
Activity recognition in ADL settings 

Ben Kröse b.j.a.krose@uva.nl 



Content 

 Why sensor monitoring for health and wellbeing? 

 Activity monitoring from simple sensors  

 Cameras 

 Co-design and privacy issues 

 

HAVSS 2012, Ben Kröse 



Necessity for assistive technology 

 

HAVSS 2012, Ben Kröse 



Why sensors for health and wellbeing? 

 Assistive technology is needed… 

 Physical support 

 Cognitive support 

 Social support 

 Assistive health systems need accurate 

assessments on the current state of the person;  

 Physical 

 Cognitive 

 Social 
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Why sensors for health and wellbeing? 

 Sensing systems are needed that monitor the 

patient.  

 Monitoring systems vital signs directly 

 Heart rate 

 blood pressure 

 sugar level,  

 Monitoring the health state indirectly, by measuring 

the activity behavior of the patient 

HAVSS 2012, Ben Kröse 



What sort of activities? 
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What sort of sensors? 
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Smart Homes 
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ACTIVITY RECOGNITION FROM 

SIMPLE SENSORS 
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Monitoring of activities of elderly using simple sensors

    
 

• Psychogeriatric ward Naarderheem 

• Assisted living appartments 



De Flank: Assisted living homes 

ambient assisted living 
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What do we measure? 

 Intern: Psychogeriatric ward Naarderheem: 8 rooms 

with sensors on bed, door, movement detectors. 

 External Assisted living: 7 apartments with 15 

sensors each: 

 Bed 

 Diverse kitchen cabinets 

 Doors 

 Electrical appliances 

 Couch 

 Motion sensors 
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Long term data collection 
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Feature selection 

 Based on expert knowledge 

 Interview caregivers 

 Make features 

 Select best features 

 Data driven 

 ICA, PCA 

 Clustering 
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Visualization sensordata 

# Badkamerpatroon: 
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Comparison with measurements by 

caregivers 

Occupational therapists use different measures to 

indicate ability of living independently: 

 Subjective assessment 

 modified KATZ ADL index 

(self report on basic ADL, instrumental ADL) 

 objective assessment 

 AMPS scale 

(Physical performance: gait- speedtest 

 3-m measured walk, grip strenght-test 

 Jamar Dynamometer) 
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Automatic recognition of activities 

 

 

 

 

 

 

 Try to recognize ADL’s from simple sensors 
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 Sensor pattern xt depends on activity zt 

 activity zt depends on activity zt-1 

Hidden Markov Model 



Hidden Markov Model 

 Activity at time t: zt = {cooking, sleeping, ….} 

 Sensor pattern xt : binary vector (0,0,1,1,…) 

indicating the sensor values at time = t 
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Hidden Markov Model 

Parameters of the HMM: 

 Transition probability: A=𝑝 𝑧𝑡+1|𝑧𝑡  

 Modeled with a matrix A 

 Observation model: 𝑝 x𝑡 𝑧𝑡  

 Assume independence: 𝑝 x𝑡 𝑧𝑡 =  𝑝 𝑥𝑛,𝑡 𝑧𝑡𝑛  

Each feature 𝑥𝑛 is modeled by an independent Bernoulli 

distribution, where 𝜇𝑖,𝑛 is the parameter of the n th feature 

𝑝 𝑥𝑛,𝑡 𝑧𝑡 = 𝑖 =  𝜇𝑖,𝑛
𝑥𝑛(1 − 𝜇𝑖,𝑛

𝑥𝑛)(1−𝑥𝑛) 
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 Need a training set consisting of examples: 

{z1, x1 , z2, x2 ,... , zN , xN } 

 Estimate parameters with ML methods 

How to train the parameters? 
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Inference 

 The inference problem for the HMM consists of 

finding the single best state sequence that 

maximizes            .  

