined as a mixture 

  state dynamics 
   => preserves temporal continuity 
  output of a head detector: Di detections 
   => automatic (re)initialization and  
        failure recovery 

Using better proposals 



  Object: shape space 
  State: location/scale/rotation/handness (left/right) 
  Likelihood: shape measures 
  Proposal: mixture 

  Dynamics (AR-2) 
  Detections 

  skin blobs (only used to sample location) 
  other parameters sampled from prior distribution 
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Example: I-Condensation [Isard & Blake 1998] 
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Example: I-Condensation [Isard & Blake 1998] 

  sequence of results: when the current dominant state model (right hand in a)
does not fit well anymore (index finger of right hand unstretched in b), the left 
hand model super-seeds and takes over after several frames 
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Example: I-Condensation [Isard & Blake 1998] 
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Data fusion 

  Data provide complementary information 
  constantly observed but ambiguous (e.g. shape, color) 
  intermittent, but potentially precise (e.g motion, audio) 
  sensitive to different clutter, invariant to different perturbations 

(e.g. global color histogram, local intensity, contours) 

  Usual assumption: conditional independence 



77 

Example: contours/color [odobez et al, 2005] 

  Object model : element of shape space (ellipse) 
  State space : subspace of affine transform  
  Proposal: dynamics 
  Dynamics : AR model, order 2 (independent on each parameter) 

Obs/Likelihood  : CONTOURS (CONDENSATION) Obs/Likelihood  : COLOR HISTOGRAM 

  mean configuration in  red - highly likely particles in yellow 
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Example: contours/color [odobez et al, 2005] 

  Object model : element of shape space (ellipse) 
  State space : subspace of affine transform  
  Proposal: dynamics 
  Dynamics : AR model, order 2 (independent on each parameter) 

Obs/Likelihood  : Product of CONTOURS and COLOR likelihoods  
  mean configuration in  red - highly likely particles in yellow 
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Example: contours/color/motion [odobez et al, 2005] 

  Object model : element of shape space (ellipse) 
  State space : subspace of affine transform  

  Proposal: 
  dynamics 
   (also, particle drawn from  
   motion estimated between frames) 

  Dynamics : 
  AR model, order 2 (independent on each parameter) 
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Data likelihood: discussion on temporal 
conditional independence 

  Given states, high correlation between observations 
 => hypothesis not valid 

  Solution: change the model accordingly 

image at   k image at   k+1  
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Data likelihood 

  Hypothesis: independence between observations from 
  object model: where is the object in the current image 
  temporal correlation: object motion follows optical flow 

  Object model: shape on clutter 

  Temporal term: 

  patch distance dc 
  normalized correlation coefficient 
=> Implicit motion likelihood 
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Results 
  First example: 500 particles, all parameters identical  

  Dynamic noise (a bit larger than normal) 
  2 models : 

  M1: CONDENSATION (using shape only, or color only) 
  M2: likeliood model : object likelihood x correlation likelihood  

  mean configuration in  red - highly likely particles in yellow 

M1 : CONTOURS (CONDENSATION) M2 : CONTOUR + IMPLICIT MOTION 
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SMC and multimodality 
  In theory 
    Particle Filter (PF) approximates filtering distribution with N 

weighted samples 
  In practice: because of resampling, multiple modes not 

jointly tracked for long 
  Even with large N 
  Even with peaks  

 of similar weights 
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SMC and multimodality 
  Example in one dimension 

⇒  two modes of the same amplitude 

  result depends on the different 
noise levels (process noise, 
observation noise, data noise) 

  after some time, all particles tend 
to concentrate on one mode 
  more particle than needed to track 

one mode 
  less particles than needed to 

explore the second mode 

observations z 

  Consequences 
  sample-based approximation might be much poorer than expected 
  pruning occurs too early => no chance to resolve long standing 

ambiguities 
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One solution: track mixtures of particles 

  Cluster the samples around different modes 
  Each cluster/mixture  can be identified as one ‘object’ 

Exampel here  [Okuma, 2004]: uses detector trained for a given class 
 to initialize new mixtures/clusters 



Final example 
Joint Head Location and Pose Tracking   [Ba 2005] 

 Joint optimization of location and pose (coupled problem) 
not head tracking then pose estimation 
- If we know the pose, we can do a better head localisation 
- If we know the head localisation, we can better infer the  
=> Doing both simultaneously should help 

