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GRAPHICAL MODELS: WHAT? WHY?

Graphical representations of
probability distributions

Probability theory + graphs theory

Visualization of the structure of
probability distributions

New insights into existing models
(e.g. conditional independence)

Computation (learning and
inference)
using graph-based algorithms
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WHY PROBABILISTIC GRAPHICAL MODELS

A way to consolidate advances

Good communication tool

Clear representations

Reuse learning approaches and algorithms

Probabilities are a sound way of modeling uncertainty

Many applications

Lot of models in the wild

Lot of models in this summer school

Various application domains
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JOINT DISTRIBUTIONS AS GRAPHS

Joint distribution: p(x1, ...,xk) = ?

Nodes

random variables (RV)

continuous or discrete

Edges

relations between RVs

directed or undirected

Resulting graphs

Directed Acyclic Graphs
(Bayesian Network)

Undirected with cycles
(Markov Random Fields)
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LECTURE CONTENT (UNORDERED)

Graphical models formalisms

Directed Graphs: Bayesian networks

Undirected Graphs: Markov Random Fields

Factor Graphs

Tasks around graphical models

Example: Gaussian Mixture Models (more in other lectures)

Expectation/Maximization algorithm overview
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PROBABILITIES, MEASURE THEORY

Product rule

p(X,Y) = p(X|Y) p(Y) = p(Y|X) p(X)

Marginalization, Sum rule

p(X) = ∑
y

p(X,Y)

Bayes rule

p(Y|X) =
p(X|Y) p(Y)

p(X)

p(X) = ∑
Y

p(X|Y) p(Y)
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Bayesian Networks
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BAYESIAN NETWORKS: DAGS

Bayesian Network:
Directed Acyclic Graphs

oriented edges

no loops (directed cycles)

concepts: “parents” and “children”

x3 is a child of x1 and x2

x3 is a parent of x5

x1 and x2 have no parent

Spoiler alert: represents a decomposition of p(x1..6)
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PROBABILITY DISTRIBUTION DECOMPOSITION

Consider a joint distribution p(x1..3)

Using product rule (p(a,b) = p(a|b) p(b))

p(x1..3) = p(x2,x3|x1) p(x1)

p(x1..3) = p(x3|x1,x2) p(x2|x1) p(x1)

Modeling decision

different decompositions
⇒ different representations
⇒ different graphs

documented decisions

as the mathematical decomposition

as the Bayesian Network graph
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EQUATIONS FROM A BAYESIAN NETWORK

Joint distribution for x1, ...,xK

p(x1, ...,xK) = ∏
k=1

K

p(xk |

|

park)

where park is the set of parents of xk

In the example
p(x1..6) = p(x1) p(x2) p(x3|x1,x2) p(x4|x2) p(x5|x3,x4) p(x6|x4)

Factorized representation
product of “local” conditional distributions
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BAYESIAN NETWORKS: ABSENCE MATTERS

Any joint distribution can be factorized

p(x1, ...,xK) = p(xK|x1, ...,xK−1) ... p(x2|x1) p(x1)
⇒ fully connected graph (ignoring edge direction)

Absence of links is key

Encoding of conditional independence

Many problems modeled with sparse links

Simplified dependencies

Fewer links ⇒ easier computations
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...

BAYESIAN NETWORKS: PLATE NOTATION

Repetition of N nodes with exact same links

Example: p(x1..N, μ) = p(μ)∏
i=1

N

p(xi|μ)

Plate notation

Number of repetitions (N)

Optional explicit plate index (i)

Plates can be nested
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BAYESIAN NETWORKS AS GENERATIVE MODELS

Generative process

A Bayesian network describes the
process by which the observations are
(supposed to be) generated

Example

Camera ID: an identifier for the camera

Car brand: a brand in the list of existing
car brands. The probability of a brand
depends on the actual camera

Image: the colors of all pixels in the image, supposing there is
a car in the image. The image depends on the brand, position
and parking direction of the car
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BAYESIAN NETWORKS: TYPES OF VARIABLES

Variables can be

Visible, observed (grayed-out)

Hidden, latent (empty)

