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GRAPHICAL MODELS: WHAT? WHY?

» Graphical representations of
probability distributions

= Probability theory + graphs theory

Probability
Theory

Probabilistic
Graphical
Models

= Visualization of the structure of
probability distributions

= New insights into existing models
(e.g. conditional independence)

= Computation (learning and
inference)
using graph-based algorithms
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WHY PROBABILISTIC GRAPHICAL MODELS

JOINT DISTRIBUTIONS AS GRAPHS

» A way to consolidate advances
= Good communication tool

= Clear representations

m Reuse learning approaches and algorithms

» Probabilities are a sound way of modeling uncertainty

» Many applications
= Lot of models in the wild

= Lot of models in this summer school

m Various application domains
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> Joint distribution: p(xy, ..., xx) = ? @ @

» Nodes
= random variables (RV) @ @

= continuous or discrete

» Edges @

= relations between RVs @
m directed or undirected

» Resulting graphs @ @
= Directed Acyclic Graphs @‘
(Bayesian Network)

= Undirected with cycles @
(Markov Random Fields)
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LECTURE CONTENT (UNORDERED)

PROBABILITIES, MEASURE THEORY

» Graphical models formalisms
= Directed Graphs: Bayesian networks

= Undirected Graphs: Markov Random Fields
= Factor Graphs

» Tasks around graphical models
» Example: Gaussian Mixture Models (more in other lectures)

» Expectation/Maximization algorithm overview
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» Product rule
= p(X,Y) = p(X]Y) p(Y) = p(Y|X) p(X)

» Marginalization, Sum rule
" p(X) = D,p(X,Y)
y

» Bayes rule

_ p(x]Y) p(¥)
p(X)

= p(X) = > p(X[Y) p(Y)
Y

= p(YX)
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Bayesian Networks
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BAYESIAN NETWORKS: DAGS

» Bayesian Network:
Directed Acyclic Graphs

m oriented edges
= concepts: “parents” and “children” @ @

m x3 is a child of x1 and x2 @

m x3 is a parent of x5 @

m x1 and x2 have no parent

= no loops (directed cycles)

» Spoiler alert: represents a decomposition of p(x;_g)
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PROBABILITY DISTRIBUTION DECOMPOSITION

EQUATIONS FROM A BAYESIAN NETWORK

» Consider a joint distribution p(x;_3) @
» Using product rule (p(a, b) = p(a|b) p(b))

® p(x1.3) = p(x2, x3]x1) p(x1) @
= p(x1.3) = p(xslx1, X2) p(xz2|x1) p(x1)

» Modeling decision @

m different decompositions
= different representations
= different graphs

= documented decisions
= as the mathematical decomposition

m as the Bayesian Network graph
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» Joint distribution for x4, ..., Xk @ @

» In the example
p(x1.6) = p(x1) p(x2) p(x3|x1, x2) p(xalx2) p(xs|xs, xa) p(xelxa)

» Factorized representation
product of “local” conditional distributions

K
p(x1,....xx) = [] p(xx|pary)
k=1

where par; is the set of parents of xi
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BAYESIAN NETWORKS: ABSENCE MATTERS

BAYESIAN NETWORKS: PLATE NOTATION

» Any joint distribution can be factorized

p(X1, ..., Xg) = p(Xk|X1, ..., X ~1) - P(X2]X1) P(x1)
= fully connected graph (ignoring edge direction)

» Absence of links is key
= Encoding of conditional independence

= Many problems modeled with sparse links
= Simplified dependencies

m Fewer links = easier computations
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» Repetition of N nodes with exact same links

N
» Example: p(x1_n, 1) = p(p) [ [ p(xi|w)
i=1

» Plate notation
= Number of repetitions (XN)

= Optional explicit plate index (i)

m Plates can be nested
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BAYESIAN NETWORKS AS GENERATIVE MODELS

BAYESIAN NETWORKS: TYPES OF VARIABLES

» Generative process
= A Bayesian network describes the
process by which the observations are  car car
(supposed to be) generated position _ directin

camera
ID

» Example brand
m Camera ID: an identifier for the camera
m Car brand: a brand in the list of existing

car brands. The probability of a brand
depends on the actual camera

image
(pixels)

= Image: the colors of all pixels in the image, supposing there is
a car in the image. The image depends on the brand, position
and parking direction of the car
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» Variables can be
= Visible, observed (grayed-out)

