

Human Activity and Vision Summer School October 1-5, Sophia-Antipolis, France

### **Human Action Recognition**

Ivan Laptev

ivan.laptev@inria.fr

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Includes slides from: Alyosha Efros and Andrew Zisserman

### **Lecture overview**



#### **Motivation**

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision Why analyzing people and human actions?

### **History: Artistic Representation**

Early studies were motivated by human representations in Arts

Da Vinci: "it is indispensable for a painter, to become totally familiar with the anatomy of nerves, bones, muscles, and sinews, such that he understands for their various motions and stresses, which sinews or which muscle causes a particular motion"

"I ask for the weight [pressure] of this man for every segment of motion when climbing those stairs, and for the weight he places on *b* and on *c*. Note the vertical line below the center of mass of this man."

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.

# **History: Biomechanics**



Giovanni Alfonso Borelli (1608–1679)

- The emergence of *biomechanics*
- Borelli applied to biology the analytical and geometrical methods, developed by Galileo Galilei
- He was the first to understand that bones serve as levers and muscles function according to mathematical principles
- His physiological studies included muscle analysis and a mathematical discussion of movements, such as running or jumping

# **History: Motion perception**



#### **Etienne-Jules Marey:**

(1830–1904) made Chronophotographic experiments influential for the emerging field of cinematography







#### Eadweard Muybridge

(1830–1904) invented a machine for displaying the recorded series of images. He pioneered motion pictures and applied his technique to movement studies

### **History: Motion perception**

Gunnar Johansson [1971] pioneered studies on the use of image
sequences for a programmed human motion analysis

- "Moving Light Displays" (LED) enable identification of familiar people
- and the gender and inspired many works in computer vision.



Gunnar Johansson, Perception and Psychophysics, 1973

# A HOUGHTON MIFFLIN PRODUCTION

### Copyright © 1971 by Heughton Millin Company A Teaching Resource At the Frontiers of Psychological Inquiry

### Human actions: Historic overview



### Modern applications: Motion capture and animation



Avatar (2009)

## Modern applications: Motion capture and animation





Leonardo da Vinci (1452–1519)

Avatar (2009)

# **Applications**

ina





First appearance of N. Sarkozy on TV



Sociology research: Influence of character smoking in movies



Education: How do I make a pizza?

Graphics



Motion capture and animation

#### Surveillence



Where is my cat?



Predicting crowd behavior Counting people

### How much data do we have?

• Huge amount of video is available and growing





~30M surveillance cameras in US => ~700K video hours/day

### How many person-pixels are there?





### How many person-pixels are there?





ΤV



YouTube

### How many person-pixels are there?



Movies

ΤV





# Why is action recognition hard?

- Need to process very large amounts of video data
- Need to deal with large appearance variations, many classes



Drinking



Smoking



### **Lecture overview**



#### Motivation

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision

### **Lecture overview**



#### **Motivation**

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision

#### Activities characterized by a pose



Slide credit: A. Zisserman

### Activities characterized by a pose







Slide credit: A. Zisserman

#### Activities characterized by a pose









#### Challenges: articulations and deformations



### Challenges: of (almost) unconstrained images



varying illumination and low contrast; moving camera and background; multiple people; scale changes; extensive clutter; any clothing

#### Pose estimation is an active research area



Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. **CVPR 2011** Extension of LSVM model of Felzenszwalb et al.





frame t+1

frame t



t+1

t+1



Builds on Poslets idea of Bourdev et al.

S. Johnson and M. Everingham. Learning Effective Human Pose Estimation from Inaccurate Annotation. In Proc. **CVPR 2011**.

Learns from lots of noisy annotations

B. Sapp, D.Weiss and B. Taskar. Parsing Human Motion with Stretchable Models. In Proc. **CVPR 2011**.

Explores temporal continuity

#### Pose estimation is an active research area



J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman and A. Blake. Real-Time Human Pose Recognition in Parts from Single Depth Images. **Best paper award at CVPR 2011** 

Exploits lots of synthesized depth images for training

#### What is missed?



truncation is not modelled

#### What is missed?



#### occlusion is not modelled

### Modelling person-object-pose interactions



W. Yang, Y. Wang and Greg Mori. Recognizing Human Actions from Still Images with Latent Poses. In Proc. CVPR 2010.

Some limbs may not be important for recognizing a particular action (e.g. sitting)





B. Yao and L. Fei-Fei. Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities. In Proc. CVPR 2010.

Pose estimation helps object detection and vice versa

### **Conclusion: Human poses**

- Exciting progress in pose estimation in realistic still images and video.
- Industry-strength pose estimation from depth sensors
- Pose estimation from RGB is still very challenging
- Human Poses ≠ Human Actions!