 Although the number of possible paths grows 

exponentially with the length of the sequence, 

the best state sequence can be found efficiently 

using the Viterbi algorithm. 
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Hidden Markov Model 

Advantages: 

 Fast and efficient 

 Good precision in recognition 

 Needs relatively little training data 

Disadvantages: 

 Limited model of the duration of the activities 

 No modeling of the structure or the duration of 

activities 
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Question 

 What is the probability that the hidden state 

has a duration d given that the observation 

is constant? 
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Question 

 What is the probability that the hidden state 

has a duration d given that the observation 

is constant 

 𝑝 𝑑 = 𝑎𝑖𝑖
𝑑−1 1 − 𝑎𝑖𝑖  
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Conditional random field 

Don’t model the joint probability density 

 

 

but the conditional 

 

 

 

 

as a product of ‘clique potentials’ 
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𝑝 𝑧1:𝑇|𝒙1:𝑇 =
1

𝑍 𝒙1:𝑇
 𝜑𝐶 𝑧𝐶 , 𝒙𝐶
𝑐∈𝐶
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Linear chain conditional random field 

Clique potentials: 

𝑝 𝑧1:𝑇|𝒙1:𝑇 =
1

𝑍 𝒙1:𝑇
 𝜑𝑡 𝑧𝑡 , 𝑧𝑡−1, 𝒙𝑡

𝑇

𝑡=1

 

With 

𝜑𝑡 𝑧𝑡 , 𝑧𝑡−1, 𝒙𝑡 = 𝑒𝑥𝑝 𝜋𝑘𝑓𝑘 𝑧𝑡 , 𝑧𝑡−1, 𝒙𝑡

𝐾

𝑘=1
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Linear chain conditional random field 

• Sensor pattern xt and activity zt are dependent 

• activity zt and activity zt-1 are dependent 
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Conditional Random Field 

 Not a full probabilistic model  

 (more like a neural network) 

 Also training is needed 

HAVSS 2012, Ben Kröse 
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 Not a full probabilistic model  

 (more like a neural network) 
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Conditional random field 

Advantages: 

 Fast and efficient 

 Good precision in recognition 

 Better model of the duration of the activities 

Disadvantages: 

 No modeling of the structure or the duration of 

activities 

 Needs many training samples 

 Slow in training 
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Hidden Semi-Markov Model 
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𝑑𝑡
 is the remaining duration of a state 

Dt-1 Dt Dt+1 

 

 

 

 

 

 

 

 𝑝(𝑧1:𝑇 , 𝑥1:𝑇 , 

 

 

 

 



Hidden Semi-Markov Model 

Advantages: 

 Explicit modeling of the duration of an activity 

 Good precision in recognition 

Disadvantages: 

 Needs many training samples 

 Computational very expensive 
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Experiments: data 
  

 



 Activiteiten  

 



Representation 
  

 



Results 
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Training time 
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Cameras vs. other sensors in the home 

 Body worn sensors:  

 Not always worn 

 Stigmatizing 

 Simple ambient sensors 

 Nonintrusive 

 No detailed information 

 Cameras 

 Privacy issues 

 Much information 
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What sort of activities? 
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SIMPLE ACTIONS 
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Simple actions: fall detection 

 Most common cause of injury with persons 55+ 

 In the Netherlands annually 95.000 

emergencies 

 Of which 43.000 in and around the home 

 1.3% fatal 

 Problem will increase with ageing population 
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Fall detection: existing solutions 

 Wearable accelerometers 

 

 

 

 Ambient detectors 

 

 

Problems: not worn, restricted use 
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Fall detection with cameras 

 Inactivity measurement 

 Dynamics of the visual features 
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Cameras for fall detection 

 Nait-Charif et al (2004): 

Inactivity based system: 

 

 

Activity summarisation and fall detection in a supportive home environment}}, 

  author={Nait-Charif, H. and McKenna, S.J.}, 

  booktitle={Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004}, 
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Cameras for fall detection 

 3D modeling of pose 

 Multiple cameras 

 Time of flight 

 Stereo 
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Fall lab 





Oosterhout et al: 3D dynamics 
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Kinect 
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Compare overhead camera and Kinect 
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Results  

(40 falls, 40 non-falls in total, 5-fold 

crossvalidation) 

TP TN FP FN 

Skeleton 

based 

38.76/0.27 37.04/0.12 2.96/0.12 1.24/0.27 

Bounding 

ellipse 

36.28/0.38 40.00/0.00 0.00/0.00 3.72/0.38 
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Combining 2 camera’s 
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Results (40 falls in total) 

TP TN FP FN 

Skeleton 

based 

38.76 37.04 2.96 1.24 

Bounding 

ellipse 

36.28 40.00 0.00 3.72 

Using all 

features 

36.84 36.80 

Feature 

match 

39.36 39.48 
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Conclusions 

 Research shows that methods from AI and 

computer vision are applicable to the health 

care domain 

 There is a shortage of supervised data sets 

 There is a shortage of realistic data sets 

 (elderly don’t fall like students) 

 Privacy issues have to be taken serious and are 

a serious problem 
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