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THE SLIDING WINDOW TECHNIQUE
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- Transforms a detection problem into a binary classification one

- Applies a binary classifier at every image position and scale

- Similar to sweeping the detection window across the image
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HOG FEATURE PLANES
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The HOG features can be seen as organized in planes, containing
distinct features from each grid cell (K = 32).
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HOG AND LINEAR SVM

[Dalal & Triggs ’05]

Pedestrian template

Bicycle template

The detection score is linear: S(x , y) = 〈w , HOG(x , y)〉,
where HOG(x , y) is the vector of features extracted from the
subwindow at (x , y), of same size as w .
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DEFORMABLE PART MODEL

[Felzenszwalb & al. ’08]
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DEFORMABLE PART MODEL

If we define

S0(x , y) the root detection score at location (x , y)

Sq(x , y), q = 1, ... , Q the part q detection score

Dq(x , y , x ′, y ′) the deformation cost for part q

The total score for the deformable model at location (x , y) is

S(x , y) = S0(x , y) + max
(x1,y1,...,xQ ,yQ)

∑
q

Sq(xq , yq)− Dq(x , y , xq , yq)

= S0(x , y) +
∑

q

max
x ′,y ′

Sq(x ′, y ′)− Dq(x , y , x ′, y ′)︸ ︷︷ ︸
Tq(Sq)(x ,y)
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DEFORMABLE PART MODEL
ROOT DETECTION

S0 =
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DEFORMABLE PART MODEL
PART DETECTION

S1 = T1(S1) =
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DEFORMABLE PART MODEL
PART DETECTION

S2 = T2(S2) =
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DEFORMABLE PART MODEL
PART DETECTION

S3 = T3(S3) =
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DEFORMABLE PART MODEL
FINAL SCORE

+ + + +

+ + + +

=

11 / 22

COMPUTATIONAL CHALLENGE

This process has to be repeated for every class of interest and every
component of the model’s mixture.

The core operation in this process is the convolution by linear filters to
compute the root and part detection scores.

For 20 classes × 6 mixtures × 9 parts =

1080 linear detectors!
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COMPUTATIONAL CHALLENGE

L = 1080 filters

K = 32 feat.
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KLR ≈ 1.7M
convolutions
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STANDARD CONVOLUTION PROCESS
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The computational cost to convolve a HOG image of size M × N with
L filters of size P × Q across K features is:

Cstd = O(KLMNPQ)
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FOURIER BASED CONVOLUTIONS

Per image

Per filter

Per image x filter

...

...

HOG

HOG

FT

FT

...

...

HOG

HOG

HOG

x3 (rgb) x32 x32

x32
x32

...

score score

x32

x

Filter Filter

Image ImageImage

Per−featurePer−feature Detection

score

FT +

Per image

Per filter

Per image x filter

...

...

HOG

HOG

FT

FT

...

...

HOG

HOG

HOG

x3 (rgb) x32 x32

x32
x32

...

score

x32

x

Filter Filter

Image ImageImage

Per−feature

score

Detection
FT

score

Detection
+

Linearity

The computational cost to convolve a HOG image of size M × N with
L filters of size P × Q across K features is:

CFFT = O(KMN log MN)︸ ︷︷ ︸
Forward FFTs

+O(KLMN)︸ ︷︷ ︸
Multiplications

+O(KLMN log MN)︸ ︷︷ ︸
Inverse FFTs

Copt = O(KMN log MN)︸ ︷︷ ︸
Forward FFTs

+O(KLMN)︸ ︷︷ ︸
Multiplications

+O(��@@KLMN log MN)︸ ︷︷ ︸
Inverse FFTs

≈ O(KLMN)
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LETS PLUG IN TYPICAL NUMBERS

- K = 32 (number of HOG features)

- L = 54 (number of filters)

- M × N = 64× 64 (size of the pyramid level)

- P × Q = 6× 6 (size of the filters)

Cstd ≈ 2KLMNPQ ≈ 490 MFlop

CFFT ≈ 3KLMN + 2.5(K + KL)MN log2 MN ≈ 230 MFlop

Copt ≈ 4KLMN + 2.5(K + L)MN log2 MN ≈ 37 MFlop

A gain by a factor 13 compared to the standard process,
and 6 compared to the standard Fourier one.
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PATCHWORKS OF PYRAMID SCALES

To use the FFT the image and the filter need to be of the same size.

(b)(a) (c)

Memory inefficient

(b)(a) (c)

Computationally inefficient

(b)(a) (c)

Best of both worlds

Pyramid
levels

Filter
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CACHE VIOLATIONS
NAIVE STRATEGY

L filters

R
pa

tc
hw
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ks

Read 2 into cache⇒ compute 1.
Read 2LR into cache⇒ compute LR.
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CACHE VIOLATIONS
FRAGMENT STRATEGY

L filters
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Read (L + R) ε
L+R = ε into cache⇒ compute LR ε

L+R .
Read L + R into cache⇒ compute LR.
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RESULTS

Table: Pascal VOC 2007 challenge convolution time and speedup

aero bike bird boat bottle bus car cat chair cow table
V4 (ms) 409 437 403 414 366 439 352 432 417 429 450
Ours (ms) 55 56 53 56 57 56 54 56 56 57 57
Speedup (x) 7.4 7.8 7.6 7.4 6.4 7.9 6.5 7.7 7.5 7.5 8.0

dog horse mbike person plant sheep sofa train tv mean
V4 (ms) 445 439 429 379 358 351 425 458 433 413
Ours (ms) 57 59 57 54 54 55 57 58 55 56
Speedup (x) 7.8 7.5 7.6 7.0 6.6 6.4 7.4 7.9 7.9 7.4

- Error rate: identical to the baseline (32.3% AP)

- Numerical accuracy: better than the baseline (1.8 · 10−8 vs.
2.4 · 10−8 MAE)
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CONCLUSION

- Part-based models obtain state-of-the-art performance at
the price of a huge number of convolutions

- The FT is linear, enabling one to do the addition of the
convolutions across feature planes in Fourier space

- The computational cost becomes invariant to the filters’
sizes, resulting in a big speedup (×7.4 in our experiments)

ECCV 2012 “Spotlight” video.
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THANK YOU!

francois.fleuret@idiap.ch

http://www.idiap.ch/~fleuret/
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