= Hidden, latent (empty) camera
ID

» Visible variables: evidence, knowledge

= Observed measurements car _car
position direction

= Known context

car

» Hidden variables brand

m Increase richness of models

= Often with clear (physical)
interpretation

» “Visibility” depends on context
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CONDITIONAL INDEPENDENCE: DEFINITION REMINDER

CONDITIONAL INDEPENDENCE IN BAYESIAN NETWORKS

» Considering 3 random variables a, b, ¢
» a and c are conditionally independent given b
malc|b

= iif p(a, c|b) = p(a|b)p(c|b)
= iif p(cla, b) = p(c|b)
= iif p(alc, b) = p(alb)

» Pervasively used to simplify probabilistic expressions
» Easily derived from a Bayesian network representation
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Graphical Models: Modeling and Use
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» b Head-to-Tail:a L ¢ | b

» b Tail-to-Tail:a L ¢ | b

» b Head-to-Head:a L ¢ | b ? No!

» D-separation: rule to assess conditional independence o
in more complex cases
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MODELING: SPECIFYING THE MODEL

» Encoding design/modeling decision

» Structure
= Involved variables

= Dependencies (conditional independence)

» Parameters
= Form of the dependencies (e.g., “Categorical”, “Normal”)

m Parametrization (e.g., “Gaussian mean, fixed variance”)
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MODELING: NUMBER OF PARAMETERS

MODELING: NUMBER OF PARAMETERS

» Supposing discrete variables with K values

» Fully connected case
= p(x1): K — 1 parameters

m p(x2|x1): K (K — 1) parameters
= p(x3]x1, x2): K% (K — 1) parameters
L “es

» Less links, less parameters
= p(x1): K — 1 parameters

® p(xz): K — 1 parameters

= p(x3]x1, x2): K% (K — 1) parameters
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» Simple chain
= p(x1): K — 1 parameters

= p(x|x1): K (K — 1) parameters @
= p(x3]x2): K (K — 1) parameters @
» Indep @

m p(x1): K — 1 parameters

© ®

= p(xz): K — 1 parameters

» Removing links

= Less parameters

= More restricted/limited models @

Rémi Emonet - 48 / 88

GRAPHICAL MODELS USE

GENERATIVE MODELS: ANCESTRAL SAMPLING

» Generating samples form joint distribution

» Learning
= finding the “best” parameters

= given some observation

» Inference
» finding most probable hidden variable values

m given some parameters and observations

» Model selection: “best” among multiple models (diff. structures)?

» Recognition

= What learned model explains best some observations?
(competing candidate models)
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Graphical Models Zoo
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» Goal: draw a sample X7, ..., Xg from p(x;_g) @

» Step 1: define an ancestral ordering

(x5
such that each node comes after its parents @‘@
%)
()

= e.8.: X1, X2, X3, X4, X5, X6
= e.8.1 X2, X4, X1, X3, X6, X5

» Step 2: draw successively following the order
= Parent values are always available

me.g.
Sample first X3 from p(x;)
Then Xz from p(x4|x2 = X3)

» To sample from a marginal (e.g., p(x1, X4)) just keep X7 and X3
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EXAMPLES OF BAYESIAN NETWORKS

» Nature of Variables: discrete, continuous, mixed, static, dynamic

» Examples
= Gaussian Mixture Models (GMM)

= Hidden Markov Models (HMM)

= Kalman Filters (KM)

m Particle Filters (PF)

= Probabilistic Principal Component Analysis (PPCA)
= Factor Analysis (FA)

m Transformed Component Analysis (TCA)

= Probabilistic Topic Models (PTM)
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MARKOV RANDOM FIELDS: UNDIRECTED GRAPHS

FACTOR GRAPHS

» Joint distribution in MRF
= Product over non-negative
functions over the (maximal)
cliques of the graph

1
= p(X) = EHWC (Xc)
c

® Y (Xc): clique potentials
= 7 is a normalization constant

» Example

1
= p(x1.6) = EWA (x1,X2,X3) Wg (X2, X4, Xg) We (X3, X5) Wp (X4, X5)
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» Undirected bipartite graph
= Random variables

= Factors
» Function value (joint distribution)
in a factor graph
= Product of factors

N
n fxan) = [1£(S)
i=1

= S;: neighborhood of node f; in the graph
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‘ BAYESIAN NETWORKS AS FACTOR GRAPHS

MANY GRAPHICAL REPRESENTATIONS

» Factor graph for the joint probability distribution

» Any Bayesian network can be expressed as a factor graph
= More generic

= More explicit (shows distributions)
m Loss of direction information (visually)
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Use Case With GMM
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» Bayesian networks
= mixture models

m hierarchical structures
» MRF

= image denoising
» Factor Graphs

m generic

m explicit

m verbose

® message passing algorithm
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GAUSSIAN/NORMAL DISTRIBUTION: BASICS
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GAUSSIAN/NORMAL DISTRIBUTION: BASICS

MULTIVARIATE NORMAL DISTRIBUTION

» Normal Distrbution or Gaussian Distribution
1 (x—p)?
V2mo? ex”[‘ 207 ]
= Is-a probability density
= N(x|u, 02) >0

= N(xlu, 02) =

2
o 2% H* o
o 2o do o 20

= ft:N(xm, oz)dx =1

» Parameters
=i mean, E[x] =n

= ¢%: variance, E| x* — E[X]| = 0
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» D-dimensional space: x = {xq,...,xp}

» Probability distribution

* N(x|n, Z) =

1 [ (x—u)TZ‘l(x—u)]
exp| —
JemPz]| 2
m 3: covariance matrix

o

Elliptical equiprobability surfaces. full cov. matrix
Major axes = eigenvectors of ¥ (25£U parameters)

T

diagonal cov. matrix
(D parameters)

identity cov. matrix
(1 parameter)
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GAUSSIAN MIXTURE MODELS (GMM)

GMM BAYESIAN NETWORK

» Weighted sum of Gaussians

(==
Gy—

TGy + TGy —

» Parameters with K Gaussians
K
= 11y _g: weights such that > m =1
k=1

® |1; x: means of the Gaussians

m 0%,.15 variances of the Gaussians
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» Generative process
sVi=1.N
= draw 2z; from Categorical (1)

= draw X; for Normal(uzx, 03}_)

» Example samples a1
= K = 3 components

m N draws N (obs i)

= show complete data (color encodes the z;)

K(mmp. k)
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LEARNING WITH EXPECTATION MAXIMIZATION (EM)

COMPLETE/INCOMPLETE DATA: ILLUSTRATION

» Goal: given some observations, find the “best” parameters
= hest = maximum likelihood estimator (MLE)

= Parameters 0 = {m, , Ok }x=1 x
= Find 6);, = argmax, L(8|D) = argmax, p(x|6)
» Log-likelihood function:
In L(6|x) = In p(x|8) = In > p(x, z|0)
z
» Problem
= Incomplete data

= z unknown = E in the likelihood = difficult to optimize
z
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» Complete data
= Supposing we know z

= z: known labels (each point: red, green or  °*
blue)

= Estimating 0 is easy

0 0.5 1

» Incomplete data (actually observed)
= Case of learning the model

= Difficult to estimate 6

= Use of Expectation Maximization algorithm

0 05 1
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EM INTUITION

EM: THE E AND M STEPS

» Complete data log-likelihood
=ln Le(8)x,2) =1n p(x, z|0)
= easier to maximize to get Op
= but need to know z
» If we knew 0, (but not 2)
= we could estimate the posterior of z, i.e., p(z|x, 8)
= i.e., how probable are the different values of z

= i.e., for each point i and component k,
p(z; = k|...): the “responsibility” of component k for x;
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EM: REMARKS AND LIMITATIONS

» EM divides a difficult problem (learning) into two steps that might
be simpler to implement

» E-step or M-step might be intractable

= intractable M-step (generalized EM): instead of maximizing wrt
0, just modify O to increase the value (non-linear optimization
method)

= intractable E-step: perform a partial (rather than full)
optimization of L(q, ©) (wrt q(Z))

» EM requires some initialization values

» EM can get trapped into non-global maxima
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SUMMARY

» Graphical models
= Different representations

= Communication tool

= Inference support

» Tasks around graphical models

» Gaussian Mixture Models
m introduction

= EM algorithm overview

» Inference methods
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» Iterative algorithm
= Random initialization: 8° = rand()
= Local optimum = needs multiple initializations

» E step

= use the current estimate 6°
= to find the posterior/responsibilities p(zlx, 9°’d)

» M step

= use the computed p(z]x, 6°)

= to find a new best estimate
0"*" = argmax, >, p(z|x,6°) In p(x, z|6)
z
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Wrap up
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Thank you for your attention

Probabilistic Graphical Models Introduction
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