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Audio and video analysis: a brief state of the art 

• In the context of the intelligent surveillance, automatic scene analysis and understanding 
often considered visual information. 

• The audio modality can be a very interesting source of information in some cases 

− In bad lighting conditions where image processing fails at detecting a mobile object (a mobile 
emitting some sound);   

− A single image processing unit can fail at understanding a situation (a group of excited people 
are singing ? or are shouting to threat other people  ?); 

 

• P.K.  Atrey and al., Multimodal fusion for multimedia analysis : a survey, Multimedia 
systems, 2010 

− Combine multiple modalities 

− for  several tasks 

 

• To fuse modalities at two levels 

− Low level 

− Decision level 

 



• The analysis task is performed directly on the extracted modal features 

− To use high correlated features (+) 

− Features vector can have a high dimension (-) 

− It requires high synchronization between streams (-) 

 

 

Audio and video analysis: a brief state of the art 
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Low level fusion 

Final decision 

• Local decision are provided by analysing a single stream then local decisions are combined 
to obtain a final decision 

− Easier to manage multimodal streams (+) 

− It is possible to adapt the analysis method to each type of stream (+) 

− Learning process could be time consuming (-) 
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Audio and video analysis: a brief state of the art 

• Fusion unit are based on different methods that can be divided into the 3 categories: 
Rule-based, classification-based and estimation-based methods. 

• Rule-based methods 

− High temporal alignment between modalities is required 

− Linear weighted fusion is the most popular method: face detection, speech and speaker 
recognition, person identification etc. 

− Classification-based methods 

− SVM : good classification performance 

− Dynamic Bayesian Networks : good model temporal data 

− Estimation-based methods 

− Adpated for tracking task 

− Kalman flter : good for linear model 

− Particle filter : adapted for non linear and non-Gaussian models  

 



Audio and video analysis: a brief state of the art 

• In the following we present 3 papers to illustrate the previous slide contents 

  

Illustration 1: talking head detection 

− Dongge Li and al., Multimedia Content Processing through Cross-Modal 
Association, ACM int. conf. on Multimedia, 2003 

Illustration 2: Audio/video synchrony analysis 

− M. Cristani and al., Audio-visual Event Recognition in Surveillance Video 
Sequence, IEEE trans. On Multimedia, Vol. 9, NO. 2, 2007 

Illustration 3: hierarchical event detection 

− P.K. Atrey and al., Information assimilation framework in multimedia 
surveillance systems, Multimedia Systems, 2006 

 

 

 

 

 

 

 



Audio and video analysis: correlation analysis (illustration 1) 

• Talking head detection 

− Audio features: 12 Mel-frequency cepstral coefficients 

− Video features: pixel intensities (or eigenface) 

− A supervised method 

 

• Learning step: example of CFA (Cross-modal Factor Analysis)  

− X is an audio features vector and Y is a video features vector 
Features are extracted from video clip where video and audio streams are synchronized 
X and Y are coupled row-by-row 
Define a subspace where X and Y are closed to each other  
Learning step aims at computing the matrices A and B by minimizing 
 
  
 

 

where 

Frobenius norm 
• Evaluation step 

− It is performed after applying the transformation matrices A and B to the features 

− The goal is to find the images (among a image sequence collection) 
related to a audio signal (the query) 

− Matches are evaluated by using Correlation Coefficient 
in the learned subspace 

− A face detection is applied to reduce the matching candidates 
 
  
 

 



• Audio/video synchrony analysis 

− Human activities are related to the temporal relations between audio and video signal 

− Current event (the novelty) is considered as the foreground information → 
Foreground/Background modelling framework 

− FG/BG segmentation : based on time-adapted mixture of Gaussians (TAPPMOG) 

• Video and audio histogram 

− J bins for grey level histogram of FG pixels 

− I frequency subbands for histogram of FG audio segments 

− Several Gaussians for  each modal histogram 
 
  
 

 

Audio and video analysis: audio/video synchrony analysis (illustration 2) 

• AVC matrix to encode the degree of simultaneity of 
audio and video patterns 

− AVC(i,j,t) : mean of weight of activated gaussian 
in both audio and video TAPPMOG models at 
time t 

• Audio /video event detection 

− AVC(i,j,t+1)  - AVC(i,j,t) ≠ 0 

• Audio/video event recognition 

− Model the content of each AVC matrix 
accumulated on a time interval T (KNN) 

 

 
 
  



Audio and video analysis: audio/video synchrony analysis (illustration 2) 



Audio and video analysis: hierarchical event detection (illustration 3) 

• A surveillance system using audio and video streams 

• This work propose to assimilate information at low level for each media stream and at 
decision level (features assimilation) for multimodal streams (atomic event and compound 
event assimilation)  

 

 

 

 

 

 

 

 

• io/video synchrony analysis 

−  
  
 

 



Audio and video analysis: decision level fusion (illustration 3) 

• 9 atomic events 

− Standing, walking, door knocking, talking, shouting, running 

• Which kind of detection 

− Standing : V 

− Walking, Running: AV 

− Door knocking, talking, shouting: A 

 

 
• 12 events made of one atomic event 

and more  

• Video based detector 

• Process BG and FG segmentation 

• Blob modelling to detect human 
body 

• Project blob points on the ground 

• Estimate the speed and the direction 
on the motion (integration on time 
interval T) 

• Audio based detector 

• Extracted features: LFCC, LPC 

• Gaussian Mixture Model 

• Hierarchical decision 
  

 



Case of study 

• How to use the video and audio signals of a surveillance system onboard a 
train ? 

• Functional objectives: to detect critical and dangerous situations (people 
fighting, violent robbery, phone snatching, tagging etc.) 

• SAMSIT project : omnidirectional microphones and pinhole 
cameras 

• High level fusion: reasoning in a semantic space and defining  
an ontology (F. Bremond) 

• SURTRAIN project : To use several omnidirectional microphones and 
fisheye cameras for a better surveillance coverage 

• Develop an audio and video cooperative system 

− Audio for detecting and positioning an event 

− To locate the audio event to activate the nearest 
camera 

− Video for identifying, positioning and tracking the 
person responsible for the event 

− Video study not presented here  
work done by CEA LIST 

• The audio functions 

• Audio event detection: high recall and high precision (spray bomb and shout) 

• Audio event localisation 

Fisheye image sample 
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What is a shout ? 

Power histogram from [Nan089] 

Formants distribution from [Nan089] 

F0 distribution from [Nan089] 

• A shout or a shouted speech are characterised by voiced segments 

− Articulatory process in which the vocal cords vibrate 

− The vocal folds are more stressed 

 

• How acoustical properties of a shout differ from a normal speech ? 

– Fundamental Frequency (F0)  is increasing 

– Formants (F1 and F2) are increasing 

– Energy is higher 

– Vowels duration is increasing 

 

• Difficulties 

– For F0, F1 and F2  overlapping distribution for male shout and female 
speech 

– F0 is correlated to intonation and phrasing 

– Energy of the source is depending on its 
distance to the microphone 

 

 

 



Supervised learning (reminder) 

Training Audio 
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• Two solutions have been proposed 

− EVAS / SAMSIT project 

− SURTRAIN project 
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Shout detection - first proposition 

 

• Features based modelling: MFCC (Mel Frequency cepstral Coefficients), PLP (Perceptual 
Linear Prediction Coefficients), LPC (Linear Prediction Coefficients) + Energy + first and 
second derivative 

• GMM and SVM 

• To reduce complexity and increase performances 

– Automatic audio segmentation and activity detection (in gray) 

 

 

 

 

− Use of decision tree 
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Shout detection - first proposition 
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Shout detection - first proposition 

• The data  

• Recorded by ourselves in a regional train 

• Several scenarii with actors (each played several times and once for ”normal 
condition scene”) – SAMSIT and EVAS project 

– Fight scene involving two people or more 

– Fight scene involving two men and a woman 

– Violent robbery scene (two guys attack one person) 

– Bag and mobile phone snatching (a lady) 

• Total duration: 2402s 

• Shout duration: 138s  

• Better results for PLP and SVM modelling 
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Shout detection - second proposition 

• Which properties ? 

− A shout is composed of voiced segments 

− The duration of voiced segments (vowels) is long 

− Energy is higher when a shout appears ... 

− ... But be careful to the distance between the source and the microphone 

 

• The choices  

– To characterize and to model formants stationarity during a "abnormal" period T 

– To use the four first formants (f0 ... f4) and the energy 

– To model with Gaussian Mixture 

– To use a microphone array (6 microphones) to reduce the position/energy uncertainty  

 

 

 
SURTRAIN project - SNCF train coach 
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Shout detection - second proposition 

• Which properties ? 

− A shout is composed of voiced segments 

− The duration of voiced segments (vowels) is long 
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SURTRAIN project - SNCF train coach 
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Shout detection - second proposition 

• Which properties ? 

− A shout is composed of voiced segments 

− The duration of voiced segments (vowels) is long 

− Energy is higher when a shout appears ... 

− ... But be careful to the distance between the source and the microphone 

 

• The choices  

– To characterize and to model formants stationarity during a period "abnormal" T 

– To use the four first formants (f0 ... f4) and the energy 
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• Evaluation : offline and online 

− off-line case : SAMSIT and EVAS databases and SURTRAIN database 

− On-line case : with the system embedded on-board a train 

− Recall : 0.85 – quite good detection rate 

− Precision : 0.9 – few false detections 

 

 

 

Shout detection - second proposition 
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• We aim at locating sub-mixtures of audio sources in a set of areas of the train 
coach  

• To use an array of 6 microphones 

• 6 areas « centered »  in each microphone 

Audio source localisation 

1α

2α

3α

4α 5α

6α
• Difficulties  

− Echoic environment: many reflections 

− Audio sources: complex mixture, very different kind of audio sources, difficult 
to predict a priori the frequency content of the sub-mixtures 

− We focus on the case for which the number of sub-mixtures is equal to the 
number of sensors 



23 

Audio source localisation 

Learn propagation characteristics 

for each position thanks to the 

signal received by each microphone 

• Step 2: Localisation 
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Audio source localisation 

• Simple case 
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Audio source localisation 

• Simple case 

0 

Position 1 
,i jθ

1μ

α=1 

1 ( )iy t 1 ( )jy t , ,

( )
( )

( )

αiαi
i j α

αj αj

y tc
θ t

c y t

( ) ( )αi αi αy t c s t

p(θi,j / α=1) = N(θi,j; μ1σ1) 

25 



Audio source localisation 

• Simple case and multi position 
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Audio source localisation 

• Reverberant case 
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Audio source localisation 

f
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Audio source localisation 
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Audio source localisation 

30 
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• Localisation : M.A.P 
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• Audio sources at each position turning on himself many times 

•  Data repartition randomly selected 

− 2/3 of data set for the learning step 

− 1/3 of data set for the test step 

•  Phase of manual labelling 

•  Learning model with the E.M. algorithm 

− 3 Gaussians per position model 

− Max frequency used F  = 16kHz  

− Frequency sampling Fs = 48k Hz 

− Estimation at every t = 10 ms 

 
 

 

Audio source localisation 
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Audio source localisation 
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• Decision made on T consecutive time frames 
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Audio source localisation 
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Audio source localisation 
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Audio source localisation 
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• SURTRAIN system 

− A system that jointly uses audio and video signal processing for security 
application 

− A system embedded and tested in real condition  

− Audio processing for the detection and the localisation of audio source 
mixture 

− Audio processing for identification of « major source » in the 
mixture 

− Video processing is initialised thanks to audio outputs 

 

 

 

Conclusions 