### **Lecture overview**



#### **Motivation**

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision

### **Lecture overview**



#### **Motivation**

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision

## Appearance-based methods: global shape







[A.F. Bobick and J.W. Davis, PAMI 2001] Idea: summarize motion in video in a *Motion History Image (MHI)*:





L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as spacetime shapes. 2007

### **Person Tracking**



#### [A. Baumberg and D. Hogg, ECCV'94]

# **Appearance methods: Shape**

Pros:

- + Simple and fast
- + Works in controlled settings

Cons:

- Prone to errors of background subtraction



Variations in light, shadows, clothing...



What is the background here?

- Does not capture *interior* Structure and motion



Silhouette tells little about actions

### **Lecture overview**



#### **Motivation**

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision
#### **Lecture overview**



#### **Motivation**

Historic review Applications and challenges

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision

## Shape and Appearance vs. Motion

• Shape and appearance in images depends on many factors: clothing, illumination contrast, image resolution, etc...



[Efros et al. 2003]

 Estimated motion field is invariant to shape (in theory) and can be used directly to describe human actions



# **Motion estimation: Optical Flow**

- Classic problem of computer vision [Gibson 1955]
- Goal: estimate motion field
  - How? We only have access to image pixels Estimate pixel-wise correspondence between frames = Optical Flow
- Brightness Change assumption: corresponding pixels preserve their intensity (color)
  - Useful assumption in many cases
  - Breaks at occlusions and illumination changes
  - Physical and visual motion may be different





## **Parameterized Optical Flow**

 Another extension of the constant motion model is to compute PCA basis flow fields from training examples

Compute standard Optical Flow for many examples
Put velocity components into one vector

$$\mathbf{w} = (v_x^1, v_y^1, v_x^2, v_y^2, ..., v_x^n, v_y^n)^\top$$

3. Do PCA on  ${\bf w}$  and obtain most informative PCA flow basis vectors

**Training samples** 

#### PCA flow bases



[M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997]

## **Parameterized Optical Flow**

Estimated coefficients of PCA flow bases can be used as action descriptors



Frame numbers



Optical flow seems to be an interesting descriptor for motion/action recognition

#### **Spatial Motion Descriptor**



A. A. Efros, A.C. Berg, G. Mori and J. Malik. Recognizing Action at a Distance. In Proc. ICCV 2003

#### **Football Actions: matching**

Input Sequence

Matched Frames





input

matched

## **Classifying Tennis Actions**

6 actions; 4600 frames; 7-frame motion descriptor Woman player used as training, man as testing.



# Summary so far...













#### **Lecture overview**



#### **Motivation**

Historic review Modern applications

#### **Human Pose Estimation**

Pictorial structures Recent advances

#### **Appearance-based methods**

Motion history images Active shape models & Motion priors

#### **Motion-based methods**

Generic and parametric Optical Flow Motion templates

#### **Space-time methods**

Space-time features Training with weak supervision

#### Goal: Interpret complex dynamic scenes





 $\Rightarrow$  No global assumptions about the scene



#### No global assumptions $\Rightarrow$

#### Consider local spatio-temporal neighborhoods



hand waving



boxing

#### **Actions == Space-time objects?**



## Local approach: Bag of Visual Words

| Airplanes  |  |
|------------|--|
| Motorbikes |  |
| Faces      |  |
| Wild Cats  |  |
| Leaves     |  |
| People     |  |
| Bikes      |  |

## **Space-time local features**



## **Space-Time Interest Points: Detection**

What neighborhoods to consider?



# **Space-Time Interest Points: Detection**

#### Properties of $\mu(\cdot; \Sigma)$

 $\mu(\cdot; \Sigma)$  defines second order approximation for the local distribution of  $\nabla L$  within neighborhood  $\Sigma$ 

- $rank(\mu) = 1 \implies$  1D space-time variation of f e.g. moving bar
- $rank(\mu) = 2 \implies 2D$  space-time variation of f e.g. moving ball
- $rank(\mu) = 3 \implies 3D$  space-time variation of f e.g. jumping ball

Large eigenvalues of  $\mu$  can be detected by the local maxima of H over (x,y,t):

$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$
$$= \lambda_{1} \lambda_{2} \lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$$

(similar to Harris operator [Harris and Stephens, 1988])

## **Space-Time interest points**



## **Space-Time Interest Points: Examples**

Motion event detection



## **Spatio-temporal scale selection**



Stability to size changes, e.g. camera zoom



## **Spatio-temporal scale selection**



Selection of temporal scales captures the frequency of events

#### Local features for human actions



## Local features for human actions



# Local space-time descriptor: HOG/HOF

Multi-scale space-time patches



# Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters



# Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters



#### **Local feature methods: Matching**

Finds similar events in pairs of video sequences



## **Bag-of-Features action recogntion**



[Laptev, Marszałek, Schmid, Rozenfeld 2008]

## **Action recognition in KTH dataset**



Sample frames from the KTH actions sequences, all six classes (columns) and scenarios (rows) are presented

#### **Classification results on KTH dataset**



#### Confusion matrix for KTH actions

#### **Hollywood dataset**

#### AnswerPhone

 $\operatorname{GetOutCar}$ 

HandShake

HugPerson



Kiss



SitDown



SitUp

StandUp



[Laptev, Marszałek, Schmid, Rozenfeld 2008]

## Action classification (CVPR08)



Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

## **Action classification results**



|         | KISS     |
|---------|----------|
|         | The les  |
|         |          |
| - Alley |          |
|         |          |
| -       | DriveCar |

|             | hoghof |      | Chance |
|-------------|--------|------|--------|
| Channel     | bof    | flat |        |
| mAP         | 47.9   | 50.3 | 9.2    |
| AnswerPhone | 15.7   | 20.9 | 7.2    |
| DriveCar    | 86.6   | 84.6 | 11.5   |
| Eat         | 59.5   | 67.0 | 3.7    |
| FightPerson | 71.1   | 69.8 | 7.9    |
| GetOutCar   | 29.3   | 45.7 | 6.4    |
| HandShake   | 21.2   | 27.8 | 5.1    |
| HugPerson   | 35.8   | 43.2 | 7.5    |
| Kiss        | 51.5   | 52.5 | 11.7   |
| Run         | 69.1   | 67.8 | 16.0   |
| SitDown     | 58.2   | 57.6 | 12.2   |
| SitUp       | 17.5   | 17.2 | 4.2    |
| StandUp     | 51.7   | 54.3 | 16.5   |

Average precision (AP) for Hollywood-2 dataset

## **Evaluation of local feature detectors and descriptors**

#### Four types of detectors:

- Harris3D [Laptev 2003]
- Cuboids [Dollar et al. 2005]
- Hessian [Willems et al. 2008]
- Regular dense sampling

#### Four types of descriptors:

- HoG/HoF [Laptev et al. 2008]
- Cuboids [Dollar et al. 2005]
- HoG3D [Kläser et al. 2008]
- Extended SURF [Willems'et al. 2008]

#### Three human actions datasets:

- KTH actions [Schuldt et al. 2004]
- UCF Sports [Rodriguez et al. 2008]
- Hollywood 2 [Marszałek et al. 2009]

## **Space-time feature detectors**

#### Harris3D





#### Cuboids





# **Results on KTH Actions**

Descriptors



6 action classes, 4 scenarios, staged

| Detectors |          |         |         |       |  |
|-----------|----------|---------|---------|-------|--|
|           | Harris3D | Cuboids | Hessian | Dense |  |
| HOG3D     | 89.0%    | 90.0%   | 84.6%   | 85.3% |  |
| HOG/HOF   | 91.8%    | 88.7%   | 88.7%   | 86.1% |  |
| HOG       | 80.9%    | 82.3%   | 77.7%   | 79.0% |  |
| HOF       | 92.1%    | 88.2%   | 88.6%   | 88.0% |  |
| Cuboids   | -        | 89.1%   | -       | -     |  |
| E-SURF    | -        | -       | 81.4%   | -     |  |

(Average accuracy scores)

- Best results for **sparse** Harris3D + HOF
- Dense features perform relatively poor compared to sparse features
  [Wang, Ullah, Kläser, Laptev, Schmid, 2009]
# **Results on** UCF Sports

Descriptors



10 action classes, videos from TV broadcasts

| Detectors |          |         |         |       |  |  |
|-----------|----------|---------|---------|-------|--|--|
|           | Harris3D | Cuboids | Hessian | Dense |  |  |
| HOG3D     | 79.7%    | 82.9%   | 79.0%   | 85.6% |  |  |
| HOG/HOF   | 78.1%    | 77.7%   | 79.3%   | 81.6% |  |  |
| HOG       | 71.4%    | 72.7%   | 66.0%   | 77.4% |  |  |
| HOF       | 75.4%    | 76.7%   | 75.3%   | 82.6% |  |  |
| Cuboids   | -        | 76.6%   | -       | -     |  |  |
| E-SURF    | -        | -       | 77.3%   | -     |  |  |

(Average precision scores)

• Best results for **dense** + HOG3D

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

# Results on Hollywood-2

Descriptors



12 action classes collected from 69 movies

| Detectors |          |         |         |       |  |
|-----------|----------|---------|---------|-------|--|
|           | Harris3D | Cuboids | Hessian | Dense |  |
| HOG3D     | 43.7%    | 45.7%   | 41.3%   | 45.3% |  |
| HOG/HOF   | 45.2%    | 46.2%   | 46.0%   | 47.4% |  |
| HOG       | 32.8%    | 39.4%   | 36.2%   | 39.4% |  |
| HOF       | 43.3%    | 42.9%   | 43.0%   | 45.5% |  |
| Cuboids   | -        | 45.0%   | -       | -     |  |
| E-SURF    | -        | -       | 38.2%   | -     |  |

(Average precision scores)

• Best results for **dense** + HOG/HOF

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

### More recent local methods I

- Y. and L. Wolf, "Local Trinary Patterns for Human Action Recognition ", ICCV 2009 + ECCV 2012 extension
- P. Matikainen, R. Sukthankar and M. Hebert "Trajectons: Action Recognition Through the Motion Analysis of Tracked Features" ICCV VOEC Workshop 2009,

 H. Wang, A. Klaser, C. Schmid, C.-L. Liu, "Action Recognition by Dense Trajectories", CVPR 2011









### **Dense trajectory descriptors**

#### [Wang et al. CVPR'11]



### **Dense trajectory descriptors**

#### [Wang et al. CVPR'11]

| КТН                  |        | YouTube                   |        | Hollywood2 UCF sports    |       |                      |        |
|----------------------|--------|---------------------------|--------|--------------------------|-------|----------------------|--------|
| Laptev et al. [5]    | 91.8%  | Liu et al. [45]           | 71.2%  | Wang et al. [17]         | 47.7% | Wang et al. [17]     | 85.6%  |
| Kovashka et al. [53] | 94.53% | Ikizler-Cinbis et al.[35] | 75.21% | Taylor et al. [58]       | 46.6% | Kläser et al. [59]   | 86.7%  |
| Yuan et al. [60]     | 93.7%  | Brendel et al. [51]       | 77.8%  | Ullah <i>et al.</i> [43] | 53.2% | Kovashka et al. [53] | 87.27% |
| Le et al. [52]       | 93.9%  | Le et al. [52]            | 75.8%  | Gilbert et al. [61]      | 50.9% | Le et al. [52]       | 86.5%  |
| Gilbert et al. [61]  | 94.5%  | Bhattacharya et al. [62]  | 76.5%  | Le et al. [52]           | 53.3% |                      |        |
| MBH                  | 95.0%  | MBH                       | 80.6%  | MBH                      | 55.1% | MBH                  | 84.2%  |
| Combined             | 94.2%  | Combined                  | 84.1%  | Combined                 | 58.2% | Combined             | 88.0%  |
| MBH+STP              | 95.3%  | MBH+STP                   | 83.0%  | MBH+STP                  | 57.6% | MBH+STP              | 84.0%  |
| Combined+STP         | 94.4%  | Combined+STP              | 85.4%  | Combined+STP             | 59.9% | Combined+STP         | 89.1%  |
| IXMAS                |        | UIUC                      |        | Olympic Sports           |       | UCF50                |        |
| Tran et al.[50]      | 80.22% | Tran <i>et al.</i> [50]   | 98.7%  | Brendel et al. [56]      | 77.3% |                      |        |
| Junejo et al. [63]   | 79.6%  |                           |        | Niebles et al. [49]      | 72.1% |                      |        |
| Wu et al.[54]        | 88.2%  |                           |        |                          |       |                      |        |
| MBH                  | 91.8%  | MBH                       | 97.1%  | MBH                      | 71.6% | MBH                  | 82.2%  |
| Combined             | 93.5%  | Combined                  | 98.4%  | Combined                 | 74.1% | Combined             | 84.5%  |
| MBH+STP              | 91.9%  | MBH+STP                   | 98.1%  | MBH+STP                  | 74.9% | MBH+STP              | 83.6%  |
| Combined+STP         | 93.6%  | Combined+STP              | 98.3%  | Combined+STP             | 77.2% | Combined+STP         | 85.6%  |

### More recent local methods II

 Modeling Temporal Structure of Decomposable Motion Segments for Activity Classication, J.C. Niebles, C.-W. Chen and L. Fei-Fei, ECCV 2010

 Recognizing Human Actions by Attributes J. Liu, B. Kuipers, S. Savarese, CVPR 2011



Naming: Golf-Swinging

# **Action recognition datasets**

KTH Actions, 6 classes, 2391 video samples [Schuldt et al. 2004]



Running

Weizman, 10 classes, 92 video samples, [Blank et al. 2005]



- UCF YouTube, 11 classes, 1168 samples, [Liu et al. 2009]
- Hollywood-2, 12 classes, 1707 samples, [Marszałek et al. 2009]
- UCF Sports, 10 classes, 150 samples, [Rodriguez et al. 2008]
- Olympic Sports, 16 classes, 783 samples, [Niebles et al. 2010]
- HMDB, 51 classes, ~7000 samples, [Kuehne et al. 2011]
- PASCAL VOC 2011 Action Classification Challenge, 10 classes, 3375 image samples



#### How to collect training data?

# **Learning Actions from Movies**

- Realistic variation of human actions
- Many classes and many examples per class



Problems:

- Typically only a few class-samples per movie
- Manual annotation is very time consuming

### Automatic video annotation with scripts

- Scripts available for >500 movies (no time synchronization) <u>www.dailyscript.com</u>, <u>www.movie-page.com</u>, <u>www.weeklyscript.com</u> ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment



# **Script-based action annotation**

#### - On the good side:

- Realistic variation of actions: subjects, views, etc...
- Many examples per class, many classes
- No extra overhead for new classes
- Actions, objects, scenes and their combinations
- Character names may be used to resolve "who is doing what?"

#### – Problems:

- No spatial localization
- Temporal localization may be poor
- Missing actions: e.g. scripts do not always follow the movie
- Annotation is incomplete, not suitable as ground truth for testing action detection
- Large within-class variability of action classes in text

## **Script alignment: Evaluation**

- Annotate action samples in text
- Do automatic script-to-video alignment
- Check the correspondence of actions in scripts and movies



Example of a "visual false positive"



A black car pulls up, two army officers get out.

### **Text-based action retrieval**

Large variation of action expressions in text:



=> Supervised text classification approach



### **Automatically annotated action samples**

#### AnswerPhone

GetOutCar

HandShake

HugPerson



Kiss



SitDown



SitUp





[Laptev, Marszałek, Schmid, Rozenfeld 2008]

### **Hollywood-2 actions dataset**

| Actions     |                               |                                   |                           |  |  |  |
|-------------|-------------------------------|-----------------------------------|---------------------------|--|--|--|
|             | Training<br>subset<br>(clean) | Training<br>subset<br>(automatic) | Test<br>subset<br>(clean) |  |  |  |
| AnswerPhone | 66                            | 59                                | 64                        |  |  |  |
| DriveCar    | 85                            | 90                                | 102                       |  |  |  |
| Eat         | 40                            | 44                                | 33                        |  |  |  |
| FightPerson | FightPerson 54                |                                   | 70                        |  |  |  |
| GetOutCar   | 51                            | 40                                | 57                        |  |  |  |
| HandShake   | HandShake 32                  |                                   | 45                        |  |  |  |
| HugPerson   | HugPerson 64                  |                                   | 66                        |  |  |  |
| Kiss        | 114                           | 125                               | 103                       |  |  |  |
| Run         | 135                           | 187                               | 141                       |  |  |  |
| SitDown 104 |                               | 87                                | 108                       |  |  |  |
| SitUp       | SitUp 24                      |                                   | 37                        |  |  |  |
| StandUp     | 132                           | 133                               | 146                       |  |  |  |
| All Samples | 823                           | 810                               | 884                       |  |  |  |

Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

### **Action classification results**

|             | Cle    | ean  |   | Automatic |      |        |
|-------------|--------|------|---|-----------|------|--------|
|             | hoghof |      |   | hoghof    |      | Chance |
| Channel     | bof    | flat |   | bof       | flat |        |
| mAP         | 47.9   | 50.3 |   | 31.9      | 36.0 | 9.2    |
| AnswerPhone | 15.7   | 20.9 | T | 18.2      | 19.1 | 7.2    |
| DriveCar    | 86.6   | 84.6 |   | 78.2      | 80.1 | 11.5   |
| Eat         | 59.5   | 67.0 |   | 13.0      | 22.3 | 3.7    |
| FightPerson | 71.1   | 69.8 |   | 52.9      | 57.6 | 7.9    |
| GetOutCar   | 29.3   | 45.7 |   | 13.8      | 27.7 | 6.4    |
| HandShake   | 21.2   | 27.8 |   | 12.8      | 18.9 | 5.1    |
| HugPerson   | 35.8   | 43.2 |   | 15.2      | 20.4 | 7.5    |
| Kiss        | 51.5   | 52.5 |   | 43.2      | 48.6 | 11.7   |
| Run         | 69.1   | 67.8 |   | 54.2      | 49.1 | 16.0   |
| SitDown     | 58.2   | 57.6 |   | 28.6      | 34.1 | 12.2   |
| SitUp       | 17.5   | 17.2 |   | 11.8      | 10.8 | 4.2    |
| StandUp     | 51.7   | 54.3 |   | 40.5      | 43.6 | 16.5   |

Average precision (AP) for Hollywood-2 dataset

# Weakly-Supervised Temporal Action Annotation

• Answer questions: *WHAT actions and WHEN they happened*?



 Train visual action detectors and annotate actions with the minimal manual supervision

### **WHEN: Video Data and Annotation**

- Want to target realistic video data
- Want to avoid manual video annotation for training

Use movies + scripts for automatic annotation of training samples





### **Overview**

#### Input:

- Action type, e.g. Person Opens Door
- Videos + aligned scripts

#### Automatic collection of training clips

... Jane jumps up and opens the door ... ... Carolyn opens the front door ... ... Jane opens her bedroom door ...



#### Output:

Slidingwindow-style temporal action localization



**Clustering** of positive segments



[Lihi Zelnik-Manor and Michal Irani CVPR 2001]



Spectral clustering



Complex data:





Standard clustering methods do not work on this data











#### Our view at the problem

#### Feature space



#### Video space



#### Negative samples!



Random video samples: lots of them, very low chance to be positives

Formulation

[Xu et al. NIPS'04] [Bach & Harchaoui NIPS'07]



### **Clustering results**

#### **Drinking actions in Coffee and Cigarettes**



#### **Detection results**

#### **Drinking actions in Coffee and Cigarettes**

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression



#### **Detection results**

#### **Drinking actions in Coffee and Cigarettes**

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression



#### **Detection results**

#### "Sit Down" and "Open Door" actions in ~5 hours of movies





#### Automatic Annotation of Human Actions in Video

#### ICCV 2009 DEMO

#### O.Duchenne, I.Laptev, J.Sivic, F.Bach and J.Ponce

Temporal detection of actions OpenDoor and SitDown in episodes of The Graduate, The Crying Game, Living in Oblivion

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion

### **Mining scene captions**



### **Actions in Context**

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes



Eating -- kitchen



Eating -- cafe



Running -- road



Running -- street

#### Co-occurrence of actions and scenes in scripts



[Marszałek, Laptev, Schmid, 2009]

#### **Results: Joint action and scene recognition**



### Where to go next?

# Is action classification the right problem?

• Is action vocabulary well-defined?

Examples of "Open" action:



What granularity of action vocabulary shall we consider?



Source: http://www.youtube.com/watch?v=eYdUZdan5i8

Do we want to learn person-throws-cat-into-trash-bin classifier?

# How action recognition is related to other visual recognition tasks?


#### We can recognize cars and roads, What's next?



#### What is missing in current methods?



#### What is missing in current methods?



Object detection/classification won't help us to safely cross the street

#### What is missing in current methods?





# What current methods cannot do at all?

### **Limitations of Current Methods**



#### **Next challenge**

Shift the focus of computer vision

Object, scene and action recognition



Recognition of objects' function and people's intentions

Is this a picture of a dog? Is the person running in this video? What people do with objects? How they do it? For what purpose?



Enable new applications

## Motivation

• Exploit the link between human pose, action and object function.



• Use human actors as active sensors to reason about the surrounding scene.

# Scene semantics from long-term observation of people

ECCV 2012

V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. Efros

# Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos



Lots of person-object interactions, many scenes on YouTube

Semantic object segmentation





# New "Party & Cleaning" dataset



# Goal

Recognize objects by the way people interact with them.

Time-lapse "Party & Cleaning" videos



Lots of person-object interactions, many scenes on YouTube Semantic object segmentation





### Pose vocabulary



# Pose histogram



# Some qualitative results



#### Background

















'A+P' soft segm.





#### 'A+L' soft segm.





#### 'A+P' hard segm.













Bed

Chair

CoffeeTable

Cupboard

SofaArmchair

Table 🗌

Other

# Quantitative results

|                   | DPM           | Hedau         | (A+L)         | (P)           | (A+P)          | (A+L+P)      |
|-------------------|---------------|---------------|---------------|---------------|----------------|--------------|
| Wall              |               | $75 \pm 3.9$  | $76 \pm 1.6$  | $76\pm1.7$    | $82 \pm 1.2$   | 81±1.3       |
| Ceiling           |               | $47 \pm 20$   | $53 \pm 8.0$  | $52 \pm 7.4$  | <b>69</b> ±6.7 | $69{\pm}6.6$ |
| Floor             |               | $59 \pm 3.1$  | $64 \pm 5.5$  | $65 \pm 3.6$  | <b>76</b> ±3.2 | $76{\pm}2.9$ |
| Bed               | $31{\pm}20$   | $12 \pm 7.2$  | $14 \pm 5.0$  | $21{\pm}5.8$  | $27 \pm 13$    | $26 \pm 13$  |
| Sofa/Armchair     | $26 \pm 9.4$  | $26\pm10$     | $34 \pm 3.3$  | $32\pm6.5$    | $44 \pm 5.4$   | $43 \pm 5.8$ |
| Coffee Table      | $11 \pm 5.4$  | $11 \pm 5.2$  | $11 \pm 4.4$  | $12 \pm 4.3$  | $17 \pm 10$    | $17{\pm}9.6$ |
| Chair             | $9.5 \pm 3.9$ | $6.3 \pm 2.8$ | $8.3 \pm 2.7$ | $5.8 \pm 1.4$ | $11 \pm 5.4$   | $12{\pm}5.9$ |
| Table             | $15 \pm 6.4$  | $18 \pm 3.8$  | $17 \pm 3.9$  | $16 \pm 7.1$  | $22\pm6.2$     | $22{\pm}6.4$ |
| Wardrobe/Cupboard | $27 \pm 10$   | $27 \pm 8.2$  | $28 \pm 6.4$  | $22 \pm 1.1$  | <b>36</b> ±7.4 | $36{\pm}7.2$ |
| Christmas tree    | $50 \pm 3.3$  | $55\pm12$     | $72 \pm 1.8$  | $20{\pm}6.0$  | $76 \pm 6.2$   | $77{\pm}5.5$ |
| Other Object      | $12 \pm 6.4$  | 11±1.2        | $7.9 \pm 1.9$ | $13 \pm 4.2$  | $16\pm8.3$     | $16\pm8.2$   |
| Average           | $23 \pm 1.8$  | $31 \pm 2.0$  | $35\pm2.4$    | $30{\pm}1.7$  | <b>43</b> ±4.4 | $43 \pm 4.3$ |

- A: Appearance (SIFT) histograms;
- L: Location;
- P: Pose histograms

Hedau: Hedau et al., Recovering the spatial layout of cluttered rooms. In: ICCV. (2009)

DPM: Felzenszwalb et al., Object detection with discriminatively trained part based models. PAMI (2010)

# Using our model as pose prior

Given a bounding box and the ground truth segmentation, we fit the pose clusters in the box and score them by summing the joint's weight of the underlying objects.



#### Input image



#### Conclusions

- BOF methods give state-of-the-art results for action recognition in realistic data. Better models are needed
- Action classification (and temporal action localization) are often ill-defined problems
- Targeting more realistic problems with functional models of objects and scenes can be the next challenge.