   Approach 
  Mixes different ingredients we have seen 

Head pose of each person 
(pan/tilt)                                        

Pan 

Tilt 



  Mixed-state approach  
     continuous (localization), discrete (appearance exemplar)  
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pose exemplar 
(index) 

Translation+scaling roll 

2D transform 

State model : exemplar approach 

Out of plane head rotation 

) , , ( t t t t k r S X = 
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Likelihood modeling  p(Z|X) 
  Features 

  texture/skin features extracted at each position of reference grid 
  silhouette features extracted from a background subtraction image 

  Generative head pose models => use of training data 
  texture/skin model (pose dependent, i.e. one for each pose value) 
    => p (z | k ) 
  silhouette model (pose independent) :  p(z) 
   => used to improve localization 

  Observation Likelihood  p (z | X ) 
assuming conditional independence => product of likelihoods 
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  Goal: sample new particles in  
                high likelihood regions 
    => proposal defined as mixture 

  state dynamics 
   => preserves temporal continuity 
  output of a head detector 
   => automatic (re)initialization and  
        failure recovery 

Proposal function 

€ 

q(Xt | Xt−1
i ,zt ) = (1−ε)p(Xt | Xt−1

i ) +ε
1
Nd

pdet (Xt | Xt
n,det (zt ))

n=1

Nd

∑
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  Alternative : Rao-Blackwellisation 
  Importance sampling applied to continuous variables 

  position/scale/rotation   S and r 
  compute exact posteriors for discrete one (here the exemplar index), 

given the sampled ones 

  Advantage 
  better parameter estimates 
  allows to evaluate, for the same image data  
     which head pose is the best (i.e. allows to have comparable likelihood) 
=> avoid being trapped in a wrong head pose estimate 

Sampling: Rao-Blackwellisation 
  Importance sampling approach 
 => particle set 

t Z

t k



Illustration of head pose tracking 

  on 60 minute data: around 10-13 degree error in pan 
  tilt more difficult to estimate 
  larger error near profile views 
  large accuracy variation across people (depending on appearance)  

-15 

0 

15 

15 0 -15 

til
t 

pan 

90 75 60 

-15 

0 

15 

pan 

til
t 
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Multi-view CHIL head pose data 

  Dataset: 
  lecture room recording 
  smaller head/face resolution 
  4 camera views, calibrations 

 One approach:  
  tracking: head pose tracker 

independently applied to each of the 
camera 

  fuse the 4 measurements by 
combining the 2 more reliable 

  reliability factor 
  - higher percentage of skin pixels in 
    localized region 
   (face is closer to frontal pose)   
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Results: CHIL data - demo 

 Color squares 
indicates selected 
cameras for fusion 

  (green: selected – 
red: unselected) 

 Original views  
   were zoomed in to 
  allow better viewing 

 Blue arrow: 
   pointing vector 

 Notice individual  
  tracker errors 
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Multi-object tracking ? 

  Single object tracking 
  element x in configuration space 

  e.g. 2D : x = (location, scale, activity) : 4 parameters 
  e.g. in 3D: 

  x = (position on ground-plane, speed, height, orientation) 
6 parameters 

=> Multiple object tracking ? 

Height:180.0cm 
Orientation:90 

Height:180.0cm 
Orientation:0 

Height:175.0cm 
Orientation:30 

Height:180.0cm 
Orientation:180 

3D human body model�
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Multi-Object Tracking�
  Probabilistic approach 

  Issues 

  What is the state ? 

  Multi-object dynamic ? 

  Observation model ? 

  Optimization ? �

 state 

dynamical 
model 

observation 
likelihood model 

observations 
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Particle filters: conclusion 
  Advantages 

  easy to implement and expand (addition of new variables, defining 
more precise likelihood, dynamics) 

  robust to clutter and brief occlusions 
  a lot of theoretical tools 
  applicable to any filtering problem (not only visual tracking) 

  Problems 
  jitter of final estimate (mean ? mode of distribution ?) 
  computational load (on average, more samples –i.e. likelihood 

evaluations- than iteration in gradient descent algorithms) 
  only brief capture of multimodality  

  Others 
  often, dynamics simply maintain temporal coherence 
  A discriminant and robust data model for the task at hand remains 

the challenge 
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