Visible variables: evidence, knowledge

Observed measurements

Known context

Hidden variables

Increase richness of models

Often with clear (physical)
interpretation

“Visibility” depends on context
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CONDITIONAL INDEPENDENCE: DEFINITION REMINDER

Considering 3 random variables a,b,c

a and c are conditionally independent given b

a⊥ c | b

iif p(a,c|b) = p(a|b)p(c|b)

iif p(c|a,b) = p(c|b)

iif p(a|c,b) = p(a|b)

Pervasively used to simplify probabilistic expressions

Easily derived from a Bayesian network representation
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CONDITIONAL INDEPENDENCE IN BAYESIAN NETWORKS

b Head-to-Tail: a⊥ c | b

b Tail-to-Tail: a⊥ c | b

b Head-to-Head: a⊥ c | b ? No!

D-separation: rule to assess conditional independence
         in more complex cases
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Graphical Models: Modeling and Use
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MODELING: SPECIFYING THE MODEL

Encoding design/modeling decision

Structure

Involved variables

Dependencies (conditional independence)

Parameters

Form of the dependencies (e.g., “Categorical”, “Normal”)

Parametrization (e.g., “Gaussian mean, fixed variance”)
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MODELING: NUMBER OF PARAMETERS

Supposing discrete variables with K values

Fully connected case

p(x1): K − 1 parameters

p(x2|x1): K (K − 1) parameters

p(x3|x1,x2): K2 (K − 1) parameters

…

Less links, less parameters

p(x1): K − 1 parameters

p(x2): K − 1 parameters

p(x3|x1,x2): K2 (K − 1) parameters

…
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MODELING: NUMBER OF PARAMETERS

Simple chain

p(x1): K − 1 parameters

p(x2|x1): K (K − 1) parameters

p(x3|x2): K (K − 1) parameters

Indep

p(x1): K − 1 parameters

p(x2): K − 1 parameters

Removing links

Less parameters

More restricted/limited models
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GRAPHICAL MODELS USE

Generating samples form joint distribution

Learning

finding the “best” parameters

given some observation

Inference

finding most probable hidden variable values

given some parameters and observations

Model selection: “best” among multiple models (diff. structures)?

Recognition

What learned model explains best some observations?
(competing candidate models)
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GENERATIVE MODELS: ANCESTRAL SAMPLING

Goal: draw a sample x1 ̂, ...,xK ̂ from p(x1..K)

Step 1: define an ancestral ordering
such that each node comes after its parents

e.g.: x1,x2,x3,x4,x5,x6

e.g.: x2,x4,x1,x3,x6,x5

Step 2: draw successively following the order

Parent values are always available

e.g.
Sample first x2 ̂ from p(x2)
Then x4 ̂ from p(x4|x2 = x2)̂

To sample from a marginal (e.g., p(x1,x4)) just keep x1 ̂ and x4 ̂
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Graphical Models Zoo
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EXAMPLES OF BAYESIAN NETWORKS

Nature of Variables: discrete, continuous, mixed, static, dynamic

Examples

Gaussian Mixture Models (GMM)

Hidden Markov Models (HMM)

Kalman Filters (KM)

Particle Filters (PF)

Probabilistic Principal Component Analysis (PPCA)

Factor Analysis (FA)

Transformed Component Analysis (TCA)

Probabilistic Topic Models (PTM)
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MARKOV RANDOM FIELDS: UNDIRECTED GRAPHS

Joint distribution in MRF

Product over non-negative
functions over the (maximal)
cliques of the graph

p(X) =
1

Z
∏
C

ψC (XC)

ψC (XC): clique potentials

Z is a normalization constant

Example

p(x1..6) =
1

Z
ψA (x1,x2,x3) ψB (x2,x4,x6) ψC (x3,x5)ψD (x4,x5)
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FACTOR GRAPHS

Undirected bipartite graph

Random variables

Factors

Function value (joint distribution)
in a factor graph

Product of factors

f (x1..N) = ∏
i=1

N

fi(Si)

Si: neighborhood of node fi in the graph
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BAYESIAN NETWORKS AS FACTOR GRAPHS

Factor graph for the joint probability distribution

Any Bayesian network can be expressed as a factor graph

More generic

More explicit (shows distributions)

Loss of direction information (visually)
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MANY GRAPHICAL REPRESENTATIONS

Bayesian networks

mixture models

hierarchical structures

MRF

image denoising

Factor Graphs

generic

explicit

verbose

message passing algorithm
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Use Case With GMM
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GAUSSIAN/NORMAL DISTRIBUTION: BASICS
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GAUSSIAN/NORMAL DISTRIBUTION: BASICS

Normal Distrbution or Gaussian Distribution

N(x|μ, σ2) =
1

2πσ2√
exp







−
(x− μ)2

2σ2







Is-a probability density

N(x|μ, σ2) > 0

∫−∞
+∞

N(x|μ, σ2)dx = 1

Parameters

μ: mean, E[x] = μ

σ2: variance, E



x2 − E[X]


= σ2
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identity cov. matrix
(1 parameter)

diagonal cov. matrix
(D parameters)

full cov. matrix
(          parameters)

Elliptical equiprobability surfaces.
Major axes = eigenvectors of   

MULTIVARIATE NORMAL DISTRIBUTION

D-dimensional space: x = {x1, ...,xD}

Probability distribution

N(x|μ, Σ) =
1

(2π)D|Σ|

|√
exp







−
(x− μ)T Σ−1 (x− μ)

2







Σ: covariance matrix
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GAUSSIAN MIXTURE MODELS (GMM)

Weighted sum of Gaussians

Parameters with K Gaussians

π1..K : weights such that ∑
k=1

K

πk = 1

μ1..K : means of the Gaussians

σ1..K
2 : variances of the Gaussians
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GMM BAYESIAN NETWORK

Generative process

∀i = 1..N

draw zi from Categorical(π)

draw Xi for Normal(μzi, σzi
2)

Example samples

K = 3 components

N draws

show complete data (color encodes the zi)
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LEARNING WITH EXPECTATION MAXIMIZATION (EM)

Goal: given some observations, find the “best” parameters

best = maximum likelihood estimator (MLE)

Parameters θ = {πk, μk, σk}k=1..K

Find θML = argmaxθ L(θ|D) = argmaxθ p(x|θ)

Log-likelihood function:
ln L(θ|x) = ln p(x|θ) = ln ∑

z

p(x, z|θ)

Problem

Incomplete data

z unknown ⇒ ∑
z

 in the likelihood ⇒ difficult to optimize
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COMPLETE/INCOMPLETE DATA: ILLUSTRATION

Complete data

Supposing we know z

z: known labels (each point: red, green or
blue)

Estimating θ is easy

Incomplete data (actually observed)

Case of learning the model

Difficult to estimate θ

Use of Expectation Maximization algorithm
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EM INTUITION

Complete data log-likelihood

ln LC(θ|x, z) = ln p(x, z|θ)

easier to maximize to get θML

but need to know z

If we knew θML (but not z)

we could estimate the posterior of z, i.e., p(z|x, θ)

i.e., how probable are the different values of z

i.e., for each point i and component k,
p(zi = k | ...): the “responsibility” of component k for xi
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EM: THE E AND M STEPS

Iterative algorithm

Random initialization: θ0 = rand()

Local optimum ⇒ needs multiple initializations

E step

use the current estimate θold

to find the posterior/responsibilities p(z|x, θold)
M step

use the computed p(z|x, θold)
to find a new best estimate

θnew = argmaxθ ∑
z

p(z|x, θold) ln p(x, z|θ)
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EM: REMARKS AND LIMITATIONS

EM divides a difficult problem (learning) into two steps that might
be simpler to implement

E-step or M-step might be intractable

intractable M-step (generalized EM): instead of maximizing wrt
θ, just modify θ to increase the value (non-linear optimization
method)

intractable E-step: perform a partial (rather than full)
optimization of L(q, θ) (wrt q(Z))

EM requires some initialization values

EM can get trapped into non-global maxima
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Wrap up
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SUMMARY

Graphical models

Different representations

Communication tool

Inference support

Tasks around graphical models

Gaussian Mixture Models

introduction

EM algorithm overview

Inference methods
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Thank you for your attention

Probabilistic Graphical Models Introduction